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Abstract: Systematically and comprehensively enhancing road traffic safety using artificial intelli-
gence (AI) is of paramount importance, and it is gradually becoming a crucial framework in smart
cities. Within this context of heightened attention, we propose to utilize machine learning (ML) to
optimize and ameliorate pedestrian crossing predictions in intelligent transportation systems, where
the crossing process is vital to pedestrian crossing behavior. Compared with traditional analytical
models, the application of OpenCV image recognition and machine learning methods can analyze the
mechanisms of pedestrian crossing behaviors with greater accuracy, thereby more precisely judging
and simulating pedestrian violations in crossing. Authentic pedestrian crossing behavior data were
extracted from signalized intersection scenarios in Chinese cities, and several machine learning
models, including decision trees, multilayer perceptrons, Bayesian algorithms, and support vector
machines, were trained and tested. In comparing the various models, the results indicate that the
support vector machine (SVM) model exhibited optimal accuracy in predicting pedestrian crossing
probabilities and speeds, and it can be applied in pedestrian crossing prediction and traffic simulation
systems in intelligent transportation.

Keywords: intelligent traffic safety; machine learning; pedestrian crossing; characteristics of crossing
behavior; available crossing gaps

1. Introduction

The current paradigm in road design significantly prioritizes motor vehicles, rendering
pedestrians in a vulnerable position and maintaining a high rate of pedestrian accidents.
As per the 2021 China Traffic Accident Statistical Yearbook, motorized, non-motorized, and
pedestrian accidents were recorded at 2.67 million, 390,000, and 140,000 incidents, respec-
tively. Hence, understanding pedestrian crossing behaviors and decision-making processes
is crucial. Although several methods such as the Harders, Ashworth, and Raff methods, as
well as the Logit process calculation and the maximum likelihood estimation method, have
been widely researched for investigating vehicle crossing gaps, there is a notable deficit in
studies focusing on pedestrian crossing decision making. Some scholars have suggested
calculating critical gaps using the average single-lane pedestrian crossing time. However,
the randomness in pedestrian crossings introduces errors to this method. Furthermore,
pedestrian crossing resembles a dynamic game, where both vehicles and pedestrians aim
to traverse with minimum delays and the utmost safety, but due to the unpredictability
of choices, not all pedestrians choose to cross even with ample gaps. A dynamic game
theory perspective has revealed that a pedestrian’s decision to cross is influenced by the
interacting vehicle’s speed and distance or the headway time. Presently, research on
pedestrian crossing decision making primarily revolves around two aspects, which are
discussed below.

The first facet involves exploring pedestrians’ permissible crossing gaps. Early re-
search, such as that by Wilson and Grayson [1], primarily analyzed the proportion of accept-
able gaps for various demographic groups, revealing, for instance, that 11.1% of pedestrians
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accepted a crossing gap of less than 2 s. Chae et al. [2] discerned an acceptable pedestrian
crossing gap of approximately 5.1 s using data from American roundabouts. Meanwhile,
subsequent gap research, such as the studies by Himanen [3] and Cavallo [4], have primar-
ily concentrated on formulating crossable gap models and dissecting influencing factors,
such as vehicle speed, distance, and pedestrian age, all of which are pivotal in determining
gap acceptance. Further studies have explored various pedestrian behaviors. Kadali and
Rathi [5] illustrated the notable impacts of pedestrian crossing speed and conflicting vehicle
speed and distance on gap acceptance. Shabban and Mohammed [6] developed models for
two street-crossing methods, revealing that factors such as crossing distance and pedestrian
crossing speed significantly influenced both. A distinct relationship between young pedes-
trians and accident proneness was identified by Niaz et al. [7], while Granié [8] and Ezzati
Amini [9] highlighted that younger pedestrians often engage in riskier crossing behaviors
and accept smaller gaps. Contrarily, Dommes et al. [10] emphasized elderly pedestrians’
higher collision risks due to attention and physical limitations. Zafri et al. [11] showcased
that elderly individuals exhibit fewer rolling gap crossings, underlining varied findings
across studies on different age demographics and their crossing behaviors.

The second domain involves researching pedestrian crossing speeds, a critical pa-
rameter in intersection design that ensures both safety and traffic efficiency. The initial
studies on this subject predominantly analyzed the influences of age and gender on crossing
speeds. Govinda L. and Abhigna D. [12] demonstrated that young individuals generally
traverse faster than the elderly, with gender presenting no substantial impact on crossing
speed. Moore [13] identified that smaller accepted gaps were correlated with faster crossing
speeds (i.e., 1.2 m/s for gaps of > 7 s and 1.5 m/s for those of < 3 s). In subsequent research,
Lam and Lee [14] found that the average speed during red-light crossings was 1.5 m/s,
which exceeded the 1.27 m/s observed during green-light crossings. Similarly, Gates and
Noyce [15] found a higher average speed during non-green-light crossings (1.57 m/s) com-
pared with green-light crossing speeds (1.37 m/s). Recent findings by Koh and Wong [16]
have highlighted significant differences between walking and cycling crossing speeds. Feng
Shumin and Wu Yuexin [17] deduced an average pedestrian crossing speed of 1.47 m/s,
with an 85th percentile of 1.74 m/s, using data from Harbin. By examining data from Nan-
jing’s Xinjiekou area, Lu Jian and Ye Huiqiong [18] established elderly and young people’s
average crossing speeds as 1.17 m/s and 1.29 m/s, respectively. Figueroa-Medina et al. [19]
pinpointed age and acceptable gap as the significant determinants of pedestrian crossing
speed. Ku et al. [20] employed a discriminative algorithm based on deep image learning
to conduct a quantitative analysis of the safety and economic issues arising from traffic
vulnerability. Their study did not consider the exact number of dispatchers required for
certain aspects of deep learning and the data collection process. Alver et al. [21] proposed a
comprehensive AHP-FL (analytic hierarchy process–fuzzy logic) method to address the
issue of how pedestrians assess the safety of available gaps. However, this method is
susceptible to individual subjective biases. Li et al. [22] introduced a method combining
foreground detection with deep learning to detect moving pedestrians, effectively utilizing
the invariant background of video images.

However, the existing research faces the following issues: (1) traditional models,
primarily those using non-trajectory data, inadequately illustrate the dynamic and mobile
characteristics impacting pedestrian crossing decisions; (2) most studies on pedestrian
crossing gaps have focused on predicting the psychological thresholds for crossing without
adequately simulating actual behaviors. Using image recognition and machine learning
can address these problems, enabling more accurate analysis of factors affecting unlawful
pedestrian crossings, thereby optimizing decision models and precisely simulating crossing
behaviors. Machine learning methods offer the ability to efficiently process and analyze
large volumes of complex data, adapt and improve over time, automate decision-making
processes, and provide powerful predictive and personalization capabilities across various
domains. One’s suggestions make the logic more standardized. This study first synthesized
the existing research, and the first chapter of this paper discusses the OpenCV-based data
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collection and extraction, which we applied to five Dalian City intersections. The second
chapter presents our methodology, which used various predictive methods. The third part
validates and compares each method, and it conducts a feature analysis. The fourth part
outlines our conclusions and projections.

2. Transportation Surveys and Data Processing
2.1. Survey and Sampling

To ensure sample diversity, this study selected four representative intersections in
Dalian, China. Intersection 1 was in an aging residential area with many elderly residents.
Intersection 2 was surrounded by modern commercial complexes. Intersection 3 was near
primary and secondary schools. Intersection 4 was near a newly developed residential area
with nearby amenities such as a small plaza and kindergarten. These four intersections
were chosen to guarantee the data comprehensiveness and accuracy.

2.1.1. Location

Data were gathered using wide-angle cameras, with a total of four wide-angle cameras
and four roadside cameras strategically installed across four collection sites, as shown in
Figure 1. This setup ensured that the pedestrian and vehicle data collected at these locations
were sufficiently clear and abundant for analysis.
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Figure 1. Camera angles at four data collection sites: (a) Shandong Road–Songjiang Road; (b) Hongyun
Road–Zhelin Street; (c) Zhangqian Road–Hongjin Road; and (d) Huadong Road–Qianshan Road.

2.1.2. Collection Time

Video data for this study were collected during busy morning and evening peak hours,
characterized by high vehicle flow and low speeds, alongside increased pedestrian crossing
demands. Additionally, data were gathered during less busy off-peak periods with lower
vehicle flow and higher speeds, resulting in fewer pedestrian crossings. This method
ensured data accuracy and completeness. Collection dates and durations are detailed in
the accompanying table. Cameras were discreetly set up to avoid influencing pedestrian
behavior, thus maintaining the accuracy and authenticity of the data. The video collection
times and durations for each surveyed road section are listed in the Table 1 below.
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Table 1. Statistics.

Type Date Location Collection Time Duration

8-lane roadway
14 November 2022 Zhangqian Road–Hongjin Road 6:45–9:45 180 min

12:00–15:00 180 min

15 November 2022 Huadong Road–Qianshan Road 7:00–10:00 180 min
12:00–15:00 150 min

6-lane roadway
15 November 2022 Shandong Road–Songjiang Road 6:45–9:45 180 min

11:30–2:00 150 min

14 November 2022 Hongyun Road–Zhelin Street 7:00–10:00 180 min
16:00–19:00 180 min

The lengthy and high-resolution videos collected consumed substantial memory. To
protect pedestrian and driver privacy and manage memory use, the resolution was reduced,
ensuring that vehicle and pedestrian data remained identifiable. Cameras were suspended
at an elevated position on electric iron poles on both sides of the road using pulleys. They
were secured in place via magnetic attachment, as shown in Figure 2. The collection team
remotely controlled the camera’s shooting direction and tilt angle using a motorized pan-tilt
head, ensuring that the camera’s field of view adequately covered the required areas.
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2.2. Data Collection Methods and Numerical Statistics Based on OpenCV

Surface traffic data surveys fundamentally inform our understanding of pedestrian
crossing and vehicular driving behaviors and serve as data sources for establishing pedes-
trian red-light violation and crossing accident models. Currently, there are the following
two main categories of traffic data collection: traditional manual surveys, which can ac-
quire data on vehicle and pedestrian behaviors at intersections via designed questionnaires
and data statistics but are time-, resource-, and accuracy-limited, and technologically
driven methods, which have gained traction with the advancements in computer and
communication technologies, notably, image recognition and processing technologies that
automatically recognize video data via computer programs. OpenCV enables the intuitive
recognition of road environments and traffic entities, processing data such as traffic flows
and entities via visual detection and enhancing traffic management and safety by analyzing
and visually presenting the detected data. The OpenCV runtime interface is shown in the
following Figure 3.

In OpenCV, the following steps are performed for data processing: A video is input for
processing, whereby a recorded 24 h video is loaded into YOLO-v5 sequentially and vehicle,
pedestrian, and traffic light detection is carried out. The YOLO-v5 network is utilized, and
it is trained using the COCO dataset to detect and label targets. For traffic light recognition
(i.e., determining the currently illuminated type), a self-designed classification network is
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employed to detect red, green, and blue in the input traffic light images, and subsequently,
target tracking is performed. The target-tracking frame is input, the detected targets are
numbered, and then the target speed measurements and distance measurements are carried
out. The pixel difference between the tracked targets’ prior and subsequent target frames is
selected to calculate the target speed. Finally, data visualization is performed. This process
enabled us to recognize and determine intersection vehicle driving behaviors, pedestrian
crossing behaviors, and violations. Ultimately, we were able to save the pedestrian crossing
features and vehicle driving data results in a CSV table and display the data in the CSV
table. A total of 1904 sets of data were collected. To ensure the accuracy of the research
results, certain samples were excluded, such as those where age could not be discerned in
the video, samples involving patients with disabilities or illnesses, and samples of infants.
Consequently, we obtained 1644 valid samples, and the partial numerical statistical results
are shown in Table 2 and Figure 4. In the pedestrian age column in Table 2, 0 represents the
elderly, 1 represents the middle-aged, and 2 represents children. In the pedestrian crossing
choice in Table 2, 0 indicates that traversal was selected, and 1 indicates that traversal was
not selected.
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Table 2. Statistics on vehicle speed (x), vehicle distance (y), pedestrian age (z), pedestrian crossing
choice (p), and crossing speed (v).

x (km/h) y (m) z p v (m/s)

13 37 1 1 0
82 58 2 1 0
49 29 2 1 0
5 23 0 1 0
86 48 1 1 0

115 15 1 0 1.26
109 26 2 0 1.18

. . .
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3. Method

This study implemented a machine learning approach to predict pedestrian crossing
probability and speed during street crossings, and it proposes a research method that is
divided into the following parts: the previous chapter discussed the data collection for the
pedestrian crossing features and vehicle driving data results, which led to the acquired
dataset. Subsequently, four different machine learning models are established, and each
model’s experimental results are displayed herein. The most suitable machine learning
model for this research is determined via analysis and comparison. The factors influencing
the results are also discussed herein. Figure 5 depicts a schematic diagram of the proposed
research method.
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3.1. Data Preprocessing

After completing the data collection, label encoding was applied to the categorical
feature ‘z’ in the obtained dataset, converting it into a numerical representation. The
categorical column ‘p’ was transformed into a binary categorical column for the model
training. The dataset was then subjected to z-score standardization.

3.2. Selection of Machine Learning Models

After appropriate data processing, this study employed four algorithms, namely, deci-
sion trees, the Bayesian algorithm, the BP neural network, and a support vector machine,
to separately predict crossing probability and crossing speed.

3.2.1. Decision Tree

Decision trees formulate models utilizing tree structures, and they strive to predict
numerical outputs via the adoption of straightforward decision rules. A dataset is pro-
gressively broken down into smaller subsets while concurrently constructing associated
decision trees, as depicted in Figure 6. The end product is a tree featuring decision nodes
and leaf nodes, with leaves symbolizing the outcomes, while the decision nodes indicate the
points at which the data were partitioned [23]. This model is characterized by its simplicity,
ease of interpretation, and ease of implementation.
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3.2.2. Bayesian Algorithm

The Bayesian algorithm exhibits a remarkable ability to handle uncertainty and noise,
and hence, it is frequently utilized in classification and regression problems, especially
in scenarios with limited data. Grounded in Bayesian probability theory, the algorithm
is capable of providing explicit estimates of uncertainty. Furthermore, Bayesian models
are conveniently able to be updated, and they can progressively assimilate new data to
refine the model, proving to be particularly applicable in dynamic environments such as
pedestrian street crossings [24,25].

3.2.3. Support Vector Machines

Support vector machines (SVMs) are supervised learning algorithms developed by
Vapnik et al. [26] that are founded on statistical learning theory, and they are widely
utilized for addressing classification and regression problems. Moreover, they can make
accurate predictions even with limited sample data, making them suitable for resolving
the issues discussed in this paper. In this type of algorithm, data points are separated
with a hyperplane, and kernel functions are utilized to map the data from the input space
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to a higher-dimensional feature space where it is easier to locate the optimal separating
hyperplane. The hyperplane can be represented with the following linear equation:

f (x) = w·x + b (1)

where w is the weight vector, and b is the bias term. The objective of an SVM is to minimize
the following objective function to find the maximum margin:

minw,b
1
2
∥w∥2 (2)

where ||·|| represents the norm, which is subject to the following constraints for each
data point i:

yi(w·xi + b) ≥ 1 (3)

Herein, yi represents the class label of the data point xi. In practical problems, data
are often not linearly separable. To handle non-linearly separable data, an SVM employs
the so-called ‘kernel trick’, namely, mapping the original data to a higher-dimensional
feature space where they are linearly separable via the kernel function K(x,x′). Common
kernel functions include the radial basis function (RBF), polynomial kernels, and multilayer
perceptron kernels, among others [27]. This study adopted the radial basis function, which
is expressed as follows:

K
(
x, x′

)
= exp

(
−γ∥x − x′∥2

)
(4)

3.2.4. Multi-Layer Perceptron Neural Network

The structural principle of multi-layer perceptrons (MLPs) is illustrated in Figure 7,
and they constitute a type of feedforward neural network that encompasses an input layer,
hidden layers, and an output layer, with each layer being composed of several neurons
that are connected to other layers via weighted connections. An MLP utilizes non-linear
activation functions, such as Sigmoid or ReLU, to introduce non-linear properties. Trained
via optimization algorithms such as backpropagation and gradient descent, an MLP is
capable of learning complex mapping relationships between input data and output labels.
Owing to their high flexibility and wide applicability, MLPs are extensively used for
classification, regression, and other machine learning tasks.
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3.3. Parameter Settings

This research employed k-fold cross-validation (k = 5) as the primary hyperparameter-
tuning strategy to prevent overfitting. Among various complexity parameters (cp) in the
decision tree model, cp = 0.1 outperformed the other values, achieving the highest average
performance during the cross-validation process. For the Naïve Bayes algorithm, cross-
validation was utilized to select the optimal smoothing parameter α and other parameters.
In the support vector machine model (Gaussian kernel), the parameters sigma = 0.01 and
C = 0.01 demonstrated superior generalization capabilities during the cross-validation
process. In the training of the multi-layer perceptron model, a grid search revealed that a
single hidden layer containing 10 neurons exhibited an optimal performance in the model.
Sensitivity analysis was also conducted, and although certain parameters (such as the
C value in the support vector machine) exhibited relative sensitivities, these sensitivities
did not significantly impact the model’s performance within the scope of the current study.

4. Results and Discussion
4.1. Prediction Results for Crossing Probability

For the prediction of crossing probability, the four aforementioned machine learning
models were utilized, with the accuracy, Kappa coefficient, sensitivity, and specificity
employed as the evaluation metrics for the models. The results are presented in Table 3.

Table 3. Prediction results for the machine learning models.

Technique Accuracy (%) Kappa Coefficient Sensitivity (%) Specificity (%)

Decision tree 92 0.637 81.7 82.4
Bayesian 94.3 0.788 96.4 83.2

MLP 92 0.717 98.4 77.0
SVR 92 0.813 92.4 88.8

Based on the results presented, it was observable that the decision tree model exhibited
a mediocre predictive performance, with relatively low accuracy and Kappa coefficient.
The Naive Bayes model demonstrated moderate performances on both the training and test
sets, and despite exhibiting high sensitivity on the training set, it showed lower specificity.
The MLP model performed well on both the training and test sets, achieving a higher
accuracy and Kappa coefficient. The support vector machine model outperformed the
others, offering the highest accuracy and Kappa coefficient, with balanced sensitivity
and specificity.

This study also employed techniques such as McNemar’s test for accuracy to statisti-
cally test the significance of differences between models. Using a random seed of 42, the
results of McNemar’s test for single prediction outcomes among various models are as
shown in Table 4.

Table 4. Model comparison in single experiment.

Model Comparison Statistical Data p-Value Significance Analysis

Decision tree vs. SVM 0.696 0.404 No significant difference
Decision tree vs. MLP 1.44 0.230 No significant difference

Decision tree vs. Naïve Bayes 0.121 0.728 No significant difference
SVM vs. MLP 0.167 0.683 No significant difference

SVM vs. Naïve Bayes 2.722 0.099 There is no significant difference, but it tends to be
significant, which is worth further exploration

MLP vs. Naïve Bayes 4.5 0.034
There is a significant difference, indicating that the

performance of the two models is
significantly different

It can be concluded that there is a significant difference in performance between the
MLP and Naïve Bayes models (p-value of less than 0.05). This indicates that in this specific
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scenario, the performances of these two models significantly differ. The p-values between
some models did not reach the traditional level of significance, but they tended toward
significance, for example, “SVM vs. Naive Bayes” and “KNN vs. Naive Bayes”.

To minimize randomness, multiple experiments (20 times) were conducted, each time
using a different random seed. The average of the obtained statistical data and p-values
was then calculated, yielding the following results as shown in Table 5.

Table 5. Model comparison across multiple experiments.

Model Comparison Average Statistical Data Average p-Value Significance Analysis

Decision tree vs. SVM 2.694 0.331 No significant difference
Decision tree vs. MLP 2.177 0.318 No significant difference

Decision tree vs. Naive Bayes 0.816 0.537 No significant difference
SVM vs. MLP 1.064 0.502 No significant difference

SVM vs. Naive Bayes 4.820 0.126

There is no significant difference, but it
tends to be significant, which may
indicate that there are performance

differences between models

MLP vs. Naive Bayes 3.009 0.284
There is no significant difference, but it

tends to be significant and may need
more data verification

It can be inferred that the average p-values for most model comparisons are greater
than 0.05, indicating no statistically significant difference in performance between the
models. However, there is a trend toward significance in the comparisons of “Decision Tree
vs. Random Forest”, “SVM vs. Naive Bayes”, “MLP vs. Naive Bayes”, “KNN vs. Naive
Bayes”, and “Naive Bayes vs. Random Forest”.

The ROC curves for each machine learning model are illustrated in Figure 8, where
multiple ROC curves, each corresponding to a different cross-validation fold, are plotted
in each subplot. The x-axis represents the “False Positive Rate (FPR)” while the y-axis
depicts the “True Positive Rate (TPR)”. The ROC curves were generated by translating
the model-predicted probabilities into class labels using varying thresholds. The AUC
(area under the curve) is a metric utilized to quantify a model’s performance. Each fold
provides an AUC value, which is also displayed on the label of each ROC curve. The
average ROC curve, represented in blue, is the mean of the ROC curves across all the
folds. The average AUC is the mean value of the AUCs across all the folds. The gray
shaded area denotes the standard deviation range of the average ROC curve, providing an
indication of the uncertainty in the model’s performance. The red diagonal line illustrates
the performance of the random classifier (i.e., a classifier without predictive capabilities),
where the true positive rate (TPR) was equal to the false positive rate (FPR). All models
used a consistent split ratio (1200:300) to ensure fairness in the comparison of the training
and validation set sizes. The variation in the AUC for the same model under different seeds
highlights the impacts of the initial conditions and randomness in the model training and
validation process.

The Table 6 below shows the dataset split ratios and random seed parameters for each
of the four models in different fold tests, along with their corresponding AUC values.

Table 6. AUC values of each model.

Model Fold Seed Split Ratio AUC

Decision tree

1 596 1200:300 0.881764
2 977 1200:300 0.882486
3 565 1200:300 0.880411
4 90 1200:300 0.873843
5 513 1200:300 0.865351
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Table 6. Cont.

Model Fold Seed Split Ratio AUC

SVM

1 51 1200:300 0.975063
2 379 1200:300 0.980226
3 924 1200:300 0.976258
4 558 1200:300 0.969963
5 397 1200:300 0.973170

MLP

1 206 1200:300 0.973259
2 424 1200:300 0.968795
3 261 1200:300 0.980294
4 77 1200:300 0.968291
5 879 1200:300 0.971182

Naive Bayes

1 545 1200:300 0.958243
2 541 1200:300 0.971884
3 788 1200:300 0.973530
4 995 1200:300 0.962103
5 631 1200:300 0.977370
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It can be observed that the support vector machine (SVM) and multilayer perceptron
(MLP) models consistently exhibit higher AUC values across all folds, indicating superior
performance in this specific task. However, considering the other metrics where SVM
excels, it is the most suitable model when evaluated comprehensively.
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4.2. Prediction Results for Crossing Speed

For the prediction of crossing speed, the aforementioned four machine learning models
were employed, and we utilized MSE, RMSE, R2, and MAD as the evaluation metrics. The
performance metrics for each fold are presented in Table 7.

Table 7. The performance metrics for each fold.

Model Fold Random Seed Train Ratio Test Ratio MSE RMSE MAD R2

Decision tree

1 6132 0.8 0.2 0.225215 0.474568 0.430690 0.478519
2 7321 0.8 0.2 0.199337 0.446472 0.410487 0.510846
3 5204 0.8 0.2 0.190829 0.436840 0.397907 0.531904
4 43 0.8 0.2 0.209782 0.458020 0.411726 0.512356
5 1975 0.8 0.2 0.176267 0.419842 0.392056 0.577930

Bayesian Ridge

1 114 0.8 0.2 0.212515 0.460993 0.377595 0.462405
2 3610 0.8 0.2 0.246985 0.496975 0.397476 0.410508
3 7240 0.8 0.2 0.260120 0.510020 0.413945 0.388587
4 5365 0.8 0.2 0.255769 0.505736 0.399616 0.393398
5 2144 0.8 0.2 0.280739 0.529848 0.426510 0.348115

SVR

1 7544 0.8 0.2 0.210965 0.457642 0.423549 0.516097
2 9700 0.8 0.2 0.202718 0.450198 0.439083 0.529888
3 4056 0.8 0.2 0.124318 0.473622 0.375354 0.639779
4 6671 0.8 0.2 0.200251 0.447952 0.374838 0.496490
5 7528 0.8 0.2 0.228423 0.373082 0.401708 0.483284

MLP

1 4934 0.8 0.2 0.195281 0.441907 0.395040 0.547751
2 3821 0.8 0.2 0.179646 0.423847 0.389555 0.555520
3 90 0.8 0.2 0.207948 0.456013 0.403807 0.509789
4 9156 0.8 0.2 0.189576 0.435404 0.390474 0.519733
5 9706 0.8 0.2 0.245861 0.495844 0.419475 0.437373

The average performance metrics of the four machine learning models are shown
in Table 8.

Table 8. The average performance of each model.

Model MSE RMSE MAD R2

Bayesian Ridge 0.251226 0.500715 0.403028 0.400602
Decision tree 0.200286 0.447148 0.408573 0.522311

MLP 0.203663 0.450603 0.397670 0.514033
SVM 0.193335 0.440499 0.402906 0.533108

Based on the aforementioned results, the following conclusions can be drawn: The
decision tree model exhibited an average performance on both the training and testing sets,
characterized by a higher R2, but also a higher MSE, RMSE, and MAD. The naive Bayes
model demonstrated the poorest performance on both sets, characterized by the highest
MSE, the highest RMSE, the lowest R2, and a higher MAD. The MLP neural network
model also showed general performance on both sets, associated with its higher MSE,
higher RMSE, lower R2, and higher MAD. The support vector machine model performed
the best, boasting the lowest mean squared error (MSE) and root mean squared error
(RMSE), as well as the highest coefficient of determination (R2) and a lower mean absolute
deviation (MAD).

Overall, the support vector machine model showcased superior performance on this
dataset, having the smallest mean squared error and root mean squared error, and it was
able to fit the data well, with a relatively high coefficient of determination (R2). It can be
concluded that the support vector machine algorithm emerges as the most apt model for
predicting the probability and speed of pedestrian crossings.
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4.3. Feature Analysis
4.3.1. Analysis of Pedestrian Crossing Probability

To investigate the impacts of various features on prediction outcomes, a feature
importance ranking analysis was conducted using permutation importance. Permutation
importance is a method to assess the impacts of features on the performance of prediction
models, primarily based on the idea of shuffling the values of each feature and observing
the effect of this disruption on the model performance. Unlike other feature importance
methods, Permutation importance is model-agnostic, meaning it can be used with any
model. Initially, the model is trained using the original dataset, and its performance is
evaluated. Then, for each feature, the values in that feature column are randomly shuffled,
keeping other features unchanged, and the performance is reassessed to record the change
in the model performance. The permutation importance of a feature is typically defined
as the difference between the original performance and the performance after shuffling
that feature. If shuffling a particular feature significantly decreases model performance,
this implies that the feature is very important for model predictions. To minimize the
impact of randomness, this process is repeated multiple times, and the average change in
performance is taken as the permutation importance of that feature. Upon analyzing the
permutation importance of each feature in the best-performing SVM model, the results are
as follows: the importance of feature x is 0.299, y is 0.151, and z is 0.002. Hence, it can be
concluded that x has the most significant impact on the model, followed by y, while the
impact of feature z is relatively minor.

After evaluating the feature importance for the entire model, we conducted a Shapley
additive explanations (SHAP) analysis on the SVM-based cross-probability prediction
model for a deeper analysis of individual predictions, as shown in Figure 9.
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Figure 9. SHAP analysis conducted on the crossing probability prediction model based on the SVM.

From the graphical analysis, it is evident that the ‘x’ feature exerted the most sub-
stantial impact on the predictive outcomes, where an increase in its value inclined the
model toward predicting p. The influence of the ‘y’ feature was secondary, with its value
increase also biasing the model toward a p prediction. The ‘z’ feature exhibited a relatively
minimal impact on the classification results. Consequently, the vehicle speed surface was
the paramount factor affecting a pedestrian’s decision to cross, followed by the vehicle
distance. Although the age factor held a relatively modest influence, it still imparted a
discernible impact on the predictive values.

To explore the impact patterns of various factors across different age groups on the
predictive outcomes, this study separately visualized the output results of the SVM-based
crossing probability prediction model for different age segments. Figure 10 illustrates a
three-dimensional scatter plot established based on vehicle speed, vehicle distance, and
pedestrian crossing probability. The points in the graphs represent the probabilities of
pedestrians opting to jaywalk with different vehicle distances and speeds. Distances are
categorized into 24 groups, ranging from 0–5 m to 115–120 m, while speeds are divided into
15 groups, from 0–5 km/h to 70–75 km/h. Each increment in distance or speed represents
an increase to the next interval in its respective range. The graph reveals that the probability
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of a pedestrian choosing to cross increased with the enlargement of the nearest vehicle’s
distance, and it decreased with an escalation in the nearest vehicle’s speed.
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Figure 10. Probability model of pedestrians’ crossing behaviors. (a) Crossing probability model for
the elderly; (b) crossing probability model for middle−aged adult pedestrians; (c) crossing probability
model for children.

The crossing probability model for the elderly is illustrated in Figure 8a. As the vehicle
speed increased, the likelihood of an elderly pedestrian choosing to cross decreased, and
conversely, as the vehicle distance increased, an elderly pedestrian’s crossing probability
increased. When the nearest vehicle on the roadway was more than 95 m away, the elderly
were nearly 100% likely to choose to cross, regardless of the vehicle’s speed. The mapping
distribution of the elderly pedestrians’ crossing probabilities with respect to vehicle distance
leaned left compared with those of middle-aged adult and child pedestrians, indicating
that the overall vehicle distance was greater when an elderly pedestrian chose to cross. The
crossing probability model for middle-aged adult pedestrians is depicted in Figure 8b. With
an acceleration in vehicle speed, the probability of a middle-aged individual jaywalking
diminished, while with an extension in vehicle distance, their jaywalking probability
was augmented. When the distance to the nearest vehicle on the lane exceeded 75 m,
the likelihood of a middle-aged individual choosing to cross was approximately 100%,
regardless of the vehicle’s speed. The distribution of the middle-aged adult pedestrians’
crossing probability model, in relation to vehicle distance, was generally right-aligned
compared with those of elderly and child pedestrians, implying that middle-aged adults
were willing to cross at larger vehicle distances. Adults, having a heightened perception
of vehicle speed and distance, along with abundant street-crossing experience, tended to
take more risks when crossing. The children’s crossing probability model, as shown in
Figure 8c, demonstrated a decrease in the likelihood of running a red light with an increase
in vehicle speed, whereas an augmentation in the crossing probability occurred as vehicle
distances grew. Once the vehicle in the closest lane was more than 80 m away, regardless of
its speed, a child was nearly 100% likely to opt to cross. The mapping distribution of the
crossing probability model for children concerning vehicle distance presented considerable
variability, indicating a substantial discreteness in crossing probability. Children, with their
relatively limited cognition of vehicle speed and distance and their lack of street-crossing
experience, exhibited a more scattered mapping for speed and distance.

4.3.2. Analysis of Pedestrian Crossing Speed

To iIn the regression analysis, the SVR model exhibited the most favorable performance.
Feature importance was ranked within this model, revealing that the ‘x’ feature holds the
highest importance with a score of 1.03, followed by ‘y’ with a score of 0.81, while the
importance of ‘z’ is comparatively lower at 0.16.
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After evaluating the feature importance for the entire model, we conducted a Shapley
additive explanations (SHAP) analysis on the SVM-based cross-probability prediction
model for a deeper analysis of individual predictions, as shown in Figure 11.

Sensors 2023, 23, x FOR PEER REVIEW 15 of 19 
 

 

Figure 10. Probability model of pedestrians’ crossing behaviors. (a) Crossing probability model for 

the elderly; (b) crossing probability model for middle−aged adult pedestrians; (c) crossing probabil-

ity model for children. 

The crossing probability model for the elderly is illustrated in Figure 8a. As the vehi-

cle speed increased, the likelihood of an elderly pedestrian choosing to cross decreased, 

and conversely, as the vehicle distance increased, an elderly pedestrian’s crossing proba-

bility increased. When the nearest vehicle on the roadway was more than 95 m away, the 

elderly were nearly 100% likely to choose to cross, regardless of the vehicle's speed. The 

mapping distribution of the elderly pedestrians’ crossing probabilities with respect to ve-

hicle distance leaned left compared with those of middle-aged adult and child pedestri-

ans, indicating that the overall vehicle distance was greater when an elderly pedestrian 

chose to cross. The crossing probability model for middle-aged adult pedestrians is de-

picted in Figure 8b. With an acceleration in vehicle speed, the probability of a middle-aged 

individual jaywalking diminished, while with an extension in vehicle distance, their jay-

walking probability was augmented. When the distance to the nearest vehicle on the lane 

exceeded 75 m, the likelihood of a middle-aged individual choosing to cross was approx-

imately 100%, regardless of the vehicle’s speed. The distribution of the middle-aged adult 

pedestrians’ crossing probability model, in relation to vehicle distance, was generally 

right-aligned compared with those of elderly and child pedestrians, implying that middle-

aged adults were willing to cross at larger vehicle distances. Adults, having a heightened 

perception of vehicle speed and distance, along with abundant street-crossing experience, 

tended to take more risks when crossing. The children’s crossing probability model, as 

shown in Figure 8c, demonstrated a decrease in the likelihood of running a red light with 

an increase in vehicle speed, whereas an augmentation in the crossing probability oc-

curred as vehicle distances grew. Once the vehicle in the closest lane was more than 80 m 

away, regardless of its speed, a child was nearly 100% likely to opt to cross. The mapping 

distribution of the crossing probability model for children concerning vehicle distance 

presented considerable variability, indicating a substantial discreteness in crossing prob-

ability. Children, with their relatively limited cognition of vehicle speed and distance and 

their lack of street-crossing experience, exhibited a more scattered mapping for speed and 

distance. 

4.3.2. Analysis of Pedestrian Crossing Speed 

To iIn the regression analysis, the SVR model exhibited the most favorable perfor-

mance. Feature importance was ranked within this model, revealing that the ‘x’ feature 

holds the highest importance with a score of 1.03, followed by ‘y’ with a score of 0.81, 

while the importance of ‘z’ is comparatively lower at 0.16. 

After evaluating the feature importance for the entire model, we conducted a Shapley 

additive explanations (SHAP) analysis on the SVM-based cross-probability prediction 

model for a deeper analysis of individual predictions, as shown in Figure 11. 

 

Figure 11. SHAP analysis based on the support vector regression (SVR) model. 
Figure 11. SHAP analysis based on the support vector regression (SVR) model.

In the SHAP plot, red indicates the higher feature values, while blue denotes the lower
ones. The diagram reveals that the x feature was the most crucial, y was the second most
vital, and z had a comparatively minor impact. For the x feature, higher values (shown in
red) were associated with larger positive SHAP values, while lower values (shown in blue)
correlated with more significant negative SHAP values, indicating a positive correlation
between the x values and the predictions. Higher values for y (shown in red) correlated
with negative SHAP values, signifying that the y values were inversely related to the
predictions. The SHAP values for the z feature were relatively evenly distributed, with
many colors mixed together (i.e., a blend of red and blue points), which could imply
that the relationship between this feature and the prediction outcome was non-linear or
more complex.

Upon analyzing the influence of each feature on the predictive model, this study
further visualized the output results of the crossing speed model for the different age
groups, as depicted in Figure 12. Here, the deeper red areas represent faster pedestrian
crossing speeds while the deeper blue areas indicate slower speeds.
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Figure 12. Crossing speed model of the pedestrians. (a) Crossing speeds of elderly individuals; (b) 
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(b) crossing speeds of middle-aged individuals; (c) crossing speeds of children.

Figure 10a illustrates the crossing speeds of elderly individuals. The points (15, 0),
(75, 60), and (75, 0) generated a dark blue, triangular-like region for the elderly, wherein
the probability of crossing within this interval was zero, and thus the speed was also zero.
The red area denotes scenarios where the elderly had limited time to cross, necessitating a
swifter crossing speed. The white area represents scenarios where pedestrians had ample
time to cross, and thus, they opted to traverse at normal speeds. Due to the physical
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constraints that align with age, the crossing speeds of the elderly were slower than those
of younger adults. Figure 10b presents the speed distributions of the young and middle-
aged individuals choosing to cross at different vehicle speeds and distances. The young
and middle-aged individuals formed a dark blue, triangular-like region at points (15, 0),
(75, 50), and (75, 0). Due to excessively high vehicle speeds or minimal vehicle distances,
the probability of crossing within these intervals was zero for young and middle-aged
individuals. With a more pronounced inclination toward risk taking, the overall deep
red area was more prevalent, signifying a general preference amongst young and middle-
aged individuals to engage in riskier, faster crossings. Figure 10c depicts the crossing
speed distributions for children based on varying vehicle speeds and distances. At points
(15, 0), (75, 50), and (75, 0), the children formed a dark blue, triangular-like area, wherein
the crossing probability was zero due to either overly high vehicle speeds or insufficient
vehicle distances. Previous analyses have illuminated that children due to inaccurate
judgments about vehicle speeds and distances and limited crossing experience, exhibit
dispersed crossing probabilities. Coupled with the widespread red area in the current speed
distribution depiction, it was evident that even when the vehicle distance and speed would
permit crossing at regular speeds, children were predisposed to choose faster crossing
speeds during traversal.

4.4. Application Method

Simulating realistic pedestrian crossing decisions enhances the pedestrian module’s
application in traffic simulation software. PTV−VISSIM2020, a leading microsimulation
software, facilitates the construction of complex traffic environments. In Vissim, pedestrian
simulation is crucial for assessing the pedestrian flow capacity and infrastructure service
levels, yet it overlooks pedestrian safety evaluation. The pedestrian module in Vissim,
operating in a social force model, is ‘repulsive’ to the vehicle module and assumes strict
adherence to traffic signals by both pedestrians and vehicles, limiting the evaluation of
safety in current traffic environments and the ‘realistic’ simulation of traffic entities. Future
developments in the Vissim platform could involve modifying the pedestrian module for a
more authentic simulation of pedestrian crossing behaviors, considering varied pedestrian
and vehicle characteristics.

5. Conclusions and Future Prospects

This study, conducted using real-world data collected from four signal-controlled
intersections in Dalian, China, uniquely applied a variety of machine learning methods to
evaluate, analyze, and predict jaywalking behaviors at pedestrian crosswalks. The methods
included Bayesian models, decision trees (DTs), support vector machines (SVMs), and
multilayer perceptrons (MLPs). Precise pedestrian crosswalk and vehicle motion data were
extracted using OpenCV technology, providing high-quality inputs for the machine learning
models. This study highlighted the compensatory nature of the SVM model in predicting
crossing probabilities, exhibiting outstanding performance in metrics such as accuracy,
Kappa coefficient, sensitivity, and specificity. Additionally, techniques like McNemar’s
test for accuracy were employed to statistically test the significance of differences between
models. Feature importance ranking, SHAP analysis, and feature quantity visualization
were used to analyze the SVM model from different aspects. This work provides significant
technical support for pedestrian safety in the intelligent vehicle domain, especially in terms
of predicting pedestrian behavior and devising accident prevention measures.

However, the data in this study are from major cities in China, and the results may
not fully apply to traffic environments under different national regulations or settings.
Moreover, the study only addressed conflicts between motor vehicles and pedestrians in
predicting pedestrian crossing behavior and did not investigate the specific impacts of
non-motor vehicles and public buses on such behaviors.

Future work could expand the scope of the data collection to include various types
of vehicles (like buses, bicycles, trucks, etc.) and more diverse urban environments. A
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deeper investigation into other factors influencing pedestrian crosswalk behavior, inte-
grating these as machine learning features, could further enhance model accuracy and
practicality. Our plans are to apply these findings to existing traffic simulation systems,
such as VISSIM, SUMO, and the Transportation Modeling Platform, for a more realistic sim-
ulation of pedestrian behaviors, thereby enhancing their roles in intelligent transportation
systems. Additionally, the development of a machine learning model capable of real-time
prediction of pedestrian jaywalking behavior, to be implemented in intelligent vehicles, is
also underway.
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