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Abstract: In blood-oxygen-level-dependent (BOLD)-based resting-state functional (RS-fMRI) studies,
usage of multi-echo echo-planar-imaging (ME-EPI) is limited due to unacceptable late echo times
when high spatial resolution is used. Equipped with high-performance gradients, the compact 3T
MRI system (C3T) enables a three-echo whole-brain ME-EPI protocol with smaller than 2.5 mm
isotropic voxel and shorter than 1 s repetition time, as required in landmark fMRI studies. The
performance of the ME-EPI was comprehensively evaluated with signal variance reduction and region-
of-interest-, seed- and independent-component-analysis-based functional connectivity analyses and
compared with a counterpart of single-echo EPI with the shortest TR possible. Through the multi-echo
combination, the thermal noise level is reduced. Functional connectivity, as well as signal intensity,
are recovered in the medial orbital sulcus and anterior transverse collateral sulcus in ME-EPI. It
is demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting functional
connectivity and/or brain networks in comparison with single-echo EPI. In conclusion, the high-
performance gradient enabled high-spatial-temporal resolution ME-EPI would be the method of
choice for RS-fMRI study on the C3T.

Keywords: fMRI; BOLD; resting state; multi-echo EPI; compact 3T; gradient system; slew rate

1. Introduction

To study brain activity based on hemodynamic signals, blood-oxygen-level-dependent
(BOLD) contrast has been widely used in functional MRI (fMRI) [1,2]. The gradient-
recalled-echo echo-planar imaging (GRE-EPI) pulse sequence has been a workhorse for
localizing brain activation regions and/or assessing intrinsic resting-state (RS) functional
connectivity (FC) due to its sensitivity to BOLD signal. It has a short sampling time of a few
seconds or less for whole-brain imaging. Since the source of the BOLD signal is caused by
variation in magnetic susceptibility driven by vascular flow and relative deoxyhemoglobin
concentration, T2

* change is directly related to BOLD signal [3]. For a conventional single-
echo/one-echo (OE) GRE-EPI acquisitions, the echo time (TE) used at 3T is typically set
to approximately 30 ms, which is lower than the optimum (at TE~T2

*) and represents
a good compromise between BOLD sensitivity, image quality, and temporal resolution
without excessive signal losses [4–6]. In landmark functional MRI (fMRI) studies, such
as the Human Connectome Project (HCP), Alzheimer Disease Neuroimaging Initiative
(ADNI) and Adolescent Brain Cognitive Development (ABCD) studies, all recommend
the imaging protocol of spatial and temporal resolutions less than 2.5 mm isotropic voxel
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and 1 s repetition time (TR), respectively [7–9], which could be achieved with advanced
imaging acceleration techniques, such as parallel imaging and simultaneous-multi-slice
(multi-band, MB) imaging [10–13]. Although studies with multi-subject averaging with
large sample sizes have shown group-level trends in RSFC, striving for better image SNR
or temporal SNR (TSNR) remains a continuing effort in order to improve measurement
robustness for individual subject [14,15].

Compared to single-echo acquisition, multi-echo (ME) is a fascinating approach that
can address various goals in one acquisition, including sensitivity/SNR improvement and
quantification of T2

* relaxation time for clinical and basic neuroscience research. The ME
scheme has been demonstrated with robust performance in various applications, including
in a line-scanning fMRI with high spatiotemporal resolutions [16], in a combined gradient-
and spin-echo acquisition for simultaneous quantify T2

* and T2 relaxation time quantifica-
tion [17], and in blood flow measurements to quantify T2

* relaxation time [18]. Recently, a
deep learning model was proposed for end-to-end parametric mapping for an overlapped
multi-echo sequence [19]. Although a single echo train was used, overlapping multi-echo
signals can be generated with multiple excitations. ME fMRI has been increasingly utilized
in RS-fMRI studies as it can yield additional TE dependence information. For example, a
study used a convolutional neural network to extract a BOLD pulsatility map from ME RS
data [20]. ME fMRI combined with independent component analysis (ICA)-based artifact
reduction technique has been applied to achieve improved BOLD signal quality in high-
motion cohort groups like children [21]. As a promising technological advancement in this
regard, ME fMRI has been proposed and shown to be advantageous for better denoising
and boosting the reliability of functional connectivity [22–25].

ME acquisition scheme generally requires repetitive echo train measurements, which
can compromise temporal resolution and lead to undesirable late echo time to go past the
T2

* decay window. One solution to this is to use a high gradient slew rate and reduce the
duration of the EPI echo spacing. Advancements in MRI scanner hardware have enabled
high-performance gradients, which can directly impact the implementation and perfor-
mance of the ME acquisition. In this paper, we will use a compact 3T (C3T) scanner as
a technology demonstrator for ME-fMRI. A lightweight, low-cryogen C3T MRI system
is equipped with a high-performance gradient system mainly for brain imaging. The
gradient coil system on the C3T has an inner diameter of 42 cm, yielding a 26 cm diameter
of spherical volume for whole-brain imaging. Due to its small size, it can operate at a
peak slew rate of 700 T/m/s with a peak amplitude of 80 mT/m on all gradient axes
simultaneously [26–30] without peripheral nerve stimulation limitations [31,32]. In compar-
ison, conventional whole-body MR scanners typically offer up to 200 T/m/s gradient slew
rate and 40–80 mT/m peak gradient amplitude. The high-performance gradient system
of the C3T is particularly beneficial for EPI-based acquisition. The higher gradient slew
rate effectively minimizes the echo spacing and thereby reduces the readout duration [33].
Specifically, with the intended spatial-temporal resolution, the echo spacing on the C3T is
17.9 ms, which has been reduced by 43% from the echo spacing of 31.2 ms on a whole-body
scanner with a 200 T/m/s slew rate. The third echo time is 47.8 ms, which can yield a
late echo with substantial signal and T2

* information. On the contrary, the whole-body
scanner could only obtain a third echo at 81.5 ms, with the echo signal too weak to be
useful. Additional benefits of reduced echo spacing includes greatly improved magnetic-
susceptibility-induced geometric distortion [33–35]. Additionally, the shortened readout
improves SNR obliviating the need for a partial Fourier sampling [36]. Furthermore, the
shortened readout on the C3T enables minimal TR increase, which is helpful when high
temporal resolution is desired.

Although ME acquisition has been well demonstrated to be superior for fMRI com-
pared to OE acquisition [4,25,37–39], previous studies using ME acquisitions were con-
ducted on conventional whole-body MRI systems with imaging parameters that marginally
met the requirements for fMRI, such as a ~2 to 3 s TR and/or greater than 3 mm isotropic
resolution with partial Fourier acquisition to cover the whole brain. fMRI studies priori-
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tizing higher spatial or temporal resolutions while still maintaining whole brain coverage
could not choose ME fMRI despite its benefits [40]. Advanced gradient performance can
help break the tradeoffs by enabling the desired spatial and temporal resolutions for ME
fMRI that are similar to those of OE fMRI used in landmark fMRI studies [7–9].

The purpose of this study was to perform a comprehensive investigation on the feasi-
bility and utility of ME fMRI imaging with a high spatiotemporal resolution by comparing
it with an OE fMRI acquisition with matched spatial resolution on the C3T. Our hypothesis
is that ME fMRI has improved RS FC detectability on the C3T when compared with OE
fMRI, the spatiotemporal resolution of which is similar to those used in the landmark
fMRI studies. For a fixed acquisition time, the counterpart OE fMRI has more time frames
compared to the ME fMRI. It is not clear if the advantage of ME fMRI still holds, considering
the loss of temporal resolution at the spatial resolution. Thus, data from both ME and OE
acquisitions were obtained on the C3T from healthy volunteers with the same acquisition
parameters, except that OE uses a shorter TR. The performance of ME to OE acquisition was
assessed by evaluating explained variance, SNR and TSNRs. The signal intensity recovery
by ME acquisition was investigated using cortical coverage analysis and ROI-based func-
tional connectivity. Additionally, seed- and independent-component-analysis (ICA)-based
analyses in functional connectivity were used to determine the effectiveness of ME fMRI. It
was demonstrated that ME-EPI provides superior sensitivity and accuracy for detecting
functional connectivity and/or brain networks in comparison with OE-EPI.

2. Materials and Methods
2.1. Data Acquisition

Following a study protocol approved by the Institutional Review Board, 24 healthy
subjects (age = 35.0± 10.7 years; 18 females/6 males) participated in this study after written
informed consent was obtained. All subjects were scanned on the C3T using a 32-channel
brain coil (Nova Medical, Inc., Wilmington, MA, USA). During the RS-fMRI scans, all
subjects were instructed to remain still and fix their gaze on the center of a mirror mounted
on the head coil. Independent measures of physiological variables (cardiac and respiration)
were recorded.

RS-fMRI experiments were conducted using a ME MB gradient-echo EPI sequence
with blipped-controlled aliasing in parallel imaging technique [10,37]. The fMRI datasets
were separately acquired for OE and ME (three echoes) acquisitions. A whole-brain
fMRI protocol, including the following imaging parameters were applied in Table 1. ME
acquisition was consecutively repeated twice to fill 10 min of scan duration due to a scanner
system memory software limit on the total number of reconstructed images per series (GE
Healthcare, DV26) rather than hardware restriction.

As an anatomical reference, a high-resolution T1-weighted image (magnetization-
prepared rapid acquisition with gradient echo, or MPRAGE) was obtained on the C3T with
the following parameters: TR= 5.4 ms, TE = 2.4 ms, inversion time = 1000 ms, FA = 8◦,
resolution = 1.0 × 1.0 × 1.0 mm3, field of view = 25.6 × 16.6 × 25.6 cm3. Gradient
nonlinearity (GNL) induced distortion on all fMRI and anatomical images obtained with
the C3T was corrected in the image domain retrospectively using a tenth-order inline GNL
correction (gradwarp) algorithm [30,31].
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Table 1. Details of imaging parameters for single- and multi-echo EPI acquisitions.

Imaging Parameter Single-Echo EPI Multi-Echo EPI

Field of view (FOV, mm) 224 × 224
Matrix size 94 × 94

In-plane resolution (mm) 2.38 × 2.38
k-space partial Fourier factor No partial Fourier

Slice thickness (mm) 2.4
Number of slices 52

Inter-slice gap (mm) 0.3
Inferior-to-superior coverage (mm) 140.4

In-plane acceleration factor 2
Multi-band factor 4
Echo spacing (µs) 352

Receiver bandwidth (Hz) ±250 k
Echo time (TE, ms) 30 11.9, 29.8, 47.8

Repetition time (TR, ms) 700 940
RF flip angle (FA, ◦) 1 52 59

Number of volumes per scan 961 320
Scan duration (mm:ss) 11:12 5:00

Note - Scan twice
1 FAs were applied based on the calculated Ernst angles assuming T1 of 1.4 s in gray matter at 3T.

2.2. Data Preprocessing for fMRI Datasets

The preprocessing procedures for RS-EPI datasets were all carried out using AFNI
(Analysis of Functional NeuroImages, https://afni.nimh.nih.gov/, accessed on 26 March
2021)’s suite of programs [41]. For preprocessing and artifact reduction of the RS-EPI
data, the following steps were performed in sequence: truncation by initial ten volumes to
yield steady-state magnetization, de-spiking (‘3dDespike’ in AFNI), physiological noise
elimination including cardiac and respiratory artifacts (‘RETROICOR’ and ‘RVT’) [42,43],
slice acquisition timing correction (‘3dTshift’ in AFNI), time-series alignment, Legendre
polynomial detrending and motion- and hardware-related linear regressions [44–46], in
order. For the ME dataset, a T2

*-weighted echo combination was performed between the
time-series alignment and the detrending and the regressions [4,38,47] by using AFNI
(‘@compute_OC_weights’). All datasets were evaluated for artifacts due to abrupt head
motion, passing the sudden motion detection of AFNI at the threshold level of 0.2 mm for
the Euclidean L2 norm of motion displacement during each TR interval [45].

For functional connectivity (FC) estimation, the artifact-reduced residual time series
were bandpass-filtered with a frequency range of 0.009 to 0.1 Hz and smoothed by a Gaus-
sian kernel with a 4 mm full-width-at-half-maximum on volume dataset (‘3dTproject’ in
AFNI). The preprocessed datasets were spatially normalized into the 2.0-mm-isotropic-
resolution MNI template of ‘MNI152_T1_2009c+tlrc.HEAD’ by ‘auto_tlrc’ in AFNI. For FC
investigation, the two ME datasets were concatenated after time-series z-score normaliza-
tion as performed in the previous study [48] to render the final dataset with ~10-min length.

2.3. Data Analysis
2.3.1. Explained Variance Evaluation

To examine the change in signal variance using a model component, namely a regressor
or echo combination, the marginal R2 value was introduced to represent the proportion of
the signal variance observed without individual preprocessing steps relative to the variance
observed with all preprocessing steps, as performed in the previous study [44]. The value
of R2 was evaluated from:

R2
step ≡ 1− SStotal

SSstep
, (1)

where SStotal was the error sum of squares with all preprocessing steps, and SSstep was the
error sum of squares with all preprocessing steps except for a certain step. Without band-

https://afni.nimh.nih.gov/
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pass filtering and spatial smoothing, R2 were evaluated for the conventional artifact-related
regressors of the RETROICOR [42], ANATICOR [44], motion and global cerebrospinal
fluid (CSF) signal, and for the T2

*-weighted echo combination only in ME datasets. For
comparison between OE and ME acquisitions, ME datasets before the time-course scaling
were used and the mean R2 values were calculated in gray matter (GM) and white matter
(WM) voxels across all subjects.

To evaluate the dependence between artifact/noise removed by regressors and the
T2

*-weighted echo combination, the Pearson correlation coefficients were calculated. The
numbers of regressors for RETROICOR [42] (up to 2nd order, including 5 regressors of
RVT [43]), motion (six parameters for rigid-body motion and their first order derivative),
and global-CSF artifacts (first 3 principal components of lateral ventricles) were thirteen,
twelve and three for each dataset, respectively. The single time series for each voxel was
collected as an ANATICOR regressor. The noise removed by the echo combination was
estimated by subtraction between echo-combined and mid-echo-only time courses. The
correlation coefficients calculated across regressions and subjects were averaged by mean
root square for the summary. Additionally, SNR and TSNR of ME and OE datasets were
investigated across GM and WM voxels [49], where TSNR were derived with/without the
regressions to compare artifact reduction effect on TSNR in ME and OE datasets.

2.3.2. ROI-Based FC Analysis

The effect of echo combination on signal intensity recovery was investigated for OE
and ME datasets. A mask was created with the base EPI image of each dataset binarized by
‘3dAutomask’ in AFNI and converted onto a 3D surface model of ‘suma_TT_N27′ provided
in SUMA [50]. The cortical coverage was visualized by overlapping each EPI mask with
the gray matter on the corresponding anatomy image [35]. The cortical coverage ratio was
evaluated as the percentage of overlap between the averaged EPI masks across subjects
and the gray matter on the surface model and [35].

The effect of signal intensity enhancement of echo combination on FC was also investi-
gated by ROI-based FC. 168 cortical parcellations for an individual anatomical image were
defined as ROIs by FreeSurfer software [51,52]. The inter-ROI FC was evaluated as the Pear-
son correlation coefficient between the time courses of the two ROIs. Fisher-transformed
FCs composed an FC matrix of 168 × 168. Due to regional signal dropout in images, which
depended on the subject’s anatomical shape and position against the B0 field, a paired
Student’s t-test for group comparison was applied to the FC matrices obtained from OE
and ME datasets from 18 subjects. Inter-ROI FCs were thresholder with a statistically
significant difference (uncorrected p < 0.01) and a meaningful FC value (Fisher(r)) > 0.3) in
either OE or ME FCs, and the numbers of the inter-ROI FCs survived by the two thresholds
were counted.

2.3.3. Seed-Based FC Map

To examine seed-based FC extents, 10 ROIs adopted from AAL3v1 [53] were selected
as the seeds for the spatially normalized preprocessed datasets, including anterior cingulate
cortex (ACC), insula (Ins), hippocampus (Hipp), posterior cingulate cortex (PCC), and
precentral gyrus (PCG) on both hemispheres [54,55]. To evaluate an individual FC map,
the Pearson correlation coefficients were calculated between the time courses of each
voxel and the seed regions, which were converted into a z-score by Fisher transformation.
Average FC maps for both OE and ME datasets were calculated by unpaired two-sample
Student’s t-tests, including one-sample tests by ‘3dttest++’ in AFNI with a covariate of
global correlation (GCOR) [56] and corrected by the FDR algorithm (‘3dFDR’ in AFNI). The
group-level FC maps were statistically thresholded by the FDR-corrected p-value < 0.001.
After statistical thresholding, the FC-magnitude threshold was applied to the seed-based
group-level FC maps, and the number of voxels that survived was evaluated as the extent
of FC.
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2.3.4. ICA-Based FC Detection

Independent component analysis (ICA)-based functional connectivity was investi-
gated by using concat-ICA and dual regression methods. Concat-ICA was used to identify
a set of independent component (IC) maps from the whole group of OE and ME datasets,
which was performed by using the ‘melodic’ command in FSL with an option of 20 dimen-
sions [57–59]. Among 20 IC maps, 8 IC maps were identified as brain networks, including
default mode network (DMN), lateral visual areas (LOcc), medial visual areas (MVis),
right and left frontal-parietal networks (RFPN and LFPN), auditory network (Aud), execu-
tive control network (ECN), and sensorimotor network (Sens) [57]. The whole-group IC
maps were used as the inputs for dual regression and as the group truth with a statistical
threshold to assess OE/ME group results derived by dual regression.

Dual regression was conducted by ‘dual_regression’ provided in FSL with the follow-
ing two steps [58–60]. The first step was to identify a subject-specific time course using
spatial regression of the group IC maps derived by concat-ICA. The second step was to
identify a subject-specific spatial map using temporal regression of the subject-specific time
course. To investigate the scan time dependence, i.e., the effect of scan time length on the
sensitivity and specificity of ICA-derived brain network, each subject-specific dataset was
truncated to time lengths ranging from 2 to 9 min at increments of 1 min. The same dual
regression was applied to each dataset with different time lengths as the group IC maps.
For a statistical comparison between the ME and the OE datasets, the OE/ME groups
of individual spatial IC maps were tested by using ‘randomise’ command of the FSL’s
randomise permutation-testing tool (N = 5000).

In this study, whole-group IC maps were assumed to be the ground truth for brain
networks [57,60]. OE-/ME-group IC maps derived from OE/ME datasets were assessed
in terms of sensitivity, specificity, and accuracy. For the quantitative assessment, the OE-
/ME-group IC maps were binarized by a threshold of p < 0.001 to create the corresponding
masks. The numbers of voxels were counted as true positives (TP), true negative (TN), false
positive (FP), and false negative (FN) based on the OE-/ME-group IC map mask on the
corresponding whole-group IC map mask. Sensitivity, 1—specificity (as false positive rate,
FPR), and accuracy for each IC map were evaluated as followings, respectively.

Sensitivity =
TP

TP + FN
(2)

False positive rate = 1− TN
TN + FP

(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

3. Results
3.1. Data Selection for Analysis

Among the total of 24 volunteers, two subjects had 70 and 48 time frames censored by
the criterion in concatenated ME data and 22 and 32 in OE data, respectively, which were
quite larger than the number of censored time frames of other subjects. The datasets from
the subjects were considered to be contaminated with high motion [61] and excluded for
subsequent analysis. Four volunteers were scanned only with OE fMRI, without ME fMRI.
Thus, 22 sets of 11-min for OE datasets and 36 sets of 5-min for ME datasets (2 sets from
18 individual subjects) were used for further analysis.

The average translational motion per TR across datasets were 0.028 ± 0.010 mm
and 0.027 ± 0.010 mm for OE and ME acquisitions, respectively, which corresponded to
0.033 ± 0.012 mm and 0.033 ± 0.012 mm average motion per second, which was much
smaller than the censoring criterion of 0.2 mm. Time frames with motion exceeding 0.2 mm
were censored in each dataset. 1.8 (±2.7) and 1.4 (±2.4) of time frames were censored on
average (±standard deviation) for OE and ME acquisitions, respectively. Thus, the average
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number of samples used was 949 ± 3 and 309 ± 2 for OE and ME session, respectively.
After concatenation of ME datasets, all preprocessed datasets ended up with various data
length ranging from 10 min 58 s and 9 min 26 s and they were all truncated to 9-min length
for comparison purpose, where 772 and 575 time frames were used for further FC analysis
of OE and ME acquisitions, respectively.

3.2. Explained Variance

Figure 1A showed an example of R2 spatial maps in ME and OE acquisitions. A great
reduction in signal variance by echo combination can be globally visualized (‘Combine’ in
Figure 1A), except for regions near large vessels where R2 for the RETROICOR regressors
dominates as indicated in ‘Physio’ of Figure 1A. In Figure 1B, average R2 in the GM and
WM were both evaluated for conventional regressors and T2

*-weighted echo combination
of ME acquisitions and for the regressors of OE acquisitions as reference. The conventional
regressors for ME acquisitions showed a similar trend in R2 values with those for OE
acquisitions except for the scale. R2 for echo combination were substantially higher than R2

for other regressors. It showed that a fairly large portion of signal variance was removed
through echo combination. For echo combination, R2 in WM tended to be slightly larger
than in GM.
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white matter (WMe), six rigid-body motion parameter estimates (Motion), eroded four large ven-
tricles (CSFe), and recorded respiration and cardiac pulsation (Physio) and by T2

*-weighted echo
combination (Combine). The total effect on R2 map by all regressions and echo combination is given
(Full). The T1-weighted anatomical images with the corresponding locations are also shown at left.
(B) Average R2 of each regressor or echo combination were plotted for ME and OE datasets across
gray and white matters of subjects. Note that average R2 of OE datasets has a different scale on
the right side of the plot. Additionally, (C) SNR and TSNRs of ME and OE datasets are present.
TSNR0 denotes TNSR evaluated without regression. (D) Root mean square of correlation coefficients
between regressors and noises removed by echo combination to assess the dependence between time
series of artifacts/noises removed. Through plots (B,C), error bars denote global means and standard
deviations for voxels of gray and white matter across the corresponding datasets.

The reduced signal variance led to improve SNR and TSNR of ME acquisitions in
Figure 1C. Note that TSNR0 and TSNR were evaluated without and with artifact regression
processing, respectively. In terms of TSNR, the artifact regression was more effective with
ME datasets than OE datasets. TSNR gains in ME verse OE acquisitions were approximately
1.8 and 2.0 times on GM and WM, respectively. The OE acquisition has the number of time
frames 34% more than the ME fMRI (700 vs. 940 ms). Considering TSNRs with the numbers
of time frames like TSNR·

√
# o f time f rames [13], its gains in ME verse OE acquisitions

were approximately 1.56 and 1.74 times on GM and WM in the same scan time, respectively.
In terms of TSNR·

√
# o f time f rames on GM, approximately 2.4 times longer scan time for

OE acquisition would be needed to have an equivalent value to ME acquisition.
Correlations of noise reduced by echo combination were calculated and compared

to those among other regressors in Figure 1D. The noise removed by echo combination
was relatively independent from other regressors or itself. While a voxel-wise regressor
of ANATICOR [44] tended to be highly correlated to regressors of adjacent voxels, the
voxel-wise noise removed by echo combination showed the low-level correlation with
noises removed in adjacent voxels.

3.3. ROI-Based FC Difference

In Figure 2, raw EPI images with multiple echoes were plotted with the corresponding
anatomical images of a single subject. The T2

*-weighted echo combination enhanced
signal intensity effectively in brain regions with high-susceptibility as indicated. For group
comparison, the cortical coverage ratio was visualized in anterior and inferior views on the
standard surface model for OE and ME datasets in Figure 3A,B, respectively. The overall
cortical coverage ratio was improved with ME datasets. Specifically, medial orbital sulci
(olfactory sulci) and anterior transverse collateral sulci on both hemispheres as indicated
in Figure 3B showed signal intensity improvement across almost all subjects, which were
medial orbital sulcus and anterior transverse collateral sulcus defined as ‘S_orbital_med-
olfact’ and ‘S_collat_transv_ant’ in the reference [52], respectively.

Through the statistical comparison of 168-ROI-based FC matrices of OE and ME
datasets, FC group difference of each ROI was visualized on the surface model as shown in
Figure 3C. Four ROI regions, indicated by arrows in Figure 3C, had significant differences
in functional connectivity, as well as in signal intensity. The locations of the four ROIs
were consistent with the regions indicated in Figure 3B, where cortical coverage on the
surface model was dramatically improved by echo combination. For visualization of the
meaningful FCs from the four ROIs, i.e., |Fisher(r)| > 0.3, the BrainNet Viewer [62] was
used to plot edges for inter-ROI functional connections derived from the four ROIs. In
Figure 3D,E, OE datasets showed a much smaller number of FCs from the red nodes than
ME datasets.
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Figure 3. Cortical coverage ratio and functional connectivity. Cortical coverage ratio viewed on
surface model. The cortical coverage was estimated by converting intensity-clipped images of
(A) OE and (B) T2

*-weighted echo-combined ME-EPI images onto a surface template. Cortical
coverage ratio in frontal and temporal brain regions was dramatically improved with the multi-echo
combination. (C) Functional connectivity between 168 ROIs defined in individual anatomical images
were examined. Through the comparison between OE and ME group-level functional connectivity,
the numbers of significantly different FCs on each ROI were evaluated. The indicated regions in
(B,C) shows differences both in functional connectivity and cortical coverage ratio, which are left
and right medial orbital sulci (olfactory sulci) and anterior transverse collateral sulci. The functional
connections from the four regions are visualized by BrainNet Viewer with (D) OE and (E) ME datasets.
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3.4. Seed-Based FC Extents

Seed-based group-level FC maps were obtained with datasets statistically thresholded
with FDR-corrected p < 0.001. Each estimated FC extent was limited with |Fisher(r)| > 0.3.
Note that Fisher(r) denoted Fisher-transformed Pearson correlation coefficient. Figure 4A
showed average FC maps derived from 10 seeds as group results of 9-min-length OE and
ME datasets. ME FC maps showed similar or stronger clusters than the OE FC maps
for seeds placed in PCG, Ins, and PCC. For seeds placed in Hipp and ACC, ME datasets
detected additional clusters in FC maps as indicated by arrows in Figure 4A. Figure 4B
showed quantitative comparisons of the group-level FC extents with 9-min-length datasets,
where ME produced broader FC extents with higher number of voxels than OE in most
seed-based FC maps. Especially, for Hipp and ACC seeds, FC extents of ME datasets were
approximately up to 3 times larger than those of OE datasets.

Sensors 2023, 23, x FOR PEER REVIEW 10 of 20 
 

 

examined. Through the comparison between OE and ME group-level functional connectivity, the 
numbers of significantly different FCs on each ROI were evaluated. The indicated regions in (B,C) 
shows differences both in functional connectivity and cortical coverage ratio, which are left and 
right medial orbital sulci (olfactory sulci) and anterior transverse collateral sulci. The functional con-
nections from the four regions are visualized by BrainNet Viewer with (D) OE and (E) ME datasets. 

Through the statistical comparison of 168-ROI-based FC matrices of OE and ME da-
tasets, FC group difference of each ROI was visualized on the surface model as shown in 
Figure 3C. Four ROI regions, indicated by arrows in Figure 3C, had significant differences 
in functional connectivity, as well as in signal intensity. The locations of the four ROIs 
were consistent with the regions indicated in Figure 3B, where cortical coverage on the 
surface model was dramatically improved by echo combination. For visualization of the 
meaningful FCs from the four ROIs, i.e., |Fisher(r)| > 0.3, the BrainNet Viewer [62] was 
used to plot edges for inter-ROI functional connections derived from the four ROIs. In 
Figure 3D,E, OE datasets showed a much smaller number of FCs from the red nodes than 
ME datasets. 

3.4. Seed-Based FC Extents 
Seed-based group-level FC maps were obtained with datasets statistically 

thresholded with FDR-corrected p < 0.001. Each estimated FC extent was limited with 
|Fisher(r)| > 0.3. Note that Fisher(r) denoted Fisher-transformed Pearson correlation co-
efficient. Figure 4A showed average FC maps derived from 10 seeds as group results of 9-
min-length OE and ME datasets. ME FC maps showed similar or stronger clusters than 
the OE FC maps for seeds placed in PCG, Ins, and PCC. For seeds placed in Hipp and 
ACC, ME datasets detected additional clusters in FC maps as indicated by arrows in Fig-
ure 4A. Figure 4B showed quantitative comparisons of the group-level FC extents with 9-
min-length datasets, where ME produced broader FC extents with higher number of 
voxels than OE in most seed-based FC maps. Especially, for Hipp and ACC seeds, FC 
extents of ME datasets were approximately up to 3 times larger than those of OE datasets. 

 

Sensors 2023, 23, x FOR PEER REVIEW 11 of 20 
 

 

 
Figure 4. (A) Group-level seed-based functional connectivity of OE and ME datasets with 9-min-
length datasets. Seed regions are precentral gyrus (PCG), insula (Ins), posterior cingulate cortex 
(PCC), hippocampus (Hipp), and anterior cingulate cortex (ACC) of left/right hemispheres (as a 
prefix of L_/R_) defined in AAL3v1 on MNI template. In visual inspection, the FC maps of ME group 
were compatible to those of OE group with seeds of PCG, Ins, and PCG and superior with seeds of 
Hipp and ACC to show additional FC clusters as indicated. The FC maps used in the analysis were 
thresholded with |Fisher(r)| > 0.3 after the statistical threshold of FDR-corrected p < 0.001. (B) Quan-
titative comparison of FC extents in the seed-based functional connectivity with 9-min-length da-
tasets. The FC extents were calculated based on the group-level FC maps with statistical and func-
tional thresholds. The number on each bar for ME-EPI shows the relative difference of FC extent 
between ME and OE. Note that Fisher(r) denoted Fisher-transformed Pearson correlation coeffi-
cient. 

3.5. ICA-Based FC Detection 
Eight IC maps were identified as well-known intrinsic brain networks from 20 IC 

components. Group-level IC maps calculated by dual regression and permutation test 
with truncated OE/ME datasets are shown in Figure 5A. IC maps were derived by datasets 
thresholded by FDR corrected p-value < 0.001. Visually, group-level IC maps from ME 
datasets showed stronger and broader connectivity than those from OE datasets. Sensitiv-
ity, false positive rate (FPR, as ‘1-specificity’) and accuracy of OE/ME group IC maps were 
evaluated with a threshold of FDR corrected p < 0.001. In Figure 5B, the averages of all 
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Figure 4. (A) Group-level seed-based functional connectivity of OE and ME datasets with 9-min-
length datasets. Seed regions are precentral gyrus (PCG), insula (Ins), posterior cingulate cortex
(PCC), hippocampus (Hipp), and anterior cingulate cortex (ACC) of left/right hemispheres (as a
prefix of L_/R_) defined in AAL3v1 on MNI template. In visual inspection, the FC maps of ME group
were compatible to those of OE group with seeds of PCG, Ins, and PCG and superior with seeds
of Hipp and ACC to show additional FC clusters as indicated. The FC maps used in the analysis
were thresholded with |Fisher(r)| > 0.3 after the statistical threshold of FDR-corrected p < 0.001.
(B) Quantitative comparison of FC extents in the seed-based functional connectivity with 9-min-
length datasets. The FC extents were calculated based on the group-level FC maps with statistical and
functional thresholds. The number on each bar for ME-EPI shows the relative difference of FC extent
between ME and OE. Note that Fisher(r) denoted Fisher-transformed Pearson correlation coefficient.

3.5. ICA-Based FC Detection

Eight IC maps were identified as well-known intrinsic brain networks from 20 IC
components. Group-level IC maps calculated by dual regression and permutation test with
truncated OE/ME datasets are shown in Figure 5A. IC maps were derived by datasets
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thresholded by FDR corrected p-value < 0.001. Visually, group-level IC maps from ME
datasets showed stronger and broader connectivity than those from OE datasets. Sensitivity,
false positive rate (FPR, as ‘1-specificity’) and accuracy of OE/ME group IC maps were
evaluated with a threshold of FDR corrected p < 0.001. In Figure 5B, the averages of all
three metrics across eight IC maps were plotted against scan length. ME datasets produced
higher sensitivity than OE datasets through all scan times. Scan lengths shorter than 2 min
failed to show acceptable levels of sensitivity for both groups as expected. As sensitivity
increased along scan length, although FPR increased for both groups, overall, it remained
at a very low level (<0.004) for the threshold. The accuracy of the ME group was superior
to that of the OE group at all scan time lengths. For example, a 4-min ME acquisition was
comparable to an 8-min OE acquisition in terms of sensitivity and accuracy.
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Figure 5. (A) Group-level ICA-derived brain networks of single- and multi-echo datasets with 9-min-
length datasets. Dual regression and permutation testing (N = 5000) were performed to evaluate
individual- and group-level IC maps, respectively. (B) Sensitivity, false positive rate, and accuracy
were evaluated with single- and multi-echo datasets in ICA-derived brain networks. Eight IC maps
obtained from Concat-ICA were assumed as ground truth for the representative brain networks. The
single- and multi-echo group-level IC maps like (A) were calculated with a variety of scan times
and were compared to the ground truth IC maps. Mean and standard deviation of the three metrics
(columns) were evaluated across the eight brain networks on each scan time length. Abbreviations.
DMN: default mode network, LOcc: lateral visual areas, MVis: medial visual areas, RFPN and LFPN:
right and left frontal-parietal networks, respectively, Aud: auditory network, ECN: executive control
network, and Sens: sensorimotor network.
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4. Discussion

In this study, the feasibility and capability of multi-echo fMRI was investigated on C3T
with the high-performance gradient system. Three-echo fMRI was achieved with a spatial
resolution of 2.4-mm isotropic voxel without partial Fourier sampling and a temporal
resolution less than 1 s. The spatio-temporal resolution is comparable to the OE fMRI
protocols used in landmark fMRI studies, such as HCP, ABCD and ADNI projects [7–9].
The shortened echo spacing enabled by higher slew rate allowed for additional echoes to
be inserted at a relatively high spatial and temporal resolution with slight increase in TR.
Since the ME acquisition extend the TR of OE from 700 ms to 940 ms, ME would yield
fewer time frames than OE for a fixed amount of scan time. Our investigation strived to
find out if the prospect of ME still holds despite of the loss of temporal resolution. The
performance comparison of the ME over the OE acquisition with matched spatial resolution
were assessed using signal variance and different types of functional connectivity analyses
for further understanding. Compared to the OE acquisition, the ME acquisition was shown
to have greatly reduced in thermal noise variance and recovered signal intensity/functional
connectivity at brain regions suffering from high susceptibility. This resulted in a broad
extent FC with several clusters in seed-based RSFC analysis, even in the regions of hip-
pocampus and ACC suffering from distortions. Additionally, it was demonstrated that
ME acquisition provided superior sensitivity and accuracy for detecting intrinsic brain
networks in ICA-based RSFC analysis. Hence, a ME acquisition with higher TSNR and
broader functional coverage was more beneficial than an OE acquisition with higher tem-
poral resolution using the high-performance gradient on the C3T. With the advent of more
high-performance gradient, such as the MAGNUS gradient insert [63] and Connectome
2.0 gradient [64], this study can shed some light to investigators who have access to these
systems on which sequence to choose between ME-EPI or OE-EPI for RS-fMRI studies.

The absence of a direct comparison with conventional whole-body 3T scanner is
primarily due to limitations of whole-body scanner gradients. To achieve the same spatial
resolution and brain coverage, the three echo times on whole-body scanner (i.e., GE 750 3T
MRI scanner) would be 19.1 ms, 50.3 ms, and 81.5 ms, respectively. The last echo would be
far out in the T2

* decay window and useless for signal contribution. As shown in Figure 6,
an imaging parameter comparison at various isotropic spatial resolutions ranging from
1.4 mm to 3.5 mm showed a significant gap between the C3T and a conventional GE 750
scanner (200 T/m/s gradient slew rate and 50 mT/m peak gradient amplitude), where
echo times, repetition time, echo spacing, and inter-TE duration were present depending
on isotropic voxel size available on the C3T and conventional whole-body scanners. In
this survey, full sampling in k-space was applied because partial Fourier sampling causes
spatial resolution loss in phase-encoding direction. 2.4 mm imaging on the C3T scanner
can achieve similar echo times, TR and inter-TE duration to those in 3.5 mm imaging on a
conventional scanner. Even though the voxel volume in 2.4 mm imaging is only at 32.2% of
the voxel volume in 3.5 mm imaging, it was demonstrated that 2.4 mm OE imaging could
produce sufficient SNR for fMRI protocol in the functional MRI studies [7,8]. Thus, the
study on the conventional whole-body 3T was omitted and we chose to only focus on the
ME and OE comparison on the C3T. Additionally, our previous OE fMRI study between
the C3T and the conventional 3T scanners demonstrated that the shortened echo spacing
directly mitigates the geometric distortion on naïve EPI images to improve fidelity in a
registration with anatomy images [35]. It was expected that this improvement is still valid
for ME imaging on the C3T.
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comparison, the imaging parameters available on conventional 3T scanner were given. In this study,
spatial resolution was chosen to 2.4 mm with a repetition time less than 1 s.

In this study, 3-echo acquisition was chosen based on the balanced consideration of T2
*

decay window, temporal resolution, and number of echoes for the spatial resolution that we
used as shown in Figure 6. The fourth echo would fall close to T2

*~66.0 ms of a gray matter
at 3T [65] and yield minimum signal, which would not contribute much to the combined-
echo SNR. Additionally, any echoes added after the third one won’t be beneficial to signal
recovery for a voxel with short T2

* because the first echo dominates the signal recovery in
the T2

*-weighted echo combination. On the other head, echoes with longer TE (>60 ms)
could potentially be beneficial for voxels with long T2

* and helpful in accurate estimation
of T2

* [3] or the automated classifier for TE-dependent signal, i.e., BOLD component in
MEICA [54], which will be included in future study.

The signal variance in RS-fMRI could originate from various sources, such as pulsation
and respiration, head motion, CSF fluctuation, hardware malfunction, and thermal noise, as
well as BOLD signal. Preprocessing steps to improve sensitivity for functional connectivity
have been developed to reduce the effect of artifacts caused by well-known sources, such
as physiological fluctuation, head motion, and hardware instability [42–44,61]. For signal
variance reduction related to thermal noise, smoothing and filtering have widely been used.
For ME preprocessing, T2

*-weighted echo combination has been used as a conventional
method to boost contrast-to-noise and BOLD sensitivity [4]. We evaluated the impact of the
echo combination on signal variance reduction. The reduced variance by echo combination
was greater than from other regressors and tended to be uniformly distributed across
the whole brain. Interestingly, the noise reduced by echo combination was not strongly
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correlated with other regressors and noise from adjacent voxels. This could be attributed
to the fact that the variance removed by echo combination originated from thermal noise,
since this is not strongly correlated with other artifact sources or the BOLD signal.

Along with the reduction in signal variance, ME fMRI produced the same or higher
sensitivity for functional connectivity than the OE fMRI results via various FC analyses.
This indicates that the small BOLD signal is well preserved during the echo combination
and that the variance reduction is related to thermal noise rather than other noise/artifact
sources. Since there is no specific regression model for thermal noise in the absence of
temporal or spatial filtering, ME providing a higher SNR could be a preferred method over
OE acquisition for RS-fMRI. Additionally, the R2 of the echo combination in WM appeared
to be higher than in GM because WM has a lower level of signal variance than GM due to
less BOLD signal variance and other physiological noise sources [66].

In the ICA-based FC evaluations, enhanced sensitivity was demonstrated for ME
compared to OE acquisition. Although slightly higher FPRs were also observed for ME
compared to OE acquisition, in all cases they are relatively low (<0.01) for all threshold
values. In terms of accuracy, ME acquisition outperforms OE acquisition at statistical
threshold with p < 0.001. The time dependency analysis indicated that ME acquisition with
a shorter scan time could be considered as a better substitute to longer OE acquisition for
RS-fMRI studies as they showed comparable sensitivity and accuracy.

Previous task-based BOLD fMRI studies have shown that signal intensity enhancement
by echo combination offers the opportunity to study regions with rapid susceptibility spatial
variation, especially along the inferior cerebral hemispheres, such as the ventromedial
prefrontal cortex [39,67]. Inter-ROI FC comparison in this study with high performance
gradients supports that signal intensity enhancement by echo combination helps to extract
even spontaneous BOLD signal in regions of high susceptibility, such as medial orbital sulci
(olfactory sulci) and anterior transverse collateral sulci. Echo combination has yet to fully
recover signal dropout that intrinsically occurs in EPI acquisition. When it is combined
with other susceptibility reduction techniques, such as z-shimming [68], it is expected to
further improve cortical coverage.

ICA-based fMRI de-noising methods, such as ICA-AROMA, MEICA, TEDANA,
etc. [54,69] has shown the potential for data quality improvements, as well as the ca-
pability to subject-specifically separate signal versus noise/artifacts. These methods could
provide noise and artifact component removal and, thus, improved performance for FC
detection [25,70]. The primary focus of this work is to compare the benefit of only ME
combination to the shorter (but comparable) TR of OE acquisition on the condition of
high-spatial-temporal resolution implementation, especially when it is performed on the
C3T fully using the high gradient slew rate. However, the IC classifiers for these ICA-based
de-noising methods were extensively studied with relatively higher SNR fMRI data, such as
low-spatial-temporal resolution fMRI datasets. As described in previous studies [22,69,71],
the classifiers could fail in case of ambiguous components and an expert/interpreter may
be required to manually intervene and decide whether components were classified correctly.
For these reasons, ICA-based de-noising methods were excluded in preprocessing of data
cleaning in this study, which would be examined in future study. Instead of detecting ICA-
based subject-specific artifact components, concat-ICA was applied to detect ‘well-known’
brain network components common to all subjects and all datasets. Echo combination
served as a single extra pre-processing step for the ME fMRI. All the other denoising steps
remained the same between ME and OE acquisitions. Even without ICA-based denoising
pre-processing, ME fMRI still outperforms OE fMRI based on several analysis methods.

A limitation in this study was that the scan length of the ME acquisition was restricted
by a scanner software limit on the total number of reconstructed images per scan. With
the limit, the proposed ME imaging protocol (Table 1) was restricted to only 5 min per
scan. To achieve a longer scan length, two ME scans had to be performed consecutively
and concatenated together afterwards. Due to this, there is a potential loss in temporal
continuity introduced by data truncation and concatenation. Since RS FC estimates are
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modulated by slow frequency dynamics with cycles on the order of several minutes [72],
data truncation of any RS-fMRI dataset could cause biased reliability and reproducibility
in FC estimate [73]. As an alternative approach, data scrubbing, such as delta function
regression has been suggested to minimize a loss in reliability and reproducibility on the
FC estimate [73]. Although the previous study demonstrated that data concatenation could
improve the reliability of functional connectomics [48], it is still unclear how a potential
loss in temporal continuity caused by the data concatenation would influence the FC
estimate [48]. With a recent software upgrade of the C3T scanner, the system currently
allows a non-stop acquisition of the ME scan over 10 min. This enables comparison of
concatenated data with data acquired without discontinuity. As part of future works, the
effect of data concatenation with different preprocessing steps will be investigated.

For future works, the enhanced sensitivity of ME fMRI will be applied to clinical RS-
fMRI studies of aging and neurodegenerative diseases, such as dementia as the brain suffers
from signal dropout in regions with iron deposition and increased partial volume effect
due to brain atrophy [74]. Additionally, ME fMRI provides opportunities for improved
functional connectivity detection in regions, such as the hippocampus and ACC, which
would benefit cognitive neuroscience studies related to memory or cognition [75]. From
a technical point of view, the choice of echo number for ME fMRI needs to be evaluated
when ICA-based fMRI methods are used for denoising and motion correction. The ME
acquisition studied here is based on 2D EPI acquisition. Emerging new techniques, such
as wave-CAIPI [76,77] could potentially enable 3D ME imaging. The high-performance
gradient on the C3T would also be beneficial for shortening the sinusoidal acquisition
window and facilitate ME fMRI, which makes it an interesting topic for future study.

5. Conclusions

Multi-echo-EPI acquisition was feasible with a spatial resolution < 2.5 mm isotropic
voxel and a temporal resolution < 1 s on a high-performance gradient system of C3T
and was demonstrated to provide superior SNR, TSNRs, sensitivity and accuracy to the
corresponding OE-EPI acquisition with matching spatial resolution despite the temporal
resolution loss. The high-performance gradient enabled high-spatial-temporal resolution
ME EPI would be the method of choice for RS-fMRI study on the C3T.

Author Contributions: Conceptualization, D.K., M.-H.I., H.J.J. and Y.S.; Methodology, D.K.; Formal
analysis, D.K.; Data curation, M.A.H., E.M.G. and J.H.III; Writing—original draft, D.K. and Y.S.;
Writing—review & editing, D.K., M.-H.I., H.J.J., N.K.M., Z.A., R.M., T.K.F., B.F., D.F.B., K.M.W.,
J.D.T., J.H.III, M.A.B. and Y.S.; Visualization, D.K.; Supervision, Y.S.; Project administration, Y.S.;
Funding acquisition, M.A.B. and Y.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was funded by National Institute of Biomedical Imaging and Bioengineer-
ing (NIBIB) at the National Institutes of Health (NIH) (Grant/Award Nos. U01 EB024450 and
U01 EB026976).

Institutional Review Board Statement: The study was conducted in accordance with the Declaration
of Helsinki, and approved by the Institutional Review Board of Mayo Clinic (IRB 14-001036).

Informed Consent Statement: Written informed consent was obtained from all subjects involved in
the study.

Data Availability Statement: The original contributions presented in the study are included in the
article, further inquiries can be directed to the corresponding author.

Acknowledgments: The authors acknowledge the assistance of Sonia Watson, in preparation of
the manuscript.

Conflicts of Interest: Authors Y.S., J.D.T. and M.A.B. acknowledge the following financial interest:
Mayo Clinic has licensed intellectual property related to the compact 3T to GE Healthcare. Au-
thors T.K.F. and R.M. are employed by GE Global Research Center. Author B.F. is employed by
GE Healthcare.



Sensors 2023, 23, 4329 16 of 19

References
1. Ogawa, S.; Lee, T. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proc. Natl. Acad. Sci. USA

1990, 87, 9868–9872. [CrossRef] [PubMed]
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