
Citation: Yan, X.; Zhou, X.; Luo, Q. A

Safe Heuristic Path-Planning Method

Based on a Search Strategy. Sensors

2024, 24, 101. https://doi.org/

10.3390/s24010101

Academic Editors: Luis Payá, Oscar

Reinoso García, Paolo Mercorelli and

Helder Jesus Araújo

Received: 3 November 2023

Revised: 1 December 2023

Accepted: 22 December 2023

Published: 24 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Safe Heuristic Path-Planning Method Based on a
Search Strategy
Xiaozhen Yan 1 , Xinyue Zhou 1 and Qinghua Luo 1,2,*

1 School of Information Science and Engineering, Harbin Institute of Technology at WeiHai, No. 2 Wenhua
West Road, Weihai 264209, China; yanxiaozhen@hit.edu.cn (X.Y.); zxyuelu@163.com (X.Z.)

2 Shandong Institute of Shipbuilding Technology, Ltd., Weihai 264209, China
* Correspondence: luoqinghua081519@163.com

Abstract: In industrial production, it is very difficult to make a robot plan a safe, collision-free,
smooth path with few inflection points. Therefore, this paper presents a safe heuristic path-planning
method based on a search strategy. This method first expands the scope of the search node, then
calculates the node state based on the search strategy, including whether it is a normal or dangerous
state, and calculates the danger coefficient of the corresponding point to select the path with a
lower danger coefficient. At the same time, the optimal boundary is obtained by incorporating the
environmental facilities, and the optimal path between the starting point, the optimal boundary
point and the end point is obtained. Compared to the traditional A-star algorithm, this method
achieved significant improvements in various aspects such as path length, execution time, and path
smoothness. Specifically, it reduced path length by 2.89%, decreased execution time by 13.98%, and
enhanced path smoothness by 93.17%. The resulting paths are more secure and reliable, enabling
robots to complete their respective tasks with reduced power consumption, thereby mitigating the
drain on robot batteries.

Keywords: mobile robot; path planning; collision-free safety; optimal boundary; heuristics

1. Introduction

As an intelligent system with advanced technology, an unmanned system can indepen-
dently perform complex tasks without human intervention. In various unmanned systems,
mobile robots, as an important part of life and work, have been widely used in industrial
manufacturing, logistics, and medical fields [1]. Path planning, as a key technology for
finding a safe and collision-free optimal path from the starting point to the target point in
a given obstacle environment, has an important impact on the function and performance
of unmanned systems. For example, it can help robots transport materials faster and
more safely and complete the handling of goods and other operations [2]. Autonomous
robots can reduce human work in the evacuation process and guide people to the best
path to an exit [3]. Paddy field seeding robots improve the quality and efficiency of human
work [4]. In these application scenarios, mobile robots often need to perform tasks in
complex environments, such as narrow canals, factory workshops, or hospital corridors, so
it is particularly important to ensure the safety of the robot.

As computer technology and artificial intelligence continue to advance, the field of
path planning is evolving as well. From the earliest rule-based path-planning methods
to research in path planning that incorporates graph theory [5], search algorithms [6],
neural networks [7], and deep reinforcement learning [8], these technologies have driven
continuous improvements in path planning. For example, in reference [9], the authors
introduced a directional guidance strategy on top of traditional Rapidly exploring Random
Trees (RRTs), simplifying invalid paths through linear processing and optimizing threshold
parameters to balance the path length and planning time. Simulation experiments validated

Sensors 2024, 24, 101. https://doi.org/10.3390/s24010101 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24010101
https://doi.org/10.3390/s24010101
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-8818-8364
https://doi.org/10.3390/s24010101
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24010101?type=check_update&version=2

Sensors 2024, 24, 101 2 of 28

the algorithm’s superiority. Reference [10] combines the strengths of the A-star algorithm
and interpolation algorithms, optimizing the A-star algorithm through geometric rules. It
introduces the geometric A-star algorithm, which applies filtering functions to the paths
generated by the A-star algorithm to address issues like excessive turning angles and
irregular paths. Reference [11] introduces a mobile robot path-planning algorithm that
combines the use of water flow potential fields and the beetle antennae search. This method
divides the global path into multiple segments by using beetle genetic algorithms to set
segmented waypoints. It employs a natural water flow approach for obstacle avoidance
routing and optimizes the station coordinates using the beetle antennae search algorithm,
thereby enhancing path quality. In reference [12], a hybrid solution method for mobile
robot path planning is proposed, combining the ant colony optimization and artificial bee
colony algorithms (IACO-IABC). This method reduces the number of turns in the planned
path by incorporating three mechanisms within the IACO-IABC algorithm.

During task execution, the robot’s energy consumption significantly affects its op-
erational time and performance. Therefore, energy conservation is crucial. To achieve
energy efficiency and environmental friendliness during robot task execution, researchers
have integrated data modeling, optimization algorithms, and neural networks into path-
planning algorithms. For instance, reference [13] considers the discharging process of
lithium batteries and converts the robot’s motion energy consumption into the occupancy
time of a path grid. Reference [14] utilizes an energy consumption estimation model to
estimate the energy consumption between neighboring positions and the destination using
distance integration estimation models, combining both models to determine the path cost.
Simulation experiments demonstrated that the proposed method generates optimal paths,
saving a substantial amount of energy. Reference [15] takes into account different terrain
conditions and turning angles as constraint factors. It adjusts the heuristic function weight
of the A-star algorithm to reduce energy consumption in complex environments.

Furthermore, path smoothness significantly impacts robot motion. Path smoothing is
vital for handling robots, as it not only reduces energy consumption and improves motion
stability but also extends the equipment’s lifespan. For example, in reference [16], adaptive
fractional velocity is introduced within a particle swarm algorithm to enhance its capability
to escape local minima, while simultaneously employing continuous high-order Bézier
curves to smooth the robot’s path. Improved particle swarm optimization is validated
through simulation experiments. Reference [17] proposes a local block path-planning
method, which utilizes intersection points between straight lines and obstacles as centers
for finding intersections between lines and circles. These two intersection points serve as
local starting and target points, followed by employing the A-star algorithm to find the
optimal path. Finally, the straight lines and local paths are merged. Experiments show
that this method solves the issue of excessive path reversal caused by the A-star algorithm.
Reference [18] introduces a path-planning method based on cubic spline interpolation to
maintain the smoothness of robot motion paths. The control points of the path, including
the start point, control points, and destination point, are interpolated to form a complete
path. Chaotic adaptive particle swarm optimization is used to optimize the control points,
and the simulation results confirm the algorithm’s effectiveness. Reference [19] emphasizes
the importance of smoothness in robot motion and combined genetic algorithms with
B-spline curve generation techniques to create continuous obstacle avoidance curves.

The aforementioned research has introduced a variety of methods into the field of
robot path planning, expanding the applicability of robots. However, as path planning
constitutes a pivotal component of robot motion control, it necessitates a more compre-
hensive evaluation system to ensure the generation of higher-quality paths. It is worth
noting that the aforementioned studies often focus on singular or limited factors, failing
to fully consider the multidimensional aspects of path assessment. Particularly in com-
plex environments, leveraging environmental features can aid in generating more rational
path-planning solutions. Yet, the previous research has not delved deeply into this aspect,
neglecting elements such as environmental infrastructure. This study adopts a holistic

Sensors 2024, 24, 101 3 of 28

approach, taking into account several critical factors, including safety, path feasibility,
and energy consumption. By introducing heuristic functions like the risk coefficient, it
effectively enhances the accuracy and efficiency of path planning.

Our research primarily focuses on warehouse handling robots, with a specific emphasis
on their application in warehousing environments. Within warehouses, numerous shelves
pose as implicit obstacles for robots. Therefore, ensuring that robots can navigate accurately
through these shelves and reach designated storage locations requires the design of an
effective path. We particularly address the performance requirements of paths in the storage
areas of warehouses, dedicating our research efforts to optimizing these performances. The
goal is to obtain a more applicable path-planning solution for warehouse environments.

Within the warehouse milieu, the pivotal role of handling robots lies in their capacity to
concurrently elevate logistical and handling efficiency while minimizing the burdens associ-
ated with manual operations. For the robot, multiple shelves within the warehouse serve as
potential impediments. Consequently, ensuring that the robot reaches its designated shelf
without encountering collisions with others becomes imperative, establishing a prerequisite
for the secure storage of goods and the expeditious selection of items. Moreover, precise
path planning contributes to the reduction in the robot’s movements within the warehouse,
thereby augmenting the overall operational efficiency. Through the optimization of paths,
the robot’s travel distance can be diminished, consequently lowering energy consumption
and extending both the operational time and battery lifespan of the robot.

In response to these requirements, this paper introduces a safe heuristic path-planning
method based on a search strategy. What sets this method apart is its ability to evaluate the
danger coefficient of search nodes during the path-planning process, enabling the selection
of safe, collision-free paths while reducing unnecessary turning points for smoother paths.
Through this method, the energy consumption of handling robots is successfully reduced.
Moreover, by considering the characteristics of the environmental facilities, the method
achieves optimal boundary identification, resulting in the determination of the best path
from the starting point to the optimal boundary point and then to the destination point.

The remainder of this article is organized as follows. Section 2 introduces the safe
heuristic path-planning method. Section 3 presents the experimental simulation environ-
ment and performance evaluation. Section 4 gives the simulation results and a discussion
of the system, and Section 5 summarizes this paper.

2. Methods

In this section, we first explain the framework of the method proposed in this paper.
Then, the details of each submodule are presented, including the theoretical basis and
implementation details.

2.1. Safe Heuristic Framework Based on a Search Strategy

The framework of the safe heuristic path-planning method based on a search strategy
is shown in Figure 1. It mainly consists of three parts: neighborhood expansion, path
selection using the hazard coefficient, and the determination of the optimal boundary points
of obstacles. First, the A-star search algorithm is extended to obtain multi-neighborhood
search nodes. Then, the hazard coefficient of each node is calculated to select a safe and
effective path. Finally, according to the environmental information, the optimal boundary
point is obtained, and the optimal path between the starting point, the optimal boundary
point and the end point is obtained by using the safe heuristic method.

Figure 1. Framework of the safe heuristic path-planning method based on the search strategy.

Neighborhood expansion: Due to the low search freedom of the A-star algorithm, the
planned path has many turning points, so we expand the search neighborhood.

Sensors 2024, 24, 101 4 of 28

Path selection with the danger coefficient: According to the corresponding location
information of the expanded node, the danger coefficient is calculated, and the node with
the lower danger coefficient is selected as the specific path point.

Determination of the optimal boundary point: The starting point and the end point are
connected to obtain a straight line segment. The straight line segment is intersected with
the obstacle to obtain the intersection point, and the boundary point set of the intersecting
obstacle is obtained. The distance between each boundary point and the intersection point
is used as a criterion to find the optimal boundary point; the improved algorithm is used
to find the local path between the starting point, the optimal boundary point and the end
point. We combine the respective local paths as a global path.

2.2. Neighborhood Extension

The traditional A-star algorithm usually selects the point with the smallest evalua-
tion function value as the next computation node [20] to optimize the search path. The
evaluation function is expressed as:

f (n) = g(n) + h(n) (1)

In the formula, f (n) represents the total travel cost from the current node to the
destination node; g(n) represents the actual travel cost from the current node to the starting
node; and h(n) represents the estimated travel cost from the current node to the destination
node. The Manhattan distance, Euclidean distance, and Chebyshev distance are commonly
used to calculate h(n) [21]. The corresponding formulas are shown in Equations (2)–(4):

hM(n) =
∣∣∣xn − xgoal

∣∣∣+ ∣∣∣yn − ygoal

∣∣∣ (2)

hE(n) =
√
(xn − xgoal)

2 + (yn − ygoal)
2 (3)

hC(n) = max
{∣∣∣xn − xgoal

∣∣∣, ∣∣∣yn − ygoal

∣∣∣} (4)

where hM(n), hE(n), and hC(n) represent the heuristic functions obtained by using the
Manhattan distance, Euclidean distance and Chebyshev distance, respectively; (xn, yn) are
the coordinates of the current node; and (xgoal , ygoal) are the coordinates of the target node.

When the A-star algorithm employs the Manhattan distance for path exploration, the
degrees of freedom in search are limited to four directions—namely, upwards, downwards,
leftwards, and rightwards—from the current node. Conversely, the A-star algorithm
utilizing the Euclidean distance can discern one of eight adjacent nodes as the next search
direction as illustrated in Figure 2. From Figure 2a, it is evident that the Manhattan distance
search directions exhibit a 45° angle at each corner, thereby restricting exploration along
the diagonal directions and introducing constraints on optimal paths involving certain
diagonal movements. In Figure 2b, the Euclidean distance search directions feature a 22.5°
angle at each corner, taking into account the diagonal directions and thereby fostering a
greater array of possibilities in the search outcomes. The Chebyshev distance defines the
distance between two points as the maximum absolute difference between their respective
coordinate values. It calculates the number of moves required from the current node to
the target node, commonly applied in highly specific scenarios such as warehouse and
logistics environments. Consequently, the utilization of the Chebyshev distance as a general
distance metric proves challenging.

The paths planned by the A-star algorithm using three different distances are shown
in Figure 3. Given the same start and end points, the red path is planned by the A-star
algorithm using the Manhattan distance, the blue path is planned using the Euclidean
distance, and the green path is planned using the Chebyshev distance. The corresponding
path lengths are shown in Table 1. According to the planned paths, it can be seen that
the path obtained by the A-star algorithm using the Euclidean distance is shorter, and the

Sensors 2024, 24, 101 5 of 28

turning point is smaller. Additionally, to be more consistent with the actual distance when
the robot moves, this paper adopts the Euclidean distance.

(a) (b)

Figure 2. (a) Manhattan distance search directions, (b) Euclidean distance search directions.

Figure 3. Comparison of the paths obtained by different distance measures.

Table 1. Comparison of the experimental data for the three distance formulas.

Method Manhattan Euclidean Chebyshev

Length/m 70 61.799 61.799
Turning point 6 5 11

It can be seen from Figure 2b that the Euclidean distance uses an 8-neighborhood
search; that is, there is an angle of 45° in each direction. When searching in this way, the
distance between each search direction point and the current node is relatively singular.
This single search method limits the planning of the path, and it is easy to obtain too many
turning points in the final planned path as well as an insufficiently smooth trajectory. To
address these problems, this paper presents an extended 16-neighborhood search method
as shown in Figure 4. It can be seen from the figure that the angle of the extended search
direction is 22.5°; the distance between the current node and the search node that is used
in the traditional search method is too restricted. In the proposed method, the distance
is diversified, and the degrees of freedom of the search increase, so the planned path is
smoother and better, reducing unnecessary turning points and power consumption.

Sensors 2024, 24, 101 6 of 28

Figure 4. Extended 16-neighborhood search.

2.3. Selecting the Path by Using the Risk Coefficient

In a real scene, the movement of the robot must not only consider the shortest path but
also ensure that the path is safe and effective. As shown in Figure 5, when calculating the
optimal path, the A-star search algorithm generates a path that is too close to the obstacle
when passing the obstacle, which is not feasible in actual production and logistics. In
addition, the robot itself has a certain shape and size, so it is necessary to consider the safety
factors and dynamic constraints of the robot when planning the path.

Figure 5. The path of the traditional A-star algorithm when passing obstacles.

To address these problems, this paper presents an improved scheme. Comprehensively
considering various factors such as robot kinematics constraints, environmental obstacle
information, and objective functions, it is assumed that the internal radius of the robot is
rrobot, and R represents the distance between the robot and the obstacle. Considering the
safety of the robot path, the minimum safe distance R1 = 1.5rrobot is set. If the distance
between a node in the search environment and an obstacle is less than the minimum safe
distance, we determine that the node is in a dangerous state and calculate the corresponding
danger coefficient. The formula of the danger coefficient is as follows:

ψ =


0 R > R1

n
∑

i=1

(
q√

(xn−xobsi)
2+(yn−yobsi)

2

)C

R ≤ R1
(5)

where ψ sets the hazard coefficient between the robot and the obstacle, (xobsi, yobsi) is
the coordinate of the obstacle whose distance from the robot is less than the minimum
safe distance, q sets the affected area according to the physical size of the obstacle, and
the effective range of the obstacle is determined by the positive integer C. The general
parameters q and C are usually set to 2 and 1, respectively. The hazard coefficient is added

Sensors 2024, 24, 101 7 of 28

to the heuristic function to generate a safer and more effective path-planning scheme. We
change the heuristic function to:

h(n) = hE(n) + ψ (6)

Algorithm 1 shows the pseudocode for the extended A-star algorithm, which takes the
robot’s start point, target point, and map information as input and generates the optimized
path best_path as output.

Algorithm 1 Improved A-star algorithm

1: function A-STAR(start, goal, map)
2: close← NULL
3: open← start
4: G[start]← g[start] = 0,H[start]← h[start]
5: F[start]← H[start]
6: while open ̸= ∅ do
7: neighbor_Node← Select the node with the lowest F value in the open list
8: open← open\{current_Node}
9: close← close ∪ {current_Node}

10: if current_Node = goal then
11: return best_path
12: end if
13: current_Node← Compute the set of vertices surrounding the current vertex
14: for N ∈ neighbor_Nodes do
15: if N ∈ close then
16: do nothing
17: else if N ∈ open then
18: G[N_new_calculated], H, F ← Calculate the G, H, and F values of N
19: if G[N ∈ open] > G[N_new_calculated] then
20: Parent node of N← current_Node
21: end if
22: else
23: Parent node of N← current_Node
24: end if
25: end for
26: end while
27: end function

2.4. Calculating the Optimal Boundary Point

In this paper, the idea of local environment block planning is used to analyze the
environment information based on the principle of the shortest two-point line segments,
and the boundary points of obstacles connecting the starting point and the end point are
obtained. Local path planning is performed between the starting point, the boundary point
and the end point, and then the local paths are merged. The principle of calculating the
optimal boundary point is introduced below.

Suppose the start point in the environmental information is A(xstart, ystart), the end
point is B(xgoal , ygoal), and the start and end points are connected. The line AB is obtained,
and the equation of the analytic geometry line AB is:

(y− ystart)(xgoal − xstart) = (x− xstart)(ygoal − ystart) (7)

Assuming that the line segment AB does not pass through an obstacle, the shortest
path planned by the starting point and the destination point is the line segment AB shown
in Figure 6a.

Sensors 2024, 24, 101 8 of 28

(a) (b)

Figure 6. Algorithm planning path schematic diagrams. (a) Obstacle-free path, (b) path with obstacles.

If the line segment AB passes through an obstacle, for the sake of simplicity, we
assume that the number of obstacles passed through is 2 as shown in Figure 6b. First,
the intersection points C1 and C2 of the obstacle and the line AB are obtained. Using
the first intersection C1(xC1 , yC1), the boundary point Di(xDi , yDi)(i = 1, 2, 3, · · ·) of the
first obstacle is obtained. We calculate the distance between the boundary point and the
intersection C1(xC1 , yC1):

di =
√
(xC1 − xDi)

2 + (yC1 − yDi)
2 (8)

We find the boundary point corresponding to the minimum distance. In Figure 6b,
this point is D1(xD1 , yD1). We abandon D2(xD2 , yD2), take D1(xD1 , yD1) as a new starting
point, connect the starting point and the end point, obtain the line D1B, find the intersection
coordinate C3(xC3 , yC3) of the obstacle passing through the line segment D1B, obtain the
boundary point of the obstacle corresponding to the first intersection, calculate the distance
from the intersection C3(xC3 , yC3), and find the optimal boundary point corresponding to
the minimum distance D3(xD3 , yD3) in the figure. Using this point as a new starting point,
we continue to connect the starting point to the target point, obtain the line segment D3B,
and determine whether the line passes through the obstacle. Considering that the robot
itself has a certain shape and size, the distance between the border point and the obstacle
cannot be too small. Assuming that the border point is E(x0, y0), the safe distance is also
set to R1, and an obstacle whose distance from E(x0, y0) is less than the safe distance is set
as a threatening obstacle. The formula of the corresponding obstacle coefficient X is shown
in Equation (9):

X =
n

∑
i=0

(
1

|E− Eobsi|
− 1

R1

)
(9)

where Eobsi (i = 0, 1, . . . , n) represents the threatening obstacle encountered by the robot
point E(x0, y0), and |E− Eobsi| represents the distance between the limit point and the
obstacle; according to the obstacle coefficient, a new limit point E

′
(x1, y1) is obtained. The

relationship between E
′
(x1, y1) and E(x0, y0) is shown in Equation (10), and represents the

angle between E(x0, y0) and Eobs. The correspondence analysis is shown in Figure 7:

x1 = x0 + X cos θ
y1 = y0 + X sin θ

(10)

Sensors 2024, 24, 101 9 of 28

Figure 7. Obtaining a new boundary point.

In Figure 6b, it can be seen that straight line D3B does not pass through the obstacle,
and the last boundary point D3(xD3 , yD3) is maintained. The obstacle coefficient between
D3(xD3 , yD3) and the obstacle is calculated, and the optimal boundary point D

′
3(xD3 , yD3)

is obtained.
Taking the point A(xstart, ystart) as the starting point and the optimal boundary point

D
′
3(xD3 , yD3) as the destination point, the improved A-star algorithm is used for path

planning to obtain local path 1. Then, taking the boundary point D
′
3(xD3 , yD3) as the

starting point and the end point B(xgoal , ygoal) as the destination point, according to the
principle of the shortest line segment between the two points, path 2 is obtained, that is,
the line segment D′3B. Combining the local paths, the optimal path from the starting point
A(xstart, ystart) to the destination point B(xgoal , ygoal) is obtained, shown as the blue line in
Figure 6b.

Algorithm 2 shows the pseudocode for obtaining the optimal border point. It takes as
input the start point, target point, map and obstacle information of the robot and outputs
the optimal border point as local_start.

Algorithm 2 Obtain the best boundary point

1: function OBP(start, goal, map, obstacle)
2: Line← Calculate the straight line from the start point to the end point
3: cross_p, boundary_p, dis, local_stat← ∅
4: i← 0
5: for each obs ∈ obstacle do
6: cross_p← ispass_line[obs, Line]
7: end for
8: if cross_p = ∅ then
9: local_start← start

10: else
11: boundary_p← boundary(cross_p(1))
12: for each boundary_p do
13: dis← (boundary_p− cross_p(1))2

14: end for
15: for each dis do
16: i← f ind(dis = min(dis))
17: end for
18: local_start← boundary_p(i)
19: end if
20: return local_start
21: end function

Algorithm 3 is the pseudocode for local path fusion. It takes as input the optimal
border point, the target point, and the local path information of the robot, and outputs the
optimal path as path.

Sensors 2024, 24, 101 10 of 28

Algorithm 3 Merge local paths

1: function MERGE(goal_start, goal, best_path)
2: path1← Computes the line between the local_start and end points
3: path← [best_path; path1]
4: return path
5: end function

2.5. Regularized Obstacles

In the case of irregular obstacles, due to their intricate shapes, mathematical modeling
becomes exceedingly complex, particularly when confronted with the formidable challenge
of identifying the model’s boundary points. To effectively address this issue, a series
of strategies are employed in this study to streamline the process of handling irregular
obstacles. The following provides a detailed description of these strategies.

As depicted in Figure 8a, we illustrate a typical irregular obstacle. Initially, we conduct
a comprehensive analysis of the obstacle to extract its outer contour as demonstrated by the
black line in Figure 8b. Subsequently, the search is initiated for the two farthest points on the
outer contour, denoted as X1(x1, y1) and X2(x2, y2), with their connecting line referred to as
X1-X2. This line’s equation is represented as per Equation (11), where K signifies the slope
as specified in Equation (12). The midpoint X3(

x2+x1
2 , y2+y1

2) between these two points is
computed, and the distance from point X3 to both points is defined as d1 as portrayed in
Figure 8b:

y = K(x− x1) + y1 (11)

K = y2−y1
x2−x1

(12)

The line X1-X2 effectively bifurcates the obstacle into left and right segments as delin-
eated in Figure 8b on the left and right sides, respectively. Subsequently, we individually
determine the maximum distances from each point on the outer contour to the line X1-X2
for both the left and right segments, as indicated by the blue lines in Figure 8c. These
utmost distances are designated as d2 and d3, with corresponding points on the outer con-
tour identified as X4(x4, y4) and X5(x5, y5). Assuming that d3 surpasses d2, a line segment
designated as l1 is created, traversing through point X5(x5, y5) and perpendicular to the
line X1-X2, with its linear equation articulated in Equation (13), where the slope is − 1

K :

y = − 1
K (x− x5) + y5 (13)

Moving forward, the quest to ascertain point X6(x6, y6) ensues, situated at a distance of
d2 from X5(x5, y5) and positioned on the line l1 as elucidated in Figure 8d. At this juncture,
the distance from X6(x6, y6) to the line X1-X2 is determined as d4, where d4 = d3 − d2 as
portrayed in Figure 8d. Subsequently, lines denoted as l2 and l3 are established, with l2
having X6(x6, y6) as the central point and a slope of K, while l3 emanates from X3 as the
central point with a slope of− 1

K . The intersection point of these two lines is identified as X7
as illustrated in Figure 8e. Finally, with X7 as the center point, we construct a rectangle with
a length of 2d1 and a width of d2 + d3, where the tilt angles of the two sides are arctan(K)
and arctan(− 1

K), respectively, as shown in Figure 8f. This rectangular area represents a
processed obstacle with a regular shape.

Through the employment of this strategic approach, we adeptly transform irregular
obstacles into regular shapes, all the while ensuring that these regular-shaped obstacles
wholly encapsulate the original irregular obstacles. This, in turn, serves to reduce the
complexity associated with determining the boundary points of obstacles and effectively
mitigates the risk of collisions with said obstacles.

Sensors 2024, 24, 101 11 of 28

(a) (b) (c)

(d) (e) (f)

Figure 8. Steps for handling irregular obstacles. (a) Irregular obstacles, (b) find the midpoint X3,
(c) draw a perpendicular, (d) find the midpoint X6 of the perpendicular, (e) find the center point X7

of the obstacle, and (f) find the regularized obstacle

3. Simulation Environment and Parameters
3.1. Evaluation Platform Configuration

This section introduces the map environment of robot path planning and its related
settings, the robot parameters, the evaluation indicators and the simulation environment.

In this section, the mobile robot map environment is set up as a grid map with a
length and width of 200 m. If the index value corresponding to a position in the grid
map is 1, it indicates that there is an obstacle, and if the index value corresponding to
a position in the grid map is 0, it indicates that there is no obstacle. The map layout is
designed in two test scenarios. The computer configuration used in the simulation test
experiment is the Windows 10 operating system, i5-7200U processor and 8 GB RAM, Dell
Inc., Kunshan, China.

3.2. Scene Settings

In this paper, two different map layouts are created based on a flat ground design.
For the first type of environmental information, to better evaluate the performance

of the proposed algorithm in terms of security and effectiveness, two different map en-
vironments are set up in this section. The map environment is shown in Figure 9. One
map contains convex-tip obstacles, while the other map contains narrow channels. These
different map environments are designed to examine whether the handling robot can safely
navigate through these challenges to fully evaluate the algorithm. The robot’s starting

Sensors 2024, 24, 101 12 of 28

position coordinates are set to (10,10), and the goods must be transported to the target
position with coordinates (190,190).

(a) (b)

Figure 9. Maps for test scenario 1. (a) The environment of sharp obstacles, (b) the environment of
narrow passages.

For the second type of environmental information, to test the robustness of the algo-
rithm in the case of random changes in the environmental information, this section presents
an experiment that sets random changes in the obstacle environment. Specifically, three
different maps are randomly generated, with obstacles accounting for 20% of each map.
These randomly generated maps contain a combination of multiple obstacle locations to
verify whether the algorithm can adapt to random changes in different environmental infor-
mation. Through this experiment, the ability of the algorithm to detect and avoid randomly
changing obstacle information can be evaluated, and the reliability and practicality of the
algorithm can be further improved. The coordinates of the robot’s start position are set to
(25,35), and the goods must be transported to the target position with coordinates (140,190).

3.3. Performance Indicators

In order to authentically assess the performance of the algorithm presented in this
study, we adopt the differentially driven motion modelproposed in the referenced liter-
ature [22]. As illustrated in Figure 10, the robotic platform is equipped with an omni-
directional wheel and two drive wheels. In the model, vl , vr, and vc denote the linear
velocities of the left drive wheel, right drive wheel, and overall robot, respectively. Symbol
L represents the wheelbase between the left and right drive wheels. The robot’s angular
velocity is denoted by wc. Consequently, the kinematic equations governing the robot’s
motion are expressed as follows:(

vc
ωc

)
=

(1
2

1
2

1
L − 1

L

)(
vr
vl

)
(14)

 ẋc
ẏc
θ̇

 =

 cos θ 0
sin θ 0

0 1

(vc
ωc

)
(15)

Here, xc, yc, and θ respectively signify the velocities of the robot in the x-axis, y-axis,
and angular directions.

The PID controller stands as a classical feedback control methodology, continually
adjusting the output to approximate the system’s actual output to the desired output [23].
Consequently, this manuscript employs the PID controller to govern the motion of a
differentially driven two-wheeled vehicle, ensuring that the vehicle adheres to the planned
trajectory. Under the assumption of a robot with a wheelbase of 60 cm and a travel speed
of 1 m/s, the trajectory tracked by the differentially driven two-wheeled robot under PID

Sensors 2024, 24, 101 13 of 28

control is illustrated in Figure 11. Figure 12 portrays the magnitudes of the robot’s angular
velocity and center velocity on this trajectory.

Figure 10. Schematic diagram of differential three-wheeled robot model.

Figure 11. PID control differential two-wheeled robot-tracking path.

Figure 12. The angular velocity w and center velocity vc of the small car.

Sensors 2024, 24, 101 14 of 28

The original path length is 73.73 m, and under PID control, the robot traverses this
path in 79.4 s. Subsequently, this model is applied to path planning, and the simulated path
is evaluated in the latter part of this paper.

The primary objective of the path planning endeavors to formulate an optimal collision-
free trajectory. The consumption of electrical energy by the mobile robot serves as a pivotal
determinant for the successful execution of its tasks. A superior trajectory holds the poten-
tial to abbreviate the robot’s traversal time, consequently mitigating power consumption.
This, in turn, guarantees that the robot maintains an ample reserve of electrical energy to
effectively accomplish its designated tasks, thereby augmenting the overall operational
efficiency of the robot. Hence, it becomes imperative to mandate that the paths devised
prioritize safety and smoothness while concurrently minimizing their length. This paper
conducts a comprehensive assessment and discourse of the planned trajectories, evaluating
and discussing them across six fundamental facets: path length, collision risk, path search
duration, traversal duration, trajectory smoothness, and energy consumption.

(1) Path length
The goal is to achieve the shortest path possible. Assuming that the start position and

target position are S0 and S1, respectively, the path length calculation formula is:

L(S) =
N
∑

i=0
(Si+1 − Si) (16)

where L(S) represents the path length and the unit is m. Si+1 − Si denotes the Euclidean
distance between Si+1 and Si.

(2) Collision risk value
The collision risk value refers to the possibility of collision with the robot at a given

point on the robot’s trajectory. If the robot collides while moving, it may cause equipment
damage, mission failure, robot damage, or environmental pollution and may even cause
injury to people or endanger human safety. Therefore, it is very important to evaluate and
control the collision risk in robot motion control. In this paper, a two-dimensional Gaussian
model is used to establish a collision safety function to estimate the collision safety value.
The specific formula is as follows:

R(Srobot, Sobs) =
n
∑

i=0
e−0.5

(Srobot−Sobsi
q

)C

(17)

where Sobs represents an obstacle whose distance from the robot is less than the safe distance,
and the general parameters q and C are usually set to 2 and 1, respectively.

(3) Exercise time
In practical tasks, the robot must complete the task on time, and when moving in a

dangerous environment, shortening the time can reduce the risk of damage or danger to
the robot. The time calculation formula is as follows:

T =
N−1
∑

i=1
ti =

N−1
∑

i=1

Vroboti
Si+1−Si

(18)

where ti is the movement time at the corresponding position Si, Yobs represents the move-
ment speed of the robot at position Si, and the robot speed is as given above.

(4) Path smoothness
The smoother the planned path is, the fewer the turning points of the path, and the

less energy and time consumed by the mobile robot. The smoothness of the path is mainly
calculated by the turning angle of the mobile robot along the target path. The specific
formula is

A(S) =
N
∑

i=1
γi =

N
∑

i=1
arccos((Si−Si−1)·(Si+1−Si)

|Si−Si−1|×|Si+1−Si |
) (19)

Sensors 2024, 24, 101 15 of 28

where γi is the value of the i-th corner of the obtained path (calculated in radians, varies
from 0 to π), N is the number of points of the path motion of the mobile robot, and
(Si − Si−1) · (Si+1 − Si) is the inner product of two vectors.

(5) Power consumption
Robots with low power consumption can work more efficiently, reduce charging time

and improve working efficiency. In this paper, it is assumed that the initial power of the
robot is 100% in each test experiment, and when the 50 kg weight of the goods is carried,
the robot will exhaust its power by moving 1000 m on a straight path. In the linear motion
of the mobile robot, constant acceleration is used to control the speed to reduce the number
of speed changes, which can effectively reduce the energy consumption. According to [24],
the set speed changes every five time periods to consume 1% of the power. In addition,
every time the rotation angle of the robot reaches 360°, it will consume 1% of the power. The
formula for the quantity of power E remaining after the robot has completed the handling
task is shown in Equation (20), where Nv is the number of speed changes:

E = 100%−
(

L(s)
1000 + Nv

500 + A(s)
200π

)
× 100% (20)

In order to conduct a comprehensive evaluation of the algorithm, this study compares
these metrics using percentages to better evaluate the performance of the algorithm. The
calculation method is shown in Equations (21) to (26):

Plength =
lengthre f − lengthpro

lengthre f
× 100% (21)

Pcollision =
Collisionre f − Collisionpro

Collisionre f
× 100% (22)

PS_time =
S_timere f − S_timepro

S_timere f
× 100% (23)

PR_time =
R_timere f − R_timepro

R_timere f
× 100% (24)

Psmoothness =
Smoothnessre f − Smoothnesspro

Smoothnessre f
× 100% (25)

Ppower =
(1− Powerre f)− (1− Powerpro)

1− Powerre f
× 100% (26)

In the equations, lengthre f , Collisionre f , S_timere f , R_timere f , Smoothnessre f , and
Powerre f represent the path length, collision risk value, searching time, run time, smooth-
ness, and residual power obtained by the reference methods, respectively. lengthre f ,
Collisionre f , S_timere f , R_timere f , Smoothnessre f , and Powerre f represent the corresponding
metrics for the path planned by the algorithm proposed in this study. Plength, Pcollision,
PS_time, PR_time, Psmoothness, and Ppower represent the percentage reductions in path length,
collision risk value, searching time, run time, smoothness, and residual power achieved by
the algorithm proposed in this study compared to the reference methods.

4. Simulation Results and Discussion

This section discusses the feasibility and effectiveness of the safe heuristic algorithm
based on the search strategy to design the map layout under different conditions. The pro-
posed safe heuristic algorithm based on a search strategy (SHA-star), the traditional A-star
algorithm [25] (T_A-star), the A-star algorithm after adding the danger coefficient in this
paper [S_A-star], and the method of [17] (R_[17]) are taken as reference methods to evaluate
the performance of the proposed algorithm. It is worth noting that the S_A-star algorithm
does not originate from previous references but represents an enhancement built upon the
foundation of the conventional A-star algorithm. This enhancement process involves the

Sensors 2024, 24, 101 16 of 28

integration of the hazard coefficients introduced in this paper into the traditional A-star
algorithm, aiming to seek optimal path planning while taking into full consideration the
hazardous factors. The key objective of this approach is to verify whether the introduction
of hazard coefficients, in comparison to the conventional A-star algorithm, effectively en-
hances the safety of robot path planning. To ensure the accuracy of the results, we repeated
the same experiment 100 times and calculated the average of these repeated experiments.

4.1. Simulation Results and Discussion for the First Map Environment Category

Figures 13 and 14 delineate the simulation outcomes of the four algorithms within the
first environmental category. The map denotes the starting point with red markers and the
destination with green markers. Figures 13a–c and 14a–c represent the results of the T_A-
star, S_A-star, and R_[17] algorithms in the first environment, while Figures 13d and 14d
depict the paths derived by the SHA-star algorithm. It is conspicuous from the figures
that all four algorithms successfully navigate without colliding with obstacles. The paths
generated by SHA-star exhibit a notable safety margin from obstacles and remarkable
smoothness. Table 2 encompasses a comprehensive analysis, comparing results in terms
of path length, collision risk, search time, motion duration, path smoothness, and remain-
ing power.

(a) (b)

(c) (d)

Figure 13. Path planning using different algorithms in sharp obstacle environments. (a) T_A-star,
(b) S_A-star, (c) R_[17], (d) SHA-star.

Sensors 2024, 24, 101 17 of 28

(a) (b)

(c) (d)

Figure 14. Planning results of different methods for a narrow channel. (a) T_A-star, (b) S_A-star,
(c) R_[17], (d) SHA-star.

Table 2. The first kind of map-planning data.

Map Path Parameters T_A-Star S_A-Star R_[17] SHA-Star

Convex
obstacle

Path length/m 380.5584 384.0731 446.3637 369.5521
Plength 2.89% 3.78% 17.21% -

Collision risk value 309.0022 18.1278 674.88 10.6796
Pcollision 96.54% 41.09% 98.42% -

Searching time/s 0.821 1.725 1.638 1.084
PS_time −12.03% 37.16% 33.82% -

Run time/s 408.99 412.79 479.74 397.18
PR_time 2.89% 3.78% 17.21% -

Smoothness/radian 89.5353 89.5353 15.3482 6.1191
Psmoothness 93.17% 93.17% 60.13% -

Residual power 47.69% 47.34% 52.92% 62.07%
Ppower 27.49% 27.97% 19.44% -

Narrow
direction
of leg gap

Path length/m 421.7056 426.8772 557.1755 414.3527
Plength 1.74% 2.93% 25.63% -

Collision risk value 1032.9641 121.5572 1052.6305 12.5214
Pcollision 98.79% 89.70% 98.81% -

Searching time/s 0.746 1.988 1.758 1.322
PS_time −17.21% 33.50% 24.80% -

Run time/s 453.26 458.82 598.87 445.3636
PR_time 1.74% 2.93% 25.63% -

Smoothness/radian 67.5442 64.4026 19.1333 8.2937
Psmoothness 87.72% 87.12% 56.65% -

Residual power 47.07% 47.06% 41.23% 57.24%
Ppower 19.21% 19.23% 27.24% -

Sensors 2024, 24, 101 18 of 28

4.1.1. Discussion on Convex Obstacles

The SHA-star algorithm amalgamates the local and linear paths, effectively reducing
the path inflection points by increasing the search freedom. This dual effect results in
shorter path lengths and enhanced path smoothness. In the context of convex obstacles,
SHA-star excels with the optimal path length of 369.5521 and path smoothness of 6.1191.
T_A-star and S_A-star adhere to the conventional 8-neighborhood method for pathfinding,
which often leads to paths with numerous inflection points and suboptimal smoothness.
Additionally, due to S_A-star’s need to select paths with lower danger coefficients, its
optimal path length is slightly longer than that of T_A-star. Therefore, T_A-star’s optimal
path length and path smoothness are 380.5584 and 89.5353, respectively, while S_A-star’s
optimal path length and path smoothness are 384.0731 and 89.5353. R_[17], which leverages
the A-star algorithm to find the shortest path between intersections of circles and lines,
offering a hybrid approach that can reduce the path length in simpler environments.
However, in complex environments, the path length significantly increases due to the
time required to calculate these intersections. While R_[17] improves path smoothness
by including straight-line segments, it does not consider collision risks. Consequently,
R_[17] achieves an optimal path length of 446.3637 and a path smoothness of 15.3482 within
convex obstacles.

Both SHA-star and S_A-star rely on danger coefficients to select safe paths, resulting
in low collision risks. Specifically, in the context of convex obstacles, SHA-star and S_A-star
exhibit collision risks of 10.6796 and 18.1278, respectively. T_A-star and R_[17], on the
other hand, fail to account for path safety, leading to paths in close proximity to obstacles
and high collision risks. Their collision risks within convex obstacles are 309.0022 and
674.88, respectively.

While both SHA-star and S_A-star continuously evaluate node danger coefficients, the
former’s search time is increased, compared to T_A-star. However, SHA-star significantly
reduces the search time for straight-line segments, resulting in shorter overall search times
compared to S_A-star. R_[17], on the other hand, expends significant time in complex
environments to find intersections between circles and lines, wasting search time. Never-
theless, the total runtime (total time = search time + motion duration) for SHA-star within
convex obstacles is notably shorter than the other three algorithms. Specifically, SHA-star,
T_A-star, S_A-star, and R_[17] exhibit total runtimes of 409.811 s, 414.515 s, 481.108 s, and
398.264 s, respectively.

Given that SHA-star’s path exhibits minimal length, enhanced smoothness, and low
collision risks, it conserves energy within convex obstacles. Thus, in such scenarios, SHA-
star retains a substantial power reserve of 62.07%, while T_A-star, S_A-star, and R_[17]
have power reserves of 47.69%, 47.34%, and 52.92%, respectively. In conclusion, SHA-star
excels in environments with convex obstacles.

4.1.2. Discussion on Narrow Passages

The data in Table 2 reveal that in environments characterized by narrow passages,
SHA-star outperforms T_A-star, S_A-star, and R_[17] in various performance aspects.
Specifically, SHA-star reduces the path length by 1.74%, 2.93%, and 25.63% compared
to T_A-star, S_A-star, and R_[17], respectively. It significantly mitigates collision risks
by 98.79%, 89.7%, and 98.81%. Furthermore, it enhances path smoothness by 87.72%,
87.12%, and 56.65%. Energy consumption is reduced by 19.21%, 19.23%, and 27.24% when
compared to T_A-star, S_A-star, and R_[17], respectively. Although SHA-star’s evaluation
of node danger coefficients increases the search time compared to T_A-star, the total runtime
(total time = search time + motion duration) for SHA-star is shorter. When considering the
search time and runtime together, SHA-star outperforms S_A-star and R_[17] within the
context of narrow passages.

In summary, SHA-star exhibits distinct superiority in environments characterized by
narrow passages.

Sensors 2024, 24, 101 19 of 28

4.2. Simulation Results and Discussion for the Second Map Environment Category

The simulation results under the second category of environmental information are
depicted in Figure 15. In this context, the red markers represent the starting points, the green
markers signify the endpoints, and the different-colored lines within the graph represent
the paths generated by T_A-star, S_A-star, R_[17], and SHA-star. All four algorithms
successfully navigate from the starting point to the endpoint without encountering obstacles.
Figure 15a–c reveal that within an environment characterized by randomly changing
obstacles, SHA-star, by increasing the search freedom and integrating danger coefficients,
effectively reduces the number of path inflection points. These paths maintain a certain safe
distance from obstacles. In contrast, T_A-star, which does not account for path collision risk,
leads to paths in close proximity to obstacles and features a higher number of inflection
points due to its 8-directional search. Even with the incorporation of danger coefficients,
S_A-star retains multiple inflection points. R_[17], due to its combination of linear and
search paths, exhibits notably high path smoothness in Figure 15a–c. However, it too fails to
consider collision risks during path planning, resulting in paths closely following obstacles.

(a) (b)

(c)

Figure 15. The second map-planning results. (a) Map 1, (b) Map 2, (c) Map 3.

Table 3 offers a comprehensive comparison of the four algorithms concerning path
length, collision risk, search time, motion duration, path smoothness, and remaining power.
The data clearly demonstrate that SHA-star excels by achieving the shortest paths, lowest
collision risks, shorter runtime, smoother paths, and enhanced efficiency. While the search
time increases slightly compared to T_A-star, SHA-star’s overall runtime is the shortest.
When considering all aspects, SHA-star emerges as the superior choice in environments
characterized by random obstacles.

Sensors 2024, 24, 101 20 of 28

Table 3. The second kind of map-planning data.

Map Path Parameters T_A-Star S_A-Star R_[17] SHA-Star

Map 1

Path length/m 202.6345 202.6345 200.2812 196.5703
Plength 2.99% 2.99% 1.85% -

Collision risk value 144.3658 0 113.4513 0
Pcollision 100.00% - 100.00% -

Searching time/s 0.444 1.921 1.758 1.662
PS_time −174.32% 13.48% 5.46% -

Run time/s 217.80 217.63 215.27 211.27
PR_time 3.00% 2.92% 1.86% -

Smoothness/radian 18.8495 14.1371 3.1433 2.1136
Psmoothness 88.79% 85.05% 32.76% -

Residual power 76.73% 77.48% 79.47% 80.00%
Ppower 14.05% 11.19% 2.58% -

Map 2

Path length/m 209.0782 215.1787 205.7177 202.2907
Plength 3.25% 5.99% 1.67% -

Collision risk value 319.2708 74.6585 241.0164 0.493
Pcollision 99.85% 99.34% 99.80% -

Searching time/s 0.432 1.571 1.467 1.441
PS_time −133.56% 8.27% 1.77% -

Run time/s 224.73 231.10 221.12 217.42
PR_time 3.25% 5.92% 1.67% -

Smoothness/radian 26.7035 34.5575 8.4618 3.9394
Psmoothness 85.25% 88.60% 53.44% -

Residual power 74.84% 72.98% 78.08% 79.14%
Ppower 17.09% 22.80% 4.84% -

Map 3

Path length/m 215.5218 217.865 217.815 206.8147
Plength 4.04% 5.07% 5.05% -

Collision risk value 402.6708 0 383.6158 0
Pcollision 100.00% - 100.00% -

Searching time/s 0.569 1.998 2.047 1.669
PS_time −193.32% 16.47% 18.47% -

Run time/s 231.65 233.99 234.12 222.28
PR_time 4.04% 5.00% 5.05% -

Smoothness/radian 9.4247 40.8407 9.3452 6.4203
Psmoothness 31.88% 84.28% 31.30% -

Residual power 76.94% 71.71% 76.73% 78.29%
Ppower 5.85% 23.26% 6.70% -

4.3. Comparison of Irregular Obstacles

To evaluate the performance of enhanced algorithms in handling environments with
irregular obstacles, a comparative path-planning experiment was devised. In the experi-
mental setup, the initial coordinates of the robot were set at (10,10), while the destination
coordinates were set at (170,190). Figure 16a illustrates the layout of these irregular obsta-
cles, while Figure 16b outlines the results after the regularization of the same obstacles.
Figure 16c showcases the simulation outcomes of the improved algorithms within a context
of regularized obstacles, whereas Figure 16d displays the paths generated by the other
three algorithms within an environment featuring irregular obstacles, juxtaposed with
the paths created by the SHA-star algorithm in the context of regularized obstacles. The
relevant data are documented in Table 4.

Upon a close examination of the paths displayed in Figure 16d, it becomes evident
that, post regularization of the obstacles, the paths obtained through the SHA-star algo-
rithm maintain a considerable distance from the irregular obstacles. This characteristic
significantly reduces collision risks. In contrast, the T_A-star algorithm and the R_[17]
algorithm, which fail to account for the safety of robot navigation, produce paths that
closely track the obstacles, resulting in a high susceptibility to collisions. The data in
Table 5 further corroborate that SHA-star is capable of generating collision-free paths. In

Sensors 2024, 24, 101 21 of 28

comparison to T_A-star, S_A-star, and R_[17], SHA-star’s optimal path length is reduced
by 0.63%, 1.53%, and 3.16%, respectively. While regularizing the obstacles consumes some
additional time, leading to a relatively longer path search time when compared to T_A-star
and S_A-star, it still surpasses the search time required by R_[17]. Furthermore, SHA-star
attains the shortest total runtime, even in this scenario. Additionally, SHA-star generates
paths characterized by greater smoothness, decreasing path inflection points by 95.38%,
94.23%, and 84.62% in comparison to T_A-star, S_A-star, and R_[17]. The enhancement
of path smoothness contributes to improved path continuity, eliminating the need for the
robot to frequently change directions, thereby shortening the total runtime required for
material-handling tasks. In conclusion, the paths created by the SHA-star algorithm retain
the highest remaining energy.

Table 4. Comparison data of irregular obstacles.

Map Path Parameters T_A-Star S_A-Star R_[17] SHA-Star

Irregular obstacles

Path length/m 256.2325 258.5756 262.9066 254.6071
Plength 0.63% 1.53% 3.16% -

Collision risk value 93.3621 0 141.0502 0
Pcollision 100.00% - 100.00% -

Searching time/s 0.622 2.181 4.367 2.639
PS_time −124.28% −11.00% 39.57% -

Run time/s 275.41 277.71 282.58 273.65
PR_time 0.64% 1.46% 3.16% -

Smoothness/radian 31.4159 25.1327 9.4315 1.4507
Psmoothness 95.38% 94.23% 84.62% -

Residual power 69.37% 70.14% 72.20% 73.90%
Ppower 14.79% 12.59% 6.12% -

(a) (b)

(c) (d)

Figure 16. Simulation results of irregular obstacles. (a) Irregular obstacle environment, (b) Reg-
ularized obstacle environment, (c) SHA star algorithm simulation results, (d) simulation results
of four algorithms.

Sensors 2024, 24, 101 22 of 28

Table 5. The simulation data of the four algorithms under the regular obstacles.

Map Path Parameters T_A-Star S_A-Star R_[17] SHA-Star

Four algorithms
for data under

regularized obstacles

Path length/m 267.9482 270.2914 272.8028 254.6071
Plength 4.98% 5.80% 6.67% -

Collision risk value 361.0685 0 579.6919 0
Pcollision 100.00% - 100.00% -

Searching time/s 1.482 2.952 5.291 2.639
PS_time −18.07% 10.60% 50.12% -

Run time/s 288.00 290.29 293.22 273.65
PR_time 4.98% 5.73% 6.67% -

Smoothness/radian 18.8495 10.9955 8.4829 1.4507
Psmoothness 92.30% 86.81% 82.90% -

Residual power 70.20% 71.22% 71.36% 73.90%
Ppower 12.42% 9.31% 8.87% -

Figure 17 illustrates the simulation results of the four algorithms under regularized
obstacles, with specific data comparisons presented in Table 5. From Figure 17, it is evident
that without safety distance measures, the results obtained by T_A-star and R_[17] closely
adhere to obstacles, while SHA-star and S_A-star algorithms yield safe paths. According
to the data in Table 5, due to the increase in obstacle area after regularization, the path
lengths obtained by T_A-star, R_[17], and S_A-star under regularized obstacles experience
an increment. Moreover, since the regularization of obstacles requires a certain amount
of time, the path search times for these three algorithms are greater than those for paths
under irregular obstacles. In the remaining performance metric comparisons, the SHA-star
algorithm outperforms T_A-star, R_[17], and S_A-star.

Considering these multifaceted factors, the SHA-star algorithm demonstrates out-
standing path-planning performance in environments with irregular obstacles.

Figure 17. Simulation results of four algorithms in a regularized obstacle environment.

4.4. Simulation Comparison of Warehouse Storage Area

Throughout the entire logistics process, spanning from the entry of goods into the
warehouse to their final dispatch, a sequence of crucial steps encompasses key facets such
as receiving, storage, picking, packing, and shipping. Typically, warehousing systems
partition the facility into two main segments, one exclusively designated for the storage
of goods and the other tailored for merchants, encompassing areas such as receiving and
dispatch zones [26]. This paper centers its attention on the storage area, presuming its total
area to be 50 × 50 m as illustrated in the designed model in Figure 18. The gray region in
the figure represents shelves, the red area signifies the robot parking zone where the robot
docks when not engaged in handling tasks, and the green area serves as the exit. Upon
receiving instructions, the robot maneuvers from the parking zone to the specified shelf for
cargo handling, subsequently transporting the goods to the exit. This study sets the target

Sensors 2024, 24, 101 23 of 28

positions for cargo handling at (29, 19) and (21, 35). When computing time, the loading
and unloading times are disregarded, with the focus solely being on the planning time and
robot travel time. The simulation results, as depicted in Figure 19, encompass comparative
data regarding path length, collision risk, path search time, operation time, smoothness,
and remaining battery capacity in Table 6.

The simulation graphs allow us to observe that all four algorithms have successfully
determined paths for the handling tasks. From the data presented in Table 6, it is evident
that, across different task points, the SHA-star algorithm showcases a minimum reduction
of 1.26% in path length, a significant decrease of 41.14% in collision risk, and a minimum
improvement of 54.6% in path smoothness, concurrently minimizing energy consumption
by 1.16%, when compared to the T_A-star, S_A-star, and R_[17] algorithms. Although the
path search time is increased by 0.06 s compared to T_A-star, the overall path operation
time remains the shortest.

Figure 18. Map of cargo storage area.

(a) (b)

Figure 19. Comparison of simulation results. (a) Target Location 1. (b) Target Location 2.

The above simulation results and data analysis affirm that SHA-star can be effectively
applied in warehousing scenarios. Furthermore, in the context of warehouse handling, the
SHA-star algorithm consistently outperforms the other three algorithms as evidenced by
the superior performance metrics.

Sensors 2024, 24, 101 24 of 28

Table 6. Planning data in the warehouse environment.

Map Path Parameters T_A-Star S_A-Star R_[17] SHA-Star

Location of
goods: (29, 19)

Path length/m 69.5979 72.0951 72.8876 68.7244
Plength 1.26% 4.68% 5.71% -

Collision risk value 138.1442 42.4914 113.3893 25.0093
Pcollision 81.90% 41.14% 77.94% -

Searching time/s 0.005 0.068 0.308 0.059
PS_time −1080.0% 11.76% 80.52% -

Run time/s 74.81 77.43 78.34 73.86
PR_time 1.26% 4.60% 5.72% -

Smoothness/radian 10.9955 8.1757 15.2596 3.7121
Psmoothness 66.24% 54.60% 75.67% -

Residual power 91.29% 91.48% 90.28% 92.53%
Ppower 14.24% 12.32% 23.15% -

Location of
goods: (21, 35)

Path length/m 70.7695 69.4984 71.3202 68.7627
Plength 2.84% 1.06% 3.59% -

Collision risk value 127.4218 43.8785 139.0656 15.2428
Pcollision 88.04% 65.26% 89.04% -

Searching time/s 0.006 0.076 0.359 0.066
PS_time −1000.0% 13.16% 81.62% -

Run time/s 76.07 74.64 76.66 73.91
PR_time 2.84% 0.98% 3.59% -

Smoothness/radian 25.1327 9.6706 11.3625 3.4535
Psmoothness 86.26% 64.29% 69.61% -

Residual power 88.92% 91.51% 91.05% 92.57%
Ppower 32.94% 12.49% 16.98% -

4.5. Comparison with Multi-Objective Optimization Algorithms

In order to comprehensively assess the superiority of the improved A-star algorithm,
this study elected to conduct a further comparative analysis involving particle swarm opti-
mization (PSO) and genetic algorithm (GA). The algorithms from references [18] (CAPSO)
and [19] (GA) were chosen as the benchmark algorithms for replication. Reference [18]
underscored the impact of the number of control points on path planning. The experi-
mental evidence suggests that a range of three to six control points produced favorable
results. Consequently, in this investigation, a population size of 30 was chosen, and the
number of control points was set between three and six. This experiment was repeated
50 times to establish an average outcome. The results are depicted in Figure 20, where
Figure 20a showcases the paths planned by the CAPSO algorithm under various control
point configurations, and Figure 20b illustrates the iteration curves for different control
points. The outcomes indicate that the optimal results are achieved when six control points
are employed.

Consequently, this study fixed the number of control points at 6, mimicking the
parameters of literature [18], and used a population size of 30 and 100 iterations, with all
other parameters consistent with literature [18]. For literature [19], the number of control
points was also set at 6, with a population size of 30, and 100 iterations, with the remaining
parameters consistent with literature [19].

Both of these algorithms were then applied to optimize multiple objectives, such as
path length, collision risk, runtime, path smoothness, and energy consumption. However,
in practical applications, certain performance metrics may lead to conflicts in robot path op-
timization. Additionally, the mentioned five indicators are on different orders of magnitude.
To balance the impact of different objective functions, a single-objective standardization
method [27] was adopted to select suitable weighting coefficients. The fitness function was
defined as follows:

f = k1L(s) + k2R(Srobot, Sobs) + k3T + k4 A(S)− k5E (27)

Sensors 2024, 24, 101 25 of 28

wherein one of the five weighting coefficients was set to 1, while the others were set to 0 for
simulation experiments to obtain the minimum path length Lmin, minimum collision risk
Rmin, minimum runtime Tmin, minimum angle Amin, and maximum remaining energy Emax.
Let k1 = 1, then k2 = Lmin/Rmin, k3 = Lmin/Tmin, k4 = Lmin/Amin, and k5 = Lmin/Emax.
The weighting coefficient selection for literature [18] and literature [19] is presented in
Table 7. Due to the minimum collision risk Rmin = 0 obtained by the two algorithms, k2 is
set to 100.

(a) (b)

Figure 20. Simulation results under different control points of CAPSO. (a) Simulation result, (b) itera-
tive curve.

Table 7. Weight coefficient value.

k1 k2 k3 k4 k5

CAPSO 1 100 0.94 16.76 0.69
GA 1 100 0.97 10.36 0.75

Figure 21a showcases the paths planned by CAPSO, GA, and the improved A-star
algorithm, with the corresponding data recorded in Table 8. Moreover, Figure 21b visually
illustrates the changes in fitness function values after 100 iterations for CAPSO and GA.

(a) (b)

Figure 21. Comparison of simulation results between SHA-star, CAPSO, and GA. (a) Simulation
result, (b) iterative curves of CAPSO and GA.

Sensors 2024, 24, 101 26 of 28

Table 8. Comparative data between SHA-star and PSO algorithms.

Path Parameters CAPSO GA SHA-Star

Path length/m 64.53 67.98 64.93
Collision risk value 0 0 19.87

Path-searching time/s 19.45 20.82 0.054
Run time/s 68.25 69.95 69.79

Smoothness/radian 4.745 6.562 3.853
Residual power 92.37% 91.16% 92.53%

From Figure 21, it is evident that CAPSO, GA, and SHA-star algorithms can all identify
optimal paths while maintaining a certain safe distance from obstacles. Based on the data
analysis in Table 8, it can be concluded that the CAPSO algorithm outperforms SHA-
star in terms of path length, collision risk, and operation time. In terms of smoothness,
SHA-star exhibits lower smoothness due to the straight-line connections in the latter part
of the planned path, resulting in fewer corners. Consequently, CAPSO surpasses SHA-
star in terms of smoothness. Additionally, SHA-star excels over CAPSO in remaining
battery capacity.

The GA algorithm demonstrates lower collision risk than SHA-star, but when com-
pared to SHA-star, it lags behind in path length, operation time, path smoothness, and
remaining energy. Notably, after 50 simulation experiments with averaged results, SHA-
star’s path search time is merely 0.054 s, whereas the CAPSO and GA algorithms require
a substantial amount of time for path searching. This extended search time significantly
diminishes path-planning efficiency.

Based on the data analysis above, it can be concluded that CAPSO and GA are more
suitable for scenarios with strict collision risk requirements and lenient planning time
requirements. In a warehousing environment, considerations extend beyond collision risk
to encompass planning time, path smoothness, and more. Therefore, taking a holistic
perspective, the SHA-star algorithm proves to be more suitable for path planning in
warehousing environments.

5. Conclusions

This study introduces a search strategy-based safety heuristic approach to address
challenges in traditional robot path planning. Leveraging risk coefficients to select safe
paths and employing an environmental partitioning strategy, this method aims to over-
come limitations inherent in conventional algorithms. Extensive simulation experiments
consistently validate its capability to generate safe and smooth paths across various map
environments, effectively enhancing both the operational efficiency and safety of the robot.

The core algorithm in this research is the A-star algorithm, and while it has undergone
significant enhancements, we acknowledge that there is room for further improvement.
Firstly, a major drawback of the A-star algorithm lies in its exponential space growth.
Recognizing substantial room for improvement in this regard, we commit to ongoing
research to overcome this issue. Secondly, this study employs a relatively simplified robot
motion model, not fully considering the robot’s dynamic model. Such simplification may
lead to decreased path-planning accuracy in certain complex scenarios. Future research
directions will involve introducing more precise robot dynamic models to enhance path
accuracy and feasibility. Additionally, in dealing with environments filled with irregular
obstacles, the obstacle normalization process consumes a considerable amount of time. In
future research, we will strive to identify more efficient methods to handle such irregular
obstacles, further improving the efficiency of path planning.

Author Contributions: Conceptualization, X.Y.; methodology, X.Y. and X.Z.; software, X.Y., X.Z. and
Q.L.; validation, Q.L.; formal analysis, X.Y. and X.Z.; data curation, X.Z.; writing—original draft
preparation, X.Z.; writing—review and editing, X.Y. and Q.L. All authors have read and agreed to the
published version of the manuscript.

Sensors 2024, 24, 101 27 of 28

Funding: This work is partly supported by the National Natural Science Foundation of China
(62271164, 62101158), the Major Scientific and technological innovation project of Shandong Province
of China (2020CXGC010705, 2021ZLGX-05 and 2022ZLGX04), Shandong Provincial Natural Science
Foundation (ZR2020MF017, ZR2022MF255, ZR2023MF051), the engineering research center of Shan-
dong province, and the joint innovation center of Shandong province. Shandong Provincial Key
Laboratory of Marine Electronic Information and Intelligent Unmanned Systems, Key Laboratory of
Cross-Domain Synergy and Comprehensive Support for Unmanned Marine Systems, Ministry of
Industry and Information Technology, Discipline construction fund (2023SYLHY05).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: Author Qinghua Luo was employed by the company Shandong Institute of
Shipbuilding Technology, Ltd. The remaining authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a potential conflict
of interest.

References
1. Liu, C.; Xie, S.; Sui, X.; Huang, Y.; Ma, X.; Guo, N.; Yang, F. PRM-D* Method for Mobile Robot Path Planning. Sensors 2023,

23, 3512. [CrossRef] [PubMed]
2. Lin, S.; Liu, A.; Wang, J.; Kong, X. An intelligence-based hybrid PSO-SA for mobile robot path planning in warehouse. J. Comput.

Sci. 2023, 67, 101938. [CrossRef]
3. Sriniketh, K.; Le, A.V.; Mohan, R.E.; Sheu, B.J.; Tung, V.D.; Van Duc, P.; Vu, M.B. Robot-aided human evacuation optimal path

planning for fire drill in buildings. J. Build. Eng. 2023, 72, 106512. [CrossRef]
4. Li, Y.; Wu, T.; Xiao, Y.; Gong, L.; Liu, C. Path planning in continuous adjacent farmlands and robust path-tracking control of a

rice-seeding robot in paddy field. Comput. Electron. Agric. 2023, 210, 107900. [CrossRef]
5. Hao, Y.; Shen, Z.; Zhao, Y. Path planning for aircraft based on MAKLINK graph theory and multi colony ant algorithm. In

Proceedings of the 2009 International Joint Conference on Computational Sciences and Optimization, Sanya, China, 24–26 April
2009 ; IEEE: Piscataway, NJ, USA, 2009; Volume 2, pp. 232–235.

6. Wang, Z.; Sun, G.; Zhou, K.; Zhu, L. A parallel particle swarm optimization and enhanced sparrow search algorithm for
unmanned aerial vehicle path planning. Heliyon 2023, 9, e14784. [CrossRef] [PubMed]

7. Liu, Y.; Zheng, Z.; Qin, F.; Zhang, X.; Yao, H. A residual convolutional neural network based approach for real-time path planning.
Knowl.-Based Syst. 2022, 242, 108400. [CrossRef]

8. Wu, X.; Chen, H.; Chen, C.; Zhong, M.; Xie, S.; Guo, Y.; Fujita, H. The autonomous navigation and obstacle avoidance for USVs
with ANOA deep reinforcement learning method. Knowl.-Based Syst. 2020, 196, 105201. [CrossRef]

9. Wang, Y.; Jiang, W.; Luo, Z.; Yang, L.; Wang, Y. Path planning of a 6-DOF measuring robot with a direction guidance RRT method.
Expert Syst. Appl. 2023, 238, 122057. [CrossRef]

10. Tang, G.; Tang, C.; Claramunt, C.; Hu, X.; Zhou, P. Geometric A-star algorithm: An improved A-star algorithm for AGV path
planning in a port environment. IEEE Access 2021, 9, 59196–59210. [CrossRef]

11. Yu, Z.; Yuan, J.; Li, Y.; Yuan, C.; Deng, S. A path planning algorithm for mobile robot based on water flow potential field method
and beetle antennae search algorithm. Comput. Electr. Eng. 2023, 109, 108730. [CrossRef]

12. Li, G.; Liu, C.; Wu, L.; Xiao, W. A mixing algorithm of ACO and ABC for solving path planning of mobile robot. Appl. Soft Comput.
2023, 148, 110868. [CrossRef]

13. Lian, Y.; Zhang, L.; Xie, W.; Wang, K. An Improved Heuristic Path Planning Algorithm for Minimizing Energy Consumption
in Distributed Multi-AGV Systems. In Proceedings of the 2020 International Symposium on Autonomous Systems (ISAS),
Guangzhou, China, 6–8 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 70–75.

14. Huang, G.; Yuan, X.; Shi, K.; Liu, Z.; Wu, X. A 3-d multi-object path planning method for electric vehicle considering the energy
consumption and distance. IEEE Trans. Intell. Transp. Syst. 2021, 23, 7508–7520. [CrossRef]

15. Zhao, X.; Su, Z.; Dou, L. A path planning method with minimum energy consumption for multi-joint mobile robot. In Proceedings
of the 33rd Chinese Control Conference, Nanjing, China, 28–30 July 2014; IEEE: Piscataway, NJ, USA, 2014; pp. 8326–8330.

16. Song, B.; Wang, Z.; Zou, L. An improved PSO algorithm for smooth path planning of mobile robots using continuous high-degree
Bezier curve. Appl. Soft Comput. 2021, 100, 106960. [CrossRef]

17. Ju, C.; Luo, Q.; Yan, X. Path planning using an improved a-star algorithm. In Proceedings of the 2020 11th International Conference
on Prognostics and System Health Management (PHM-2020 Jinan), Jinan, China, 23–25 October 2020; IEEE: Piscataway, NJ, USA,
2020; pp. 23–26.

18. Lian, J.; Yu, W.; Xiao, K.; Liu, W. Cubic spline interpolation-based robot path planning using a chaotic adaptive particle swarm
optimization algorithm. Math. Probl. Eng. 2020, 2020, 1849240. [CrossRef]

http://doi.org/10.3390/s23073512
http://www.ncbi.nlm.nih.gov/pubmed/37050570
http://dx.doi.org/10.1016/j.jocs.2022.101938
http://dx.doi.org/10.1016/j.jobe.2023.106512
http://dx.doi.org/10.1016/j.compag.2023.107900
http://dx.doi.org/10.1016/j.heliyon.2023.e14784
http://www.ncbi.nlm.nih.gov/pubmed/37123920
http://dx.doi.org/10.1016/j.knosys.2022.108400
http://dx.doi.org/10.1016/j.knosys.2019.105201
http://dx.doi.org/10.1016/j.eswa.2023.122057
http://dx.doi.org/10.1109/ACCESS.2021.3070054
http://dx.doi.org/10.1016/j.compeleceng.2023.108730
http://dx.doi.org/10.1016/j.asoc.2023.110868
http://dx.doi.org/10.1109/TITS.2021.3071319
http://dx.doi.org/10.1016/j.asoc.2020.106960
http://dx.doi.org/10.1155/2020/1849240

Sensors 2024, 24, 101 28 of 28

19. Sundaran, K. Genetic algorithm based optimization technique for route planning of wheeled mobile robot. In Proceedings of the
2018 Fourth International Conference on Advances in Electrical, Electronics, Information, Communication and Bio-Informatics
(AEEICB), Chennai, India, 27–28 February 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 1–5.

20. Dong, G.; Yang, F.; Tsui, K.L.; Zou, C. Active balancing of lithium-ion batteries using graph theory and A-star search algorithm.
IEEE Trans. Ind. Inform. 2020, 17, 2587–2599. [CrossRef]

21. Wang, X.; Liu, X.; Wang, Y. A Research on Task Scheduling and Path Planning of Mobile Robot in Warehouse Logistics Based on
Improved A* algorithm. Ind. Eng. J. 2019, 22, 34.

22. Xin, H.; Wang, P.; Zhao, Y.; Xiao, Y.; Song, B.; Zang, E. Kinematic modeling and motion base library design for autonomous
guided trolley for warehouse handling. In Proceedings of the 2023 8th International Conference on Intelligent Computing and
Signal Processing (ICSP), Xi’an, China, 21–23 April 2023; IEEE: Piscataway, NJ, USA, 2023; pp. 1072–1076.

23. Moshayedi, A.J.; Li, J.; Liao, L. Simulation study and PID tune of automated guided vehicles (AGV). In Proceedings of the
2021 IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and
Applications (CIVEMSA), Hong Kong, China, 18–20 June 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–7.

24. Barili, A.; Ceresa, M.; Parisi, C. Energy-saving motion control for an autonomous mobile robot. In Proceedings of the 1995 IEEE
International Symposium on Industrial Electronics, Athens, Greece, 10–14 July 1995; IEEE: Piscataway, NJ, USA, 1995; Volume 2,
pp. 674–676.

25. Hart, P.E.; Nilsson, N.J.; Raphael, B. A formal basis for the heuristic determination of minimum cost paths. IEEE Trans. Syst. Sci.
Cybern. 1968, 4, 100–107. [CrossRef]

26. Wang, W. The Field of Logistics Warehouse Layout Analysis and Research. J. Appl. Math. Phys. 2016, 4, 1120–1123. [CrossRef]
27. Miao, C.; Chen, G.; Yan, C.; Wu, Y. Path planning optimization of indoor mobile robot based on adaptive ant colony algorithm.

Comput. Ind. Eng. 2021, 156, 107230. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TII.2020.2997828
http://dx.doi.org/10.1109/TSSC.1968.300136
http://dx.doi.org/10.4236/jamp.2016.46116
http://dx.doi.org/10.1016/j.cie.2021.107230

	Introduction
	Methods
	Safe Heuristic Framework Based on a Search Strategy
	Neighborhood Extension
	Selecting the Path by Using the Risk Coefficient
	Calculating the Optimal Boundary Point
	Regularized Obstacles

	Simulation Environment and Parameters
	Evaluation Platform Configuration
	Scene Settings
	Performance Indicators

	Simulation Results and Discussion
	Simulation Results and Discussion for the First Map Environment Category
	Discussion on Convex Obstacles
	Discussion on Narrow Passages

	Simulation Results and Discussion for the Second Map Environment Category
	Comparison of Irregular Obstacles
	Simulation Comparison of Warehouse Storage Area
	Comparison with Multi-Objective Optimization Algorithms

	Conclusions
	References

