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Abstract: From the viewpoint of BDS bridge displacement monitoring, which is easily affected by
background noise and the calculation of a fixed threshold value in the wavelet filtering algorithm,
which is often related to the data length. In this paper, a data processing method of Complete
Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), combined with adap-
tive threshold wavelet de-noising is proposed. The adaptive threshold wavelet filtering method
composed of the mean and variance of wavelet coefficients of each layer is used to de-noise the
BDS displacement monitoring data. CEEMDAN was used to decompose the displacement response
data of the bridge to obtain the intrinsic mode function (IMF). Correlation coefficients were used to
distinguish the noisy component from the effective component, and the adaptive threshold wavelet
de-noising occurred on the noisy component. Finally, all IMF were restructured. The simulation
experiment and the BDS displacement monitoring data of Nanmao Bridge were verified. The results
demonstrated that the proposed method could effectively suppress random noise and multipath
noise, and effectively obtain the real response of bridge displacement.

Keywords: beidou navigation system (BDS); bridge monitoring; complete ensemble empirical mode
decomposition with adaptive noise (CEEMDAN); adaptive threshold wavelet; data noise reduction

1. Introduction

Bridges are a vital component of the road infrastructure network and the development
of the national economy. During operation, bridges may be affected by factors such as traffic
loads, wind, and earthquakes, resulting in a certain amount of deformation of the bridge. In
severe cases, it can lead to safety accidents. Therefore, it is necessary to monitor the health
of bridges, especially the displacement generated by the bridge under load [1]. In addition
to strain gauge [2], optical fiber sensor, and accelerometer [3], there are also precise level,
robotic total station (RTS) [4–9], LiDAR DTMs [10,11], and global navigation satellite system
(GNSS) instrument [12–14], etc. Strain gauge and optical fiber sensors have limitations in
displacement measurement [1], and the calculation of accelerometer by double integration
will lead to serious errors [15,16]. Although level and RTS have achieved good results
in displacement monitoring, there are still some limitations, such as not working all day
as well as the need to see between stations [12,17,18]. In contrast, as a geodetic survey
method, GNSS technology has the advantages of providing three-dimensional coordinates,
all-weather operation, and not requiring a line-of-sight between target points [13,14]. As
early as 1997, GPS had been applied to the Humber Bridge, and the dynamic displacement
of the bridge was successfully obtained [19], indicating that GPS could be applied to
bridge monitoring. With the development of GNSS technology, its application in bridge
displacement monitoring had also been greatly developed, such as with the application
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of GNSS technology in the Talkha highway steel bridge in Mansoura [20], the Yeongjong
Grand Bridge in South Korea [21], and the Severn Suspension Bridge in the UK [22]. A
large amount of literature has been published in recent years, but most of the research is on
GPS [20,23]. Beidou Navigation Satellite System (BDS) is a satellite navigation system that
has been formally networked in 2020, and has also been applied in the field of deformation
monitoring [24,25]. In terms of bridge displacement monitoring, Xi et al., demonstrated
through experiments that the performance of BDS-RTK in bridge monitoring is comparable
to that of GPS-RTK, and BDS-RTK is subjected to less background noise [26]. This indicates
the feasibility of BDS in bridge displacement monitoring.

When using GNSS for bridge displacement monitoring, due to environmental influ-
ences, GNSS signals may contain some noise, such as satellite multipath effects, random
noise, etc. [27–29]. The impact of these noises will submerge the true displacement infor-
mation of the bridge, leading to a decrease in the accuracy of bridge health monitoring.
Therefore, it is necessary to find an appropriate method to filter these noises. Most tra-
ditional signal processing methods focus on signals with periodic stationarity, while the
results of GNSS monitoring signals are nonlinear and non-stationary [30], which includes
true displacement information of bridges, errors caused by multipath effects, and random
noise [11]. Empirical mode decomposition (EMD) [31] and wavelet analysis [32] are two
commonly used and effective methods to process nonlinear and non-stationary signals.
Variational Mode Decomposition (VMD) has a good application effect in the signal pro-
cessing of bridge displacement monitoring due to its unique advantages [33]. However,
CiveraM et al., noted in their study that the VMD method is not applicable to non-stationary
signals and has certain limitations, while the EMD is more suitable for non-stationary sig-
nals [34]. Mode aliasing will occur when a signal is decomposed by EMD [35]. Although
EEMD can greatly eliminate modal mixing by adding white noise to EMD, the added
noise cannot be completely removed [36]. CEEMDAN proposed by Torres et al. [37] is an
improved CEEMD [38] with adaptive noise, which can achieve an accurate recombination
of decomposed signals and effectively solve the problem of modal mixing. The CEEMDAN
filtering method is used to remove components containing noise directly, but there would
still be some effective information in the components, which would be lost if discarded
directly. In order to avoid this situation, the EMD method, combined with other data
processing methods, has been applied in GNSS signal de-noising. Therefore, Gao et al.,
used the Hilbert-Huang transform (HHT) and EEMD analysis methods to study the time-
frequency characteristics of GNSS strain time series before the Yunnan earthquake, which
could better analyze the change characteristics of seismic signals at different scales [39]. Wei
et al., combined EEMD with independent component analysis (PSR-ICA) based on phase
space reconstruction to analyze the vertical time series of GNSS reference stations and
effectively separate independent atmospheric and soil moisture load signals [40]. Wen Chen
et al., proposed a method combining the Chebyshev filter and CEEMDAN (CF-CEEMDAN)
to de-noise GNSS monitoring signals of offshore platforms [41].

As a classical multi-scale analysis method, wavelet analysis plays an important role
in GNSS signal noise reduction [42–44]. In addition to using wavelet analysis alone to
process GNSS signals, the GNSS signals are also filtered jointly with the empirical mode
decomposition method to solve the detail loss caused by empirical mode decomposition
method. For example, RuiRao et al., proposed to use EMD combined with wavelet analysis
to de-noise bridge GNSS monitoring and correctly extract bridge frequency [45]. However,
this algorithm is affected by the problem of mode mixing in EMD. Niu et al., proposed that
EEMD combined the wavelet packet method for dynamic analysis of suspension bridges,
and proved that the proposed EEMDWP method was proved to be better than the single
EEMD or WP method [46]. Guo et al., proposed a filtering method combining EEMD
and wavelet analysis to separate multipath effects in GNSS data [47]. Xiong et al., used
CEEMDAN combined with wavelet transform [48] or wavelet packet [30] to conduct noise
reduction processing on GNSS-RTK monitoring data of bridges and high-rise buildings.
Although the noise reduction method of empirical mode decomposition combined with
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wavelet analysis solved the problem of detail information loss to a certain extent, the
filtering effect of wavelet analysis method depended on the selection of wavelet basis
function, decomposition layers, and threshold. The selection of threshold is usually a fixed
threshold or a threshold parameter based on a large amount of experience, which had
certain subjectivity. Different threshold selection had different noise reduction effects.

Based on the above analysis, in order to correctly identify the bridge displacement,
change in the BDS displacement monitoring signal containing noise, and to reduce the
influence of subjectivity of threshold selection in wavelet de-noising, a method combining
CEEMDAN and adaptive threshold wavelet (CEEMDAN-AWT) is proposed in this paper
to reduce the noise of bridge BDS monitoring signal. The Section 2 introduces the method
of data collection in this paper. In Section 3, the principle of this method is introduced and
the performance of this method is evaluated by using analog signal. In Section 4, firstly, the
stability of the BDS receiver is tested, and the noise reduction effect of the proposed method
on the measured data is evaluated. Finally, the monitoring signals of bridge engineering
are applied and the monitoring results of bridge displacement are analyzed.

2. Data Collection Method

The equipment used for data collection in this paper is the split GNSS receiver M900SE
provided by Sinan Navigation Company, as shown in Figure 1. The antenna is an AT60
antenna, which can simultaneously observe the entire galaxy (GPS, GLONASS, Galileo,
BDS) satellite. The receiver is equipped with a 4G transmission module, which can upload
the collected data to the cloud server in real time through the wireless network. Simultane-
ously, it is also equipped with an RS232 serial port, which can transmit the data through
the wired way, which allows the data collection to be more comprehensive and convenient.
The data collection flow chart is shown in Figure 2.
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The steps of data collection are as follows:

1. A BDS receiver is used to receive signals from BDS satellites.

The observation method adopted in this paper is relative positioning technique [14].
Relative positioning refers to the joint observation of the satellite by the reference station
and the monitoring station. The coordinates of the reference station are usually known by
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certainty, and then the coordinates of the monitoring station are determined by calculating
the baseline vector between the reference station and the monitoring station. This occurs as
shown in Figure 3.

Sensors 2023, 23, x FOR PEER REVIEW 4 of 21 
 

 

BDS 
satellite 
signal

BDS receiver

Cloud server

Solution 
software

Displacement 
data

4G

RS232
 Computer

 
Figure 2. Data collection flow chart. 

The steps of data collection are as follows: 
1. A BDS receiver is used to receive signals from BDS satellites. 

The observation method adopted in this paper is relative positioning technique [14]. 
Relative positioning refers to the joint observation of the satellite by the reference station 
and the monitoring station. The coordinates of the reference station are usually known by 
certainty, and then the coordinates of the monitoring station are determined by calcu-
lating the baseline vector between the reference station and the monitoring station. This 
occurs as shown in Figure 3. 

s1

s2

s3

ρ1(1) 

ρ3(1)

T1 T2

ρ2(1) 

ρ1(2) 

ρ2(2) 

ρ3(2) 

Baseline

 
Figure 3. Relative positioning work diagram. 

In Figure 3, S1–S3 represent the satellites. T1 and T2 are two receiving devices, one 
of which serves as the reference station and the other as the monitoring station. 
2. After processing the received satellite signal, the receiving device transmits it to the 

cloud server through the 4G network or to the upper computer through an RS232 
serial port. 

3. The collected satellite data is relative computed with the commercial software 
compass solution to obtain the three-dimensional coordinates of the monitoring 
station, and then the displacement time series is obtained through the Equation (1) 
[21]. 

൥∆ݔ௜∆ݕ௜∆ݖ௜൩  =  ൥ݔ௜ݕ௜ݖ௜൩ − ଵ௡∑ ൥ݔ௜ݕ௜ݖ௜൩௜ ୀ ௡௜ ୀ ଴   (1)

where ሺ∆ݔ௜ ௜ݕ∆,  ௜ሻ  is the displacement of each recorded moment (epoch), n is the totalݖ∆,
number of epochs, i = 1, 2, 3. 

3. Principle of CEEMDAN-Adaptive Threshold Wavelet Algorithm 
This section introduces the basic theory and workflow of CEEMDAN-adaptive 

threshold wavelet (CEEMDAN-AWT) method and tests the method with analog signals. 

Figure 3. Relative positioning work diagram.

In Figure 3, S1–S3 represent the satellites. T1 and T2 are two receiving devices, one of
which serves as the reference station and the other as the monitoring station.

2. After processing the received satellite signal, the receiving device transmits it to the
cloud server through the 4G network or to the upper computer through an RS232
serial port.

3. The collected satellite data is relative computed with the commercial software compass
solution to obtain the three-dimensional coordinates of the monitoring station, and
then the displacement time series is obtained through the Equation (1) [21].∆xi

∆yi
∆zi

 =

xi
yi
zi

− 1
n

i=n

∑
i=0

xi
yi
zi

 (1)

where (∆xi, ∆yi, ∆zi) is the displacement of each recorded moment (epoch), n is the total
number of epochs, i = 1, 2, 3.

3. Principle of CEEMDAN-Adaptive Threshold Wavelet Algorithm

This section introduces the basic theory and workflow of CEEMDAN-adaptive thresh-
old wavelet (CEEMDAN-AWT) method and tests the method with analog signals. Firstly,
the signal is decomposed by the CEEMDAN method, and the noisy component and effec-
tive component are distinguished by the correlation coefficients between each component
and the signal. Then, adaptive threshold wavelet de-noising is carried out on the noisy
component to retain more details of the signal. Finally, all components are reconstructed.

3.1. CEEMDAN Algorithm

Adaptive noise complete set Empirical Mode decomposition (CEEMDAN) is an im-
proved algorithm for the EMD [31] algorithm and EEMD [36] algorithm with mode aliasing
and residual white noise in components. The CEEMDAN decomposition steps of bridge
monitoring signal y(t) [37] are as follows:

1. A new signal y′(t) = y(t) + (−1)qεvj(t) is obtained by adding Gaussian white noise
to y(t).

where q = 1, 2, ε is the standard deviation of white noise, vj(t) is the Gaussian white
noise signal, N is the number of times white noise is added, j = 1, 2.... After EMD de-
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composition of the new signal, the first order characteristic mode component C1 of EMD
decomposition is obtained.

E
(

y(t) + (−1)qεvj(t)
)
= Cj

1(t) + rj (2)

where the function E(y(t) + (−1)qεvj(t)) represents the EMD decomposition process, Cj
1(t)

is the first order eigenmode component of EMD decomposition, and rj is the residual of
EMD decomposition.

2. The first modal component IMF1 of CEEMDAN decomposition is obtained by an
overall averaging of the N modal components generated:

IMF1 = C1(t) =
1
N

N

∑
j=1

Cj
1(t) (3)

where N is the number of first-order modal components decomposed by EMD.

3. Remove the first modal component to obtain the first residual of the signal:

r1(t) = y(t)− IMF1 (4)

where y(t) is the original signal added with white noise and IMF1 is the first-order modal
component of CEEMDAN.

4. A new signal r
′
1(t) is obtained by adding white Gaussian noise to r1(t), and then the

signal is decomposed by EMD to obtain the first mode component D1 of r
′
1(t), and

the second eigenmode component IMF2 is obtained by averaging:

IMF2 = C2(t) =
1
N

N

∑
j=1

Dj
1(t) (5)

where N is the number of first-order modal components decomposed by EMD, and Dj
1(t)

is the first-order modal components decomposed by signal r
′
1(t).

5. After removing the second modal component, the second residual r2(t) of signal y(t)
is obtained:

r2(t) = r1(t)− IMF2 (6)

where r1(t) is the first residual of the signal y(t) and IMF2 is the second CEEMDAN modal
component of the signal y(t).

6. Repeat the above steps until the obtained residual signal is a monotone function, then
the decomposition is complete. At this point, the signal y(t) is decomposed into K
modal components and a residual component:

y(t) =
K

∑
k=1

IMFk + rt(t) (7)

where K is the number of modal components, IMFk is the Kth modal component, and rt(t)
is the residual component of signal y(t).

It can be seen from Equation (7) that bridge displacement monitoring signal y(t) can
be decomposed into K modal components and one residual term. The CEEMDAN method
directly removes the noise component to realize signal de-noising.

3.2. Adaptive Threshold Wavelet Algorithm

The CEEMDAN method directly removes the noisy component, but will lose some
details of the signal. In contrast, the wavelet threshold de-noising method is de-noising
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the signal through the limit of the threshold. Therefore, wavelet threshold de-noising can
retain more effective information in the noisy component. The specific methods of wavelet
threshold de-noising for noisy components are as follows:

1. Select the appropriate wavelet basis function and the appropriate number of decom-
position layers.

2. Quantify the high-frequency decomposition layer with a threshold value.
3. All wavelet coefficients are reconstructed to obtain de-noised signals.

In the above steps, the selection of threshold is the key link in wavelet threshold de-
noising. Common thresholds include an unbiased risk estimation threshold, fixed threshold,
heuristic threshold, and minimax threshold [42], among which the fixed threshold is widely
used in GNSS signal de-noising, and can be presented as follows [45]:

λ = σ
√

2lnNσ =
median(|cd1|)

0.6745
(8)

where σ is noise variance, N is signal length, and cd1 is the detail coefficient of the first
layer decomposition [45].

According to Equation (8), the fixed threshold is not only related to noise variance,
but also to signal length. If the signal is too long or too short, the de-noising effect will be
weakened to some extent. In view of the above situation, this paper proposes an adaptive
threshold calculation method, and can be presented as follows:

λ = µj + max
(
cdj
)
∗ δj j = 1, 2, . . . , k (9)

where µ is the mean value, δ is the variance of the wavelet coefficients of this layer, respec-
tively, and j is the number of decomposition layers. The threshold calculation method is to
adaptively select the high frequency coefficients of each layer to avoid the influence of data
length on the threshold and all wavelet coefficients use the same threshold filtering.

3.3. CEEMDAN-Adaptive Threshold Wavelet Algorithm Process

The noise reduction process of CEEMDAN-AWT method is shown in Figure 4. The
specific process is as follows:

1. The original signal was decomposed into each order modal component (IMF compo-
nent) and a residual component (res component) by CEEMDAN.

2. Calculate the correlation coefficients r between IMF components of each order and
the original signal [30], and it can be presented as follows:

r =
∑N

i (y[i]− y)
(

IMF[i]− IFM
)√

∑N
i (y[i]− y)2(IMF[i]− IFM

)2
(10)

where y is the original data, y is the average value, IMF is the modal components of each
order, and IFM is the average value. The IMF component with the first local minimum of
the correlation coefficient is selected as the boundary, the IMF component from the first IMF
component to this IMF component is the noise component, and the remaining components
are the effective components.

3. The noisy components are de-noised by the wavelet threshold and quantized by the
soft threshold function [45]. The soft threshold function is as follows:

wλ =

{
sgn(w) ∗ (|w| − λ) |w| ≥ λ

0 |w| < λ
(11)

where w is each wavelet coefficient, λ is the critical threshold, and sgn(x) is a symbolic function.
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4. The filtered IMF components was reconstructed.

In order to evaluate the noise reduction performance of the noise reduction method,
signal-to-noise ratio (SNR) and root mean square error (RMSE) are introduced [30]. As follows:

SNR = 10log10
∑N

i y(i)2

∑N
i [y(i)− y′(i)]2

(12)

RMSE =

√√√√ 1
N

N

∑
i
[y(i)− y′(i)]2 (13)

where y(t) is the original data, y′(t) is the data after noise removal, and N is the data length.
The larger the SNR or the smaller the RMSE denotes the better the noise reduction effect.

3.4. Performance Evaluation of CEEMDAN-Adaptive Threshold Wavelet Algorithm

To evaluate the performance of CEEMDAN-AWT method, y(t) = 5sin(2π ∗ 0.7t) +
7sin(2π ∗ 0.5t) + n(t) was used as the analog signal in this paper. The signal consists of
sinusoidal signals with frequency of 0.7 Hz and 0.5 Hz and random noise n(t). The sampling
frequency of the analog signal is 100 Hz. Figure 5 shows the images of signal without noise
and signal y(t) with 5 dB noise added.

By comparing Figure 5a,b, it can be seen that after adding noise, the signal appears burr
and the signal smoothness is weakened, indicating that noise will affect the correct recogni-
tion and use of the signal, therefore, it needs to be processed by filtering. After CEEMDAN
of y(t), 11 IMF components and 1 residual component were shown in Figure 6. Equation
(10) was used to calculate the correlation coefficients between each IMF component and
y(t), as shown in Table 1.

It can be seen from Table 1 that the first locally minimum IMF component of the
correlation coefficient was IMF4, as such it was determined that IMF1~IMF4 were noise
components, while IMF5~IMF11 were effective components. The comparison between
the reconstructed signal and y(t) after processing by using the CEEMDAN-AWT method
proposed in this paper is shown in Figure 7.



Sensors 2023, 23, 4268 8 of 21
Sensors 2023, 23, x FOR PEER REVIEW 8 of 21 
 

 

  
(a) (b) 

Figure 5. Amplitudes of x(t) and y(t): (a) Amplitudes of x(t); (b) Amplitudes of y(t). 

By comparing Figure 5a,b, it can be seen that after adding noise, the signal appears 
burr and the signal smoothness is weakened, indicating that noise will affect the correct 
recognition and use of the signal, therefore, it needs to be processed by filtering. After 
CEEMDAN of y(t), 11 IMF components and 1 residual component were shown in Figure 
6. Equation (10) was used to calculate the correlation coefficients between each IMF 
component and y(t), as shown in Table 1. 

 
Figure 6. CEEMDAN decomposition of y(t). 

Figure 5. Amplitudes of x(t) and y(t): (a) Amplitudes of x(t); (b) Amplitudes of y(t).

Sensors 2023, 23, x FOR PEER REVIEW 8 of 21 
 

 

  
(a) (b) 

Figure 5. Amplitudes of x(t) and y(t): (a) Amplitudes of x(t); (b) Amplitudes of y(t). 

By comparing Figure 5a,b, it can be seen that after adding noise, the signal appears 
burr and the signal smoothness is weakened, indicating that noise will affect the correct 
recognition and use of the signal, therefore, it needs to be processed by filtering. After 
CEEMDAN of y(t), 11 IMF components and 1 residual component were shown in Figure 
6. Equation (10) was used to calculate the correlation coefficients between each IMF 
component and y(t), as shown in Table 1. 

 
Figure 6. CEEMDAN decomposition of y(t). 

Figure 6. CEEMDAN decomposition of y(t).

Table 1. Correlation coefficients between IMF components and y(t).

IMF No. IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11

Correlation
coefficients 0.357 0.211 0.168 0.109 0.321 0.838 0.229 0.025 0.013 0.012 −0.014
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It can be seen from Figure 7 that after filtering, the signal was smoother and less sharp,
which was more similar to x(t) and retained the details of the signal. In order to evaluate
the noise reduction effect of the proposed method, it was compared with the CEEMDAN
method and CEEMDAN-fixed threshold wavelet (CEEMDAN-FWT) method, respectively.
The evaluation indexes calculated according to Equations (12) and (13) were shown in
Table 2. In Table 2, noise signals at different signal-to-noise ratio levels (5 dB, 10 dB, 15 dB,
20 dB, and 25 dB) were also compared and analyzed.

Table 2. Evaluation indicators of analog signal noise reduction.

Different Noise
Levels

5 dB 10 dB 15 dB 20 dB 25 dB

SNR/dB RMSE/mm SNR/dB RMSE/mm SNR/dB RMSE/mm SNR/dB RMSE/mm SNR/dB RMSE/mm

CEEMDAN 6.356 2.271 10.662 1.265 15.368 0.715 20.609 0.386 25.539 0.218
CEEMDAN-FWT 6.360 2.269 10.698 1.260 15.527 0.702 20.891 0.374 26.030 0.206
CEEMDAN-AWT 6.377 2.265 10.786 1.247 15.857 0.676 22.410 0.314 30.188 0.127

It can be seen from Table 2 that the SNR and RMSE of the signal processed by
CEEMDAN-AWT method were the maximum and the minimum. This indicates that
the performance of the CEEMDAN-AWT method was better than the other two methods
and was more suitable for the suppression of random noise in BDS monitoring signals.

4. Experimental Results and Discussion
4.1. Background Noise Analysis

In order to evaluate the background noise of the receiver, two M900SE GNSS receivers
of Sinan Navigation were used for static test in an open square. The experimental test
Figure 8 was as follows. One receiver was used as the reference station and the other as the
monitoring station. The two devices were used for synchronous data acquisition with a
sampling frequency of 1 Hz and a total test time of 3 h and 33 min. The length of the baseline
between the two stations was 4.06 m, which was classified as a short baseline (<5 km) [49].
Both sensors were stationary. Theoretically, the displacement of the monitoring station
should have been zero. Therefore, the non-zero results in the test were visually generated by
the background noise. The solution software was used to solve the collected BDS satellite
signals, and the displacement time series was calculated according to Equation (1), as
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shown in Figure 9. The displacement time series included horizontal direction (north-south
direction and east-west direction; N-S direction and E-W direction) and vertical direction
(U direction). The mathematical statistical characteristics of the displacement time series in
the three directions are shown in Table 3.
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Table 3. Basic information of the original time series.

Signal Mean/mm Std/mm Max/mm Min/mm

N-S direction 5.4180 × 10−8 4.3992 16.926 −37.074
E-W direction −9.0183 × 10−7 7.0044 44.883 −32.117

U direction −5.1194 × 10−8 5.4179 19.080 −15.920

It can be seen from Figure 9 and Table 3 that the displacement data of the three
directions were mainly concentrated near zero, in which the maximum value of the N-S
direction was 16.926 mm and the minimum value was −37.074 mm; the maximum value of
the E-W direction was 44.883 mm and the minimum value was−32.117 mm. The maximum
value of the U direction was 19.080 mm and the minimum value was −15.920 mm. It can
be seen from the Figure 9 that the maximum value occupied a small proportion column in
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the whole signal and did not appear continuously, and thus it was determined that there
may have been gross error in this time series. In order to judge and remove gross errors,
the commonly used 3σ criterion method was introduced, which was as follows [50]:

1. Calculate the average X of displacement time series, as shown in Equation (14).

X =
1
n

n

∑
i=1

Xi (14)

where X is the mean value of the displacement time series, n is the sequence length, and Xi
is the displacement at every moment.

2. The residual error vi of the sequence is calculated as shown in Equation (15).

vi = Xi − X (15)

where Xi is the displacement at every moment, and X is the mean value of the displacement
time series.

3. Calculate the root mean square deviation, σ, of the sequence according to Bessel
method, as shown in Equation (16).

σ =
√

∑ v2
i /(n− 1) (16)

where vi is the residual of the monitoring data sequence and n is the length of the sequence.

4. Judge according to the above results. If
∣∣Xi − X

∣∣ > 3σ, Xi will be judged as gross
error and removed, and the average value will be used for interpolation; otherwise,
Xi will be judged as normal value and retained.

After removing coarse error, the horizontal displacement ranged from−12.074~11.926 mm
in the north-south direction and from −20.117~19.883 mm in the east-west direction. The
vertical displacement was −8.920~9.080 mm. The accuracy of the BDS sensor used in
this study was ±10 mm in the horizontal direction and ±15 mm in the vertical direction.
The displacement generated by environmental noise exceeded the measurement range
in the horizontal direction, while in the vertical direction, although it did not exceed the
measurement accuracy, it could be seen from the figure that there were some fluctuations
and burrs in the displacement time series, which still indicated that the measurement by
BDS sensor would be affected by noise. The displacement time series was processed by
CEEMDAN-AWT filtering. Figure 10 demonstrated the IMF components of displacement
time series in three directions. The correlation coefficients, r, of each IMF component and
each displacement time series were calculated, respectively, as shown in Table 4.

According to Table 4, the correlation coefficient 0.125 of IMF5 in the north-south
direction was the first local minimum, while the first local minimum of the correlation
coefficient in the east-west direction and the vertical direction was IMF4, which was 0.178
and 0.204, respectively. Therefore, in the N-S direction IMF1-IMF5 were noise components
and IMF6-IMF11 were effective components. In the E-W and U directions IMF1-IMF4
were noise components and IMF5-IMF11 were effective components. The comparison
between the filtered displacement time series and the original displacement time series
was shown in Figure 11. As can be seen from Figure 11, after noise reduction the time
series became smoother, the sharp points were suppressed, and the data accuracy was also
improved. Under static observation after noise reduction, the displacement range in the
N-S direction was −9.915~11.180 mm, the displacement range in the E-W direction was
−15.856~15.833 mm, and the displacement range in the U direction was −7.409~7.780 mm.
It can be seen that in addition to the east-west direction, the measurement accuracy of the
instrument was satisfied in the north-south direction and the vertical direction. Under the
influence of the multipath effect, the accuracy of the U direction was still less than 8mm,
which could meet the needs of bridge monitoring.
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Table 4. Correlation coefficients between IMF and original signals in three directions.

Signal
Correlation Coefficients

IMF1 IMF2 IMF3 IMF4 IMF5 IMF6 IMF7 IMF8 IMF9 IMF10 IMF11

N-S direction 0.256 0.182 0.162 0.151 0.125 0.239 0.334 0.415 0.520 0.404 0.371
E-W direction 0.324 0.220 0.206 0.178 0.193 0.256 0.264 0.252 0.311 0.432 0.523

U direction 0.308 0.229 0.209 0.204 0.208 0.215 0.219 0.347 0.525 0.271 0.342
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In order to evaluate the noise reduction effect of the proposed method on static test
data, it was compared with the CEEMDAN method and the CEEMDAN-FWT method, then
the evaluation indexes of the three methods were calculated using Equations (12) and (13),
as shown in Table 5.

Table 5. Noise reduction performance of different methods.

Signal
N-S Direction E-W Direction U Direction

SNR/dB RMSE/mm SNR/dB RMSE/mm SNR/dB RMSE/mm

CEEMDAN 7.424 1.761 6.317 3.268 6.327 1.568
CEEMDAN-FWT 7.453 1.755 6.321 3.266 6.349 1.564
CEEMDAN-AWT 7.472 1.751 6.325 3.265 6.393 1.556

It can be seen from Table 5 that SNR of the CEEMDAN-AWT method for displacement
time series de-noising in three directions in a static test was the largest among the three
methods, while RMSE was the smallest among the three methods. This meant that the
performance of the CEEMDAN-AWT method in actual measurement data was better than
the other two algorithms.

4.2. De-Noising of Bridge BDS Displacement Measurement Signal

A field survey was carried out in Nanmaoqiao, Baoting Autonomous County, Hainan
Province. The length of Nanmao bridge was 260.68 m. The main bridge was 127.0 m long
and 15 m wide, which was a highway bridge connecting Baoting County and Nanmao
Farm. The bridge was the only way for people to travel and purchase farm, and the traffic
flow was relatively large. In this test, a monitoring station was set up at the mid-span
position of the bridge, and a reference station was set up on an unopened road 91 m away
from the bridge. The coordinates of the reference station were obtained by conventional
static positioning method. The instruments used in the test included two split receivers of
Sinan M900SE, equipped with power supply equipment and laptop computers. Figure 12
demonstrates the layout of monitoring stations and reference stations in this test. The
experiment occurred at 13:00 on 8 December 2022, with a total of five hours of observation.
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The sampling frequency of the equipment was 1 Hz, and the cut-off angle of the satellite
was 15 degrees. Since the bridge was mainly affected by the traffic volume, this paper only
analyzed the time series in the vertical (U) direction. Figure 13 showed the displacement
time series diagram in the vertical direction of this test. Table 6 showed the basic statistical
characteristics of bridge monitoring data.
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After calculation, the maximum value and minimum value of the data obtained in
this experiment was 28.969 mm and −46.031 mm. However, as shown in Figure 13, these
data occupy relatively few specific columns throughout the entire time series and were not
clustered. Therefore, it was determined that there was a coarse error in the displacement
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time series, and the 3σ method performed coarse error processing on the original data. The
baseline length between the two stations in this test was 91 m, which was considered a short
baseline. The satellite clock deviation and receiver clock deviation could be eliminated
through relative positioning, and the atmospheric propagation delay could be ignored [50].
The main source of error in the displacement time series was the random noise received
by the device during reception. The displacement time series after gross error removal
was decomposed by CEEMDAN, and the IMF components were shown in Figure 14.
The correlation coefficient, r, of each IMF component and displacement time series was
calculated according to Equation (10), as shown in Table 7.
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Table 6. Basic statistical characteristics of bridge monitoring data.

Signal Mean/mm Std/mm Max/mm Min/mm

U dir −1.869 × 10−12 6.872 28.969 −46.031

As can be seen from Table 7, the first local minimum of correlation coefficient was
IMF5, and its correlation coefficient with displacement time series was 0.145. Therefore,
IMF~IMF5 was judged as the noise component, and IMF6~IMF12 as the effective com-
ponent. The adaptive threshold wavelet de-noising was carried out for IMF1-IMF5 and
reconstructed with the effective component. The comparison between the filtered displace-
ment time series and the original displacement time series was shown in Figure 15. In order
to further evaluate the noise reduction effect of the proposed method on displacement
time series, the CEEMDAN method and the CEEMDAN-FWT method were carried out on
displacement time series at the same time, and their evaluation indexes were calculated
and shown in Table 8.

As shown in Table 8, after noise reduction by the CEEMDAN-AWT method, SNR of
displacement time series was 7.186 dB, which was the largest among the three methods,
and RMSE was 2.884 mm, which was the smallest among the three methods. This meant
that the noise reduction effect of the proposed method was better than that of the other two
methods, which was consistent with the simulation results.
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Figure 14. CEEMDAN decomposition diagram in U direction of Nanmao Bridge dynamic test.

Table 7. Correlation coefficient between IMF and original signal.

IMF No. IMF1 IMF2 IMF3 IMF4 IMF5 IMF6

Correlation
coefficients 0.279 0.190 0.171 0.152 0.145 0.155

IMF No. IMF7 IMF8 IMF9 IMF10 IMF11 IMF12
Correlation
coefficients 0.150 0.247 0.272 0.535 0.545 0.481

It can be seen from Figure 15 that the displacement time series became smoother
and less sharp after de-noising. The correlation coefficient between the calculated filtered
displacement time series and the original displacement time series was 0.899. The higher
correlation meant that more details of the displacement response of the bridge were pre-
served, which can better reflect the deformation information of the bridge. According
to Figure 15, the maximum value of displacement time series after noise reduction was
13.595 mm and the minimum value was −16.179 mm. The period of maximum displace-
ment was about 12.500 s to 15.000 s in the time series, which was from 16:00 to 18:00 of the
day. During this period, it was the peak time of commuting and the traffic volume was
relatively large.
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Table 8. Noise reduction performance of different methods of bridge monitoring signal.

Indicator
Method

CEEMDAN CEEMDAN-FWT CEEMDAN-AWT

SNR/dB 7.175 7.177 7.186
RMSE/mm 2.888 2.887 2.884

5. Conclusions

In this paper, a CEEMDAN-AWT method is proposed to solve the problem that the
monitoring data of bridge displacement monitoring by BDS technology will be submerged
due to the influence of background noise. The following conclusions are obtained through
the test:

Through the SNR and RMSE analysis of three proposed methods of CEEMDAN,
CEEMDAN-FWT method, and CEEMDAN-AWT method for a series of analog signals
with different SNR levels, it is found that the CEEMDAN-AWT method has a better noise
reduction effect than other two methods. It can be used to improve the precision of BDS
displacement monitoring.

The stability test data of BDS receiver is processed by the CEEMDAN-AWT method.
After noise reduction, the SNR of the north-south signal is 7.472 dB and RMSE of 1.751 mm,
and the SNR of east-west signal is 6.325 dB and RMSE of 3.265 mm. The SNR and RMSE of
vertical signal were 6.393 dB and 1.556 mm, respectively. The random noise of the three
direction monitoring signals is suppressed. In the horizontal direction, the measuring
range of the north-south direction is −9.915~11.180 mm, and the measuring range of the
east-west direction is−15.856~15.833 mm, which is still higher than the measuring accuracy
of the instrument after filtering, so it is necessary to seek a better method for processing.
The measurement range in the vertical direction is −7.409~7.780 mm, which meets the
monitoring requirements in the vertical direction of the bridge.

After using the proposed CEEMDAN-AWT method to reduce bridge data, the SNR
is 7.186 dB and RMSE is 2.884 mm, and the noise reduction effect is better than the other
two methods. The correlation coefficient between the filtered monitoring data and the
original monitoring data is 0.899, which effectively preserves the detailed information of
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the displacement monitoring response signal. During the monitoring period, the maximum
displacement change of −16.179 mm occurred under the traffic load. This method provides
an excellent noise reduction method for bridge deformation monitoring, but it is a pity
that the dynamic response of the bridge cannot be analyzed deeply due to the limitation of
sampling frequency of experimental instruments.
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