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Abstract: The morphological characteristics of a crack serve as crucial indicators for rating the con-
dition of the concrete bridge components. Previous studies have predominantly employed deep
learning techniques for pixel-level crack detection, while occasionally incorporating monocular de-
vices to quantify the crack dimensions. However, the practical implementation of such methods
with the assistance of robots or unmanned aerial vehicles (UAVs) is severely hindered due to their
restrictions in frontal image acquisition at known distances. To explore a non-contact inspection
approach with enhanced flexibility, efficiency and accuracy, a binocular stereo vision-based method
incorporating full convolutional network (FCN) is proposed for detecting and measuring cracks.
Firstly, our FCN leverages the benefits of the encoder–decoder architecture to enable precise crack
segmentation while simultaneously emphasizing edge details at a rate of approximately four pictures
per second in a database that is dominated by complex background cracks. The training results
demonstrate a precision of 83.85%, a recall of 85.74% and an F1 score of 84.14%. Secondly, the
utilization of binocular stereo vision improves the shooting flexibility and streamlines the image
acquisition process. Furthermore, the introduction of a central projection scheme achieves reliable
three-dimensional (3D) reconstruction of the crack morphology, effectively avoiding mismatches
between the two views and providing more comprehensive dimensional depiction for cracks. An
experimental test is also conducted on cracked concrete specimens, where the relative measure-
ment error in crack width ranges from −3.9% to 36.0%, indicating the practical feasibility of our
proposed method.

Keywords: non-contact measurement; crack width; deep learning; image processing; binocular vision

1. Introduction

Visible cracks in concrete facilitate the unimpeded infiltration of environmental chem-
icals, such as water, carbon dioxide and chloride ions, thereby promoting corrosion and
carbonation [1,2]. When coupled with external loads [3], these durability considerations
may exacerbate the occurrence of cracking and result in material discontinuities as well as
a localized reduction in structural stiffness [4–7]. To prevent the functional deterioration of
the bridge structure and to mitigate potential safety hazards, periodic crack inspections
are essential in assessing the condition of each component and developing appropriate
maintenance strategies.

Conventional inspection methods typically involve the use of handheld tools, such
as a crack gauge, to detect cracks through direct contact. However, once the inspecting
area becomes inaccessible (e.g., the bottom of a beam), heavy machinery like a bridge
inspection vehicle is required to provide an operational platform. This entire process is
characterized by a high demand for labor, extensive time consumption and substantial
costs, while the detected results are susceptible to the inspector’s subjectivity [8–10]. To
improve this circumstance, several studies have implemented non-destructive testing
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(NDT) techniques to assist manual inspection. Huston et al. [11], for instance, were able
to successfully detect concrete cracks with a width as narrow as 1 mm using a ground
penetrating radar (GPR) equipped with a good impedance matching antenna (GIMA).
Chen et al. [12] deployed a three-dimensional laser radar, also referred to as 3D LiDAR, to
quantify the length of cracking on bridge components, while Valenca et al. [13] incorporated
terrestrial laser scanning (TLS) to characterize large-scale structural cracks. In recent years,
there has been a growing interest in the utilization of advanced nanomaterials to achieve
the self-monitoring of concrete cracks [14,15]. Roopa et al. [16] conducted a study where
they incorporated carbon fiber (CF) and multiwalled carbon nanotubes (MWCNT) as
nanofillers in the cementitious matrix, aiming to develop self-sensing sensors. These sensors
exhibit piezoelectric properties that correspond to the structural response, enabling them to
autonomously detect damage. At the microscale, the nanocomposite sensors demonstrate
exceptional sensitivity to small cracks, thereby facilitating real-time monitoring of crack
formation and propagation. However, it is important to note that this method is relatively
susceptible to environmental factors such as temperature and humidity, which can impact
its performance. Additionally, while the self-monitoring methods based on nanomaterials
can provide estimates of crack width and location, it cannot provide precise information
on crack morphology. In general, the exorbitant cost and limited applicability of these
abovementioned methods impede their promotion, rendering it arduous to satisfy the
demand for crack detection in huge-volume concrete bridges.

Over the past two decades, non-contact, high-precision and low-cost machine vision-
based NDT methods have emerged as the potentially viable alternative to manual visual
inspection. In this context, camera-mounted unmanned aerial vehicles (UAVs) or robots can
function as image sensing-based inspection platforms [17–20]. The automatic crack detec-
tion in large volumes of acquired image data thus poses a significant challenge. Previously,
researchers have utilized traditional image processing techniques (IPTs) for crack extraction,
proposing hybrid approaches that integrate thresholding, morphological operators or filter
concepts [21–27], as well as approaches based on mathematical transformations [28–32]. A
considerable proportion of crack measurements in these studies were conducted on binary
images, which can be broadly categorized into three distinct groups. The first group adopts
pixel count as a quantitative metric for representing cracks. Payab et al. [33] expressed the
crack area and length values in pixel numbers of crack region and skeleton, respectively,
and took the ratio of the two as the average crack width. The second type entails a scale
factor to convert the output of the first group into actual physical dimensions. After de-
tecting thermal cracks on fire-affected concrete via wavelet transform, Andrushia et al. [34]
adopted the unit pixel size, i.e., pixel resolution, to convert the morphological characteris-
tics from pixel units to physical units. The final category achieves measurement by means
of crack reconstruction. Liu et al. [35] employed the structure from motion (SFM) algorithm
to conduct 3D reconstruction, enabling not only the acquisition of crack width but also the
integration of cracks from multiple perspectives into a unified 3D scene.

The attainment of anticipated outcomes through IPT-based methods suitable for
simple cracks (i.e., high contrast and good continuity) is a challenging task due to the
presence of diverse noises in actual inspection data, necessitating further enhancement in
their robustness [36]. Therefore, modified solutions in combination with machine learning
(ML) have been proposed. Specifically, the image features extracted by IPTs pass through
the supervised learning-based classifier to determine whether they are indicative of a
crack. The study conducted by Prasanna et al. [37] focused on the detection of noise-
robust line segment features that accurately fit cracks. They employed support vector
machines, Adaboost and random forests as classifiers, utilizing spatially tuned multi-feature
appearance vectors. The performance of various feature combinations was evaluated,
demonstrating that integrating multiple design features into a single appearance vector
yields superior classification results. Peng et al. [38] developed a cascade classifier for
determining the positivity and negativity of crack detection windows by extending diverse
Haar-like features and employed a monocular vision technique, which belongs to the
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second category of measurement methods, to calculate the actual crack width. While the
incorporation of ML into such methodologies strengthens their adaptability to real-world
scenarios, it is inevitable that the results will still be influenced by IPTs.

Deep learning (DL) is an emerging and powerful alternative to the above methods,
with the advantage of not depending on expert-dominated heuristic thresholds or hand-
designed feature descriptors, thereby greatly enhancing the accuracy and robustness of
feature extraction [39]. During recent years, a multitude of researchers have extensively
investigated the potential of DL-based models, particularly convolutional neural networks
(CNNs), for concrete crack detection. The aforementioned studies demonstrated successful
applications of CNNs in image classification [40] and object identification tasks, specifi-
cally pertaining to crack detection at both the image level/patch level [41–44] and object
level [45–47]. However, neither the grid-like detected results nor the bounding boxes with
class labels provide a precise description of the crack topology. In contrast, semantic seg-
mentation categorizes each pixel into a possible class (e.g., crack or background), offering
the highest level of detail in features. To detect cracks at the pixel level, Li et al. [48] trained
a CNN-based local pattern predictor for coarse analysis on crack pixels. Kim et al. [49]
adopted Mask R-CNN for instance segmentation of concrete cracks but not complete seman-
tic segmentation, hence having limited precision. Zhang et al. [50] developed CrackNet-R,
an effective semantic segmentation network for detecting cracks in asphalt pavement but
also prone to technical isolation in practice.

With the widespread adoption of the encoder–decoder architecture in semantic seg-
mentation, various CNNs have been proposed for pixel-level crack detection based on
different variations of this structure, including fully convolutional network (FCN) [51,52],
U-Net [53–56], SegNet [57–59], DeepLab series [60,61] and ResNets [62,63]. These architec-
tures consist of two components, namely the encoder module responsible for extracting
multi-scale features and the decoder module dedicated to restoring the feature informa-
tion. On the one hand, the decoders upscale the final output of the encoder network to
match the original input size, thereby facilitating the orientation of crack pixels. On the
other hand, the encoders supply the local information during the decoding process to
minimize loss of details from the input. Although the mentioned classical neural networks
demonstrate proficiency in executing fundamental segmentation operations, they remain
confronted with difficulties in achieving precise object edge segmentation and addressing
class imbalance. Consequently, researchers have started integrating various cutting-edge
methods to optimize the performance of segmentation models. In light of the requirement
for both semantic understanding and fine-grained detail in segmentation tasks, a suite of
attention-based methodologies [64,65] have been developed. These methods are designed
to assimilate multi-scale and global contextual information, thereby enhancing the accuracy
of defect identification. Chen et al. [66] have demonstrated impressive recognition accuracy
in identifying different types of cracks by incorporating the Convolutional Block Attention
Module (CBAM) into MobileNetV3 as the backbone network. Du et al. [67] have proposed
an Attention Feature Pyramid Network that enhances the precise segmentation of road
cracks within the YOLOv4 model. Similarly, Yang et al. [68] introduced a multi-scale,
tri-attention network, termed MST-NET. Other advanced computational modules, such as
separable convolution [69] and deformable convolution [70], have been introduced to fur-
ther enhance model performance. Recognizing that the training of semantic segmentation
models heavily relies on accurately annotated data, numerous researchers have also begun
exploring approaches to enhance the generalization and adaptability of segmentation meth-
ods from the perspective of dataset optimization and learning strategies. For instance, Que
et al. [71] have proposed a crack dataset expansion method based on generative adversarial
networks (GANs), resulting in higher recall rates and F1 scores for the same model. Nguyen
et al. [72] have introduced the Focal Tversky loss function to tackle class imbalance issues
in crack segmentation, shedding light on the role of loss functions during model training.
Furthermore, Weng et al. [73] have devised an unsupervised adaptive framework for crack
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detection, effectively mitigating domain shift problems among various civil infrastructure
crack images.

On this basis, the first category of crack measurements was completed by Yang et al. [51],
Ji et al. [60] and Kang et al. [74]. Regrettably, these results are inadequately cited for crack
evaluation purposes. To make sense of the measure values, Li et al. [36] and Chen et al. [65]
employed a monocular vision technique to accurately quantify the crack indicators such as
area, max width and length. However, these methods rely on calibrated pixel resolution and
the similar triangle relationship for unit conversion, which necessitates frontal photography
of the target crack at known distances with a monocular device. As a result, restricted
shooting postures increase the difficulty of remotely manipulating inspection platforms,
leading to complications in image acquisition and unstable measurements.

The third category of binocular stereo vision-based measurement emerges as a promis-
ing solution to tackle the aforementioned challenges. In contrast to monocular vision,
which calculates physical dimensions mapped on pixels, binocular stereo vision recon-
structs the 3D coordinates of a crack in a datum coordinate system based on internal
imaging geometries and the external relative posture of two cameras, as well as matching
relations between two captured images. This enables a more comprehensive and reliable
quantification of morphological characteristics. Furthermore, binocular vision is not con-
strained by a fixed photogrammetric geometry and offers greater flexibility in capturing
cracks within its depth of field. Previously, Guan et al. [56] designed a vehicle-mounted
binocular photography system to generate 3D pavement models and precisely estimated
the volume of pavement potholes by integrating pixel-level predictions of a U-Net but
failed to further quantify the segmented cracks. Yuan et al. [75] and Kim et al. [76] up-
graded the automation of non-contact inspection through a robot and a UAV equipped
with binocular devices, respectively, despite their crack predictions not being derived from
semantic segmentation networks. Recently, Chen et al. [77] optimized DeeplabV3+ to
deliver a detailed crack morphology for measurement based on binocular stereo vision,
resulting in satisfactory outcomes.

In this paper, a novel non-contact crack detection and measurement method in combi-
nation with an encoder–decoder FCN and binocular stereo vision is proposed for efficient
and accurate evaluation of concrete cracks in bridge structures. The proposed method not
only enhances the flexibility of crack data acquisition but also enables rapid and precise
extraction of crack morphology, which facilitates 3D reconstruction in the form of spatial
discrete points, thereby obtaining a more comprehensive set of dimensional information
regarding cracks. The limitations on shooting attitude imposed by the monocular measure-
ment method are thus effectively addressed, along with the issues related to accuracy and
robustness in traditional crack detection methods. Moreover, in contrast to conventional
binocular vision-based 3D reconstruction methods that rely heavily on feature matching
prior to point cloud computation, the proposed method employs projective reconstruction,
which significantly alleviates computational expenses and eliminates potential mismatches
between the two views.

2. Methodology
2.1. Overview

The proposed method consists of three parts, as depicted in Figure 1, which illustrates
the overall workflow schematically. (I) Crack data acquisition: a tailored binocular system
is constructed for capturing visible cracks from multiple angles at flexible distances, ren-
dering it ideal for UAV-aided crack inspection. The captured image pairs subsequently
serve as primary data to detect cracks. (II) Crack pixel-level detection: to achieve precise
segmentation of cracks in the main images from primary data, a semantic segmentation
network (i.e., the encoder–decoder FCN) is constructed with a VGG19-based encoder net-
work and a decoder network featuring the deconvolution layer as its core. The resulting
binary image is further exploited to extract pixels that characterize the morphology of the
crack. (III) Crack quantitative assessment: at this stage, a binocular vision-based projection
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reconstruction model is employed for spatial localization of the cracked concrete surface
and subsequent 3D crack reconstruction by projecting pixels extracted in the previous
stage onto it. Finally, the morphological characteristics of cracks are quantitatively calcu-
lated based on the discrete reconstructed points. A detailed description of each part is
presented below.
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different cracks.).

2.2. Crack Data Acquisition

To facilitate the UAV assistance, a pair of identical industrial charge-coupled device
(CCD) cameras from Microvision, a supplier specialized in visual products, are rigidly
assembled for a lightweight and compact binocular photography system. The specifications
for each component are comprehensively presented in Table 1, where the outgoing focal
length f is 16 mm, with a pixel size ∆u·∆v of 3.75 × 3.75 µm2. According to the pinhole
model depicted in Figure 2a, the resolution of a single camera at an operating distance D of
200 ± 50 mm is approximately 0.047 ± 0.012 mm/pixel, which is adequate for capturing
crack details. Moreover, to take into account the public field of view (Figure 2b), the relative
pose of two cameras is adjusted with a narrow baseline (denoted as B and set to 5 cm)
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and the intersecting optical axes (realized by a left deviation of the right camera at angle
θ of roughly 20◦), as shown in Figure 2c. For the subsequent description, the left camera
is designated as the main camera along the shooting direction, while the right camera is
designated as the positioning camera. These two cameras capture images of target cracks
synchronously to form stereo image pairs, which are then transmitted in real time to the
inspector’s laptop.

Table 1. Detailed specifications of the binocular system.

Component Model Specification

CCD grayscale camera@2 MV-EM120M

Sensor resolution: 1280 × 960 pixels
Pixel size: 3.75 × 3.75 (µm)
Size: 29 × 35 × 48.9 (mm)
Weight: 50 g

Industrial fixed-focus lens@2 BT-118C1620MP5
Focal length: 16 mm
Size: φ27.2 × 26.4 (mm)
Weight: 75 g
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2.3. Crack Pixel-Level Detection

The accurate and efficient characterization of crack morphology is a prerequisite
for real-time image measurement of concrete cracks. To accomplish this, a specialized
encoder–decoder FCN is developed for detecting cracks at the pixel level. Subsequently, an
integrated computer vision (CV) program is written to enable rapid extraction of the edges
and skeletons that characterize the crack morphology from the FCN predictions.

2.3.1. FCN for Crack Segmentation

The state-of-the-art CNNs, such as VGG16 [52], ResNet [62] and DenseNet [36], which
serve as the encoder of FCNs for robust feature extraction in crack images, directly inspire
the construction of the FCN framework in this study. Among these classical CNN models,
the VGG series, including VGG16 and depth-increased VGG19, are extensively applied
for large-scale image detection tasks due to their good transferability. Considering that
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employing transfer learning [78,79] based on pre-trained parameters of VGG can not only
significantly reduce the overall training time of the FCN model but also effectively enhance
its performance in scenarios with limited training data, the VGG19-based encoder network
is adopted to extract essential features for semantic segmentation. As shown in Figure 3a,
the encoder network is topologically identical to the first 16 layers of VGG19, consisting
of five convolutional blocks (also referred to as encoders in this paper) that include all
convolutional layers, nonlinear activation layers utilizing the ReLU function and pooling
layers. Since the encoder module does not involve neuron classification, the final softmax
layer of VGG19 is excluded, while the fully connected layers are replaced by convolutional
layers with two dropout layers added in between to prevent overfitting.

Sensors 2023, 22, x FOR PEER REVIEW 8 of 26 
 

 

 

Figure 3. (a) Encoder network and (b) decoder network of FCN. 

The decoder network employs deconvolutional upsampling to generate a dense out-

put and rescales the data to the original input size. To minimize the loss of details during 

the decoding process, the skip connection structure proposed by Bang et al. [62] is adopted 

to facilitate the flow of feature maps from the upstream encoders to their corresponding 

downstream counterparts, which enables effective integration of multi-scale and multi-

level local information. Specifically, each decoder selectively fuses the local feature map 

with the upstream feature map at the expense of increased memory consumption.  

Referring to the decoder network depicted in Figure 3b, the max pooling outputs 

labeled as ①, ②, ③ and ④ are initially individually convolved with a 1 × 1 kernel for 

densification purposes. The subsequent outputs are considered to hold local information 

originating from the upstream network (i.e., the encoder network) and are then arithmet-

ically added (represented by “⊕” in Figure 3b) to the upsampling results of identical res-

olution obtained through deconvolution with a 4 × 4 kernel with a two-pixel stride. The 

entire decoder network integrates the outputs from the final layer and the first four max 

pooling layers of the encoder network, wherein each fused feature map undergoes a dou-

bling in resolution through upsampling with a stride of 2. After five upsamplings, the 

output of conv_layer 19 is expanded to match the dimensions of the original input and 

then proceeds through the softmax layer, where the softmax function value determines 

the probability of a single pixel belonging to either the “crack” or “background” 

Figure 3. (a) Encoder network and (b) decoder network of FCN.

Inheriting the strengths of VGG19, each encoder conducts convolution operations
through the stacking of 3 × 3 filters (i.e., convolution kernels) with a fixed stride length of
1 pixel, which ensures the equivalent receptive field as larger-size filters, while extracting
higher-level features with fewer parameters of the convolution kernel. Moreover, ReLU ac-
tivation is applied following each convolution to introduce nonlinearity, thereby enhancing
the nonlinear fitting capability of the encoder network. To eliminate redundant informa-
tion and to accelerate computational speed, the max pooling operation is subsequently
performed on a 2 × 2 pixel window with a stride of 2, which results in downsampling of
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the output by a factor of 2. It is noteworthy that the outputs of the first four max pooling
layers, numbered 4⃝, 3⃝, 2⃝ and 1⃝, will also be recycled by the decoder network. Due to
the three newly substituted convolution layers, namely Conv_layer 17,18 and 19, the final
output is transformed from the initial class probabilities into a low-resolution feature map
that characterizes the crack, which is subsequently fed into the decoder module.

The decoder network employs deconvolutional upsampling to generate a dense output
and rescales the data to the original input size. To minimize the loss of details during the
decoding process, the skip connection structure proposed by Bang et al. [62] is adopted
to facilitate the flow of feature maps from the upstream encoders to their corresponding
downstream counterparts, which enables effective integration of multi-scale and multi-level
local information. Specifically, each decoder selectively fuses the local feature map with the
upstream feature map at the expense of increased memory consumption.

Referring to the decoder network depicted in Figure 3b, the max pooling outputs
labeled as 1⃝, 2⃝, 3⃝ and 4⃝ are initially individually convolved with a 1 × 1 kernel for
densification purposes. The subsequent outputs are considered to hold local information
originating from the upstream network (i.e., the encoder network) and are then arith-
metically added (represented by “⊕” in Figure 3b) to the upsampling results of identical
resolution obtained through deconvolution with a 4 × 4 kernel with a two-pixel stride.
The entire decoder network integrates the outputs from the final layer and the first four
max pooling layers of the encoder network, wherein each fused feature map undergoes
a doubling in resolution through upsampling with a stride of 2. After five upsamplings,
the output of conv_layer 19 is expanded to match the dimensions of the original input and
then proceeds through the softmax layer, where the softmax function value determines the
probability of a single pixel belonging to either the “crack” or “background” categories.
Ultimately, a binary image is exported as the final prediction, with “crack” pixels assigned
a value of 1, while the “background” pixels assigned a value of 0.

2.3.2. Extraction of Crack Edges and Skeletons

The CV procedure for crack edge and skeleton extraction consists of three stages:
region pre-processing, edge extraction and skeleton optimization (Figure 4a). Firstly, the
FCN prediction shown in Figure 4b is subjected to global segmentation using a fixed
threshold of 180 as an empirical value. This procedure successfully eliminates isolated
data points outside the cracks. In addition, a morphological optimization technique is
employed, which entails the sequential application of dilation and erosion. After this step,
marginal burrs and internal holes caused by misjudgment of the proposed FCN can be
effectively eliminated. Figure 4c presents the optimized crack region. Secondly, the contour
extraction technique in OpenCV is subsequently applied to acquire the single-pixel-wide
crack edges. Given that the image boundary truncates the crack and forms a closed contour
along with its edges, it becomes imperative to exclude the boundary pixels within this
contour. The specific solution is to identify the difference set between the crack region
and the pixel border of the image. Next, the connected component is calculated, and the
remaining regional contours are divided into the two crack edges (Figure 4d).

Finally, the skeleton of the crack region is extracted and optimized using the fast
parallel thinning algorithm proposed by Zhang et al. [80]. During this process, the super-
fluous branches of the original crack skeleton are pruned through deburring treatment.
This involves identifying branch nodes and calculating the number of path pixels, which
removes branches that fall below a preset threshold and thus retains only the longest path,
i.e., the backbone portion of the skeleton. To further mitigate the issue of tail ends of the
crack skeleton converging towards the cusp in the crack region, resulting in incongruity
with the actual crack topology, as indicated by the red end in Figure 4e, an end trimming
treatment is implemented, in which any skeleton part that falls within 20 pixels (based on
experience) from the image boundary will be cropped. The final outputs, as presented in
Figure 4f, are stored as pixel coordinates.



Sensors 2024, 24, 3 9 of 23

Sensors 2023, 22, x FOR PEER REVIEW 9 of 26 
 

 

categories. Ultimately, a binary image is exported as the final prediction, with “crack” 

pixels assigned a value of 1, while the “background” pixels assigned a value of 0. 

2.3.2. Extraction of Crack Edges and Skeletons 

The CV procedure for crack edge and skeleton extraction consists of three stages: 

region pre-processing, edge extraction and skeleton optimization (Figure 4a). Firstly, the 

FCN prediction shown in Figure 4b is subjected to global segmentation using a fixed 

threshold of 180 as an empirical value. This procedure successfully eliminates isolated 

data points outside the cracks. In addition, a morphological optimization technique is em-

ployed, which entails the sequential application of dilation and erosion. After this step, 

marginal burrs and internal holes caused by misjudgment of the proposed FCN can be 

effectively eliminated. Figure 4c presents the optimized crack region. Secondly, the con-

tour extraction technique in OpenCV is subsequently applied to acquire the single-pixel-

wide crack edges. Given that the image boundary truncates the crack and forms a closed 

contour along with its edges, it becomes imperative to exclude the boundary pixels within 

this contour. The specific solution is to identify the difference set between the crack region 

and the pixel border of the image. Next, the connected component is calculated, and the 

remaining regional contours are divided into the two crack edges (Figure 4d). 

 

Figure 4. Procedures for crack edge and skeleton extraction: (a) flow chart; (b) FCN prediction; (c) 

refined crack region; (d) crack edges; (e) original crack skeleton (The red lines represent the pruned 

excess crack branches and the yellow lines represent the crack skeletons.); and (f) outputs of crack 

morphology. 

Finally, the skeleton of the crack region is extracted and optimized using the fast par-

allel thinning algorithm proposed by Zhang et al. [80]. During this process, the superflu-

ous branches of the original crack skeleton are pruned through deburring treatment. This 

involves identifying branch nodes and calculating the number of path pixels, which re-

moves branches that fall below a preset threshold and thus retains only the longest path, 

Figure 4. Procedures for crack edge and skeleton extraction: (a) flow chart; (b) FCN prediction;
(c) refined crack region; (d) crack edges; (e) original crack skeleton (The red lines represent the
pruned excess crack branches and the yellow lines represent the crack skeletons.); and (f) outputs of
crack morphology.

2.4. Crack Quantitative Assessment

The proposed projection reconstruction model consists of a binocular vision model
for locating the spatial crack plane and a central projection model for reconstructing the
crack morphology. Based on the discrete reconstruction points, the dimensions of concrete
cracking in bridge structures can be quantitatively assessed.

2.4.1. Binocular Vision for Crack Location

Our crack location approach is illustrated in Figure 5. First, the points of interest
in a stereo image pair (Figure 5a) are extracted and matched using the correspondence
search techniques, as indicated by the red dots in Figure 5b. Each pair of matching points is
considered the projection of a specific point on the cracked structure onto both imaging
planes, which is connected by a green line in Figure 5c. The next step involves randomly
selecting three non-colinear feature points (p1, p2 and p3) in one image, along with their
corresponding matching points (p1’, p2’ and p3’, respectively) in another image, to form
a three-point pair for the purpose of planar location. Herein, to avoid the selected points
falling into the crack region, the contour is dilated by five pixels as the boundary for
pre-filtering the internal feature points. Consequently, only feature points located on
the background of the image remain. Finally, the binocular vision model depicted in
Figure 5d is utilized to calculate the non-collinear spatial location points (P1, P2 and P3)
corresponding to the aforementioned three-point pair for achieving the precise localization
of the flat concrete surface.
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Figure 5. Crack plane location: (a) stereo image pair; (b) feature point extraction; (c) feature point
matching with randomly selected three-point pair; and (d) binocular vision model to calculate the
spatial location points.

Previously, the scale-invariant feature transform (SIFT) algorithm proposed by Lowe [81]
was successfully applied to extract features from crack images [56,82], showcasing its ro-
bustness to rotation and translation, as well as its capability to handle variations in lighting
conditions and viewpoints. Our approach employs the SIFT algorithm for scale space
filtering of stereo image pairs, facilitating the detection of feature points across multiple
scales. For the kth stereo image pair I(k) =

{
I(k)1 , I(k)2

}
, with I(k)1 and I(k)2 representing the k

main image and the positioning image, respectively, the extracted feature point sets are
denoted as F(k)

1 =
{
(p(k)1,i , f(k)1,i )|i = 1 . . . P

}
and F(k)

2 =
{
(p(k)2,j , f(k)2,j )|j = 1 . . . Q

}
, where f(k)1,i

and f(k)2,j are the local feature descriptors corresponding to feature point positions p(k)
1,i and

p(k)
2,j , respectively. On this basis, the first two nearest neighbors of (p(k)

1 , f(k)1 ) ∈ F(k)
1 are

searched with Euclidean distance in the query set F(k)
2 by applying the nearest neighbor

algorithm. The optimal matches are then obtained through a threshold of 0.5 to the ratio
between the Euclidean distances of the nearest and second-nearest neighbors. The matching
result is a set of feature point pairs, i.e.,

{
(p(k)1 , p(k)2 )

∣∣∣p(k)1 ∈ I(k)1 , p(k)2 ∈ I(k)2

}
, from which

three pairs of location points are randomly selected.
The binocular photography system is simplified into a binocular vision model, as

illustrated in Figure 5d. Here, Ol
C − Xl

CYl
CZl

C represents the main camera coordinate
system (m-CCS), Ol

1 − xlyl and Ol
0 − ulvl denote the physical and pixel coordinate sys-

tems on the main image, respectively; the positioning camera coordinate system (p-CCS),
i.e., Or

C − Xr
CYr

CZr
C, is situated on the right side with the two corresponding image co-

ordinate systems Ol
1 − xlyl and Ol

0 − ulvl ; and p1(ul
p, vl

p) and p1′(ur
p, vr

p) represent the
projected pixels of a specific point P1(XP, YP, ZP) on the crack plane in world coordinate
system OW − XWYW ZW (WCS), as captured by the two imaging planes, respectively.

Taking point P1 as an example for calculation, assuming WCS coincides with m-CCS,
the projection relationship between P1(XP, YP, ZP) and p1(ul

p, vl
p) is given by the following:
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where A1 is the intrinsic matrix of the main camera, with f l the focal length, (ul
0, vl

0) the
pixel coordinates of the principal point Ol

1, as well as kl and ll the physical length of
the pixel unit along the ul-axis and vl-axis directions, respectively; γ1 is the parameter
characterizing the skew of the two image axes, which is typically zero; I3 denotes the
3 × 3 unit matrix, while O3×1 represents the 3 × 1 zero vector.

The projection formula from P1(XP, YP, ZP) to p1′(ur
p, vr

p) is simultaneously estab-
lished by utilizing the relative pose of the two cameras, as demonstrated below:

ZP1

ur
P1

vr
P1
1

 = A2
[
R t

]
XP1
YP1
ZP1

1

 =
–
A2

 f rR11 f rR12 f rR13 f rtx
f rR21 f rR22 f rR23 f rty
R31 R32 R33 tz




XP1
YP1
ZP1

1
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where A2 represents the positioning camera intrinsic matrix, which is structurally and

parametrically equivalent to A1;
–
A2 = A2 × diag(1/ f r, 1/ f r, 1), with diag symbolizing the

diagonal matrix; and R = [Rij]3×3 and t = [tx, ty, tz]
T are the rotation matrix and translation

vector, respectively, of the main camera relative to the positioning camera in the binocular
system, serving as its external parameters.

From Equations (1) and (2), the spatial coordinates of the point P1 can be obtained:

XP = ZP
xl

p

f l (3)

YP = ZP
yl

p

f l (4)

ZP =
f l( f rtx − xr

ptz)

xr
p(xl

pR31 + yl
pR32 + f l R33)− f r(xl

pR11 + yl
pR12 + f l R13)

=
f l( f rty − yr
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yr
p(xl

pR31 + yl
pR32 + f l R33)− f r(xl

pR21 + yl
pR22 + f l R23)

(5)

where (xl
p, yl

p) and (xr
p, yr

p) are the physical coordinates of the projected pixels p1(ul
p, vl

p)
and p1′(ur

p, vr
p), respectively, which can be expressed as follows:
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 (6)

According to Equations (5) and (6), the mapping relationship between a pair of ho-
mologous pixels to its spatial source point is established. With the internal and external
parameters obtained from calibration, the location of the cracking plane can be determined
in m-CCS.

2.4.2. Central Projection for Crack Reconstruction

The binocular vision model enables spatial point reconstruction, contingent upon
feature matching to establish the correspondence between the two views. To alleviate
computational expenses and reconstruction errors resulting from mismatches, a projection
reconstruction scheme is proposed.

The central projection model is constructed by taking the origin of the main camera
model, namely the optical center Ol

C, as the projection center; the determined spatial
cracking plane as the easel plane; and the pixels of crack edges and skeleton extracted from
the main image as the points to be projected, as shown in Figure 6a. The model achieves 3D
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reconstruction by mapping pixels from the main imaging plane onto the cracked concrete
surface. Prior to this, the reference systems, or the main camera coordinates of target pixels
need to be standardized. According to the properties of pinhole camera model, the location
of the main imaging plane depicted in Figure 6b under the main camera coordinate system
is as follows:

Zl
C = f l(−W

2
− ∆u ≤ Xl

C ≤ W
2

− ∆u,−H
2
− ∆v ≤ Yl

C ≤ H
2
− ∆v) (7)

where W and H represent the width and height of the main image, respectively, and
(△u,△v) denotes the deviation of the calibrated principal point Ol

1(u0, v0) from the image
center. Therefore, the Zl

C-coordinates of all pixels to be projected are numerically equal
to the focal length f l . Since Ol

1 − xlyl can be regarded as the projection of the Xl
C- and

Yl
C-axes on the main imaging plane, the corresponding camera coordinates of pi(ui, vi)

also represent the physical coordinates of (xi, yi), which can be interconverted by the scale
factors kl and ll in the directions of the ul- and vl-axes, respectively, as well as the origin
Ol

1(u0, v0), as indicated by Equation (6). The transformation of the target pixel onto the
main camera coordinate system is thus given by the following:

f : (ui, vi) → (xi, yi, zi) = ((ui − u0)kl , (vi − v0)ll , f l) (8)
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transformation on the main image; and (c) projection point calculation.

After establishing a unified reference system with Equation (8), the projection points
on the easel plane are calculated. As shown in Figure 6c,

→
n = (nx, ny, nz) is the normal

vector of the spatial cracking plane, determined by vectors
→

P1, P2 and
→

P1, P3; the crack

pixel pi(xi, yi, zi) serves as a particular point on the projection line li, while
→
l i = (xi, yi, zi)

is the direction vector of li, pointing from the projection center Ol
C to pi; and Pi(Xi, Yi, Zi) is

the desired projection point. The equation for the intersection point is as follows:
→

P1, Pi⊥
→
n

→
pi, Pi //

→
l
⇒

(Xi − XP1, Yi − YP1, Zi − ZP1) · (nx, ny, nz) = 0
Xi − xi

xi
=

Yi − yi
yi

=
Zi − zi

zi
= λ

(9)
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where λ is the scale factor. Let F = xinx + yiny + zinz, F ̸= 0; the coordinates of the
projection points obtained from the above equation are as follows:

Xi = (xi(XP1nx + ny(YP1 − yi) + nz(ZP1 − zi)) + xi(yiny + zinz))/F (10)

Yi = (yi(nx(XP1 − xi) + YP1ny + nz(ZP1 − zi)) + yi(xinx + zinz))/F (11)

Zi = (zi(nx(XP1 − xi) + ny(YP1 − yi) + ZP1nz) + zi(xinx + yiny))/F (12)

The 3D reconstruction of crack edges and skeletons is accomplished through the
utilization of Equations (10)–(12). The morphological length of the crack is determined by
calculating the cumulative Euclidean distance between adjacent skeleton points, while the
width at each skeleton point is obtained by computing the Euclidean distance between the
pair of two edge points closest to that point. Each skeleton point corresponds to a specific
crack width, from which the maximum crack width is obtained.

3. Training FCN
3.1. Crack Segmentation Database

To train the FCN models, 50 photos of cracked concrete taken using a smartphone
with a resolution of 4032 × 3024 × 3 and saved in JPG format are manually labeled at the
pixel level using the MATLABR tool Image Labeler. Figure 7 depicts this labeling process,
in which logical variables 0 and 1 are, respectively, assigned to background and crack pixels
through pixel labels, with annotations saved in PNG-8 format. Subsequently, 110 images
are cropped from these photos, each featuring either a crack or an intact background with
448 × 448 pixel resolution. These images, along with 334 web images of the same resolution,
undergo data augmentation techniques including horizontal and vertical flips, resulting in
a total of 1332 images. According to the fivefold cross-validation principle, the generated
images are randomly divided into training, validation and test sets with 998, 110 and
224 images, respectively, in each set. Notably, a network trained on small-sized images can
scan any image larger than that designed size [36]. Therefore, the randomly selected images
and their annotations are resized to 224 × 224 pixels prior to being fed into the models.
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3.2. Implementation Parameters

The learning rate plays a pivotal role in balancing convergence speed and stability in
training a CNN. In order to choose an appropriate initial value for this key hyperparameter,
three sets of models are meticulously trained, each with distinct initial learning rates:
0.001, 0.0001 and 0.00001, respectively. Throughout these training sessions, exponential
stepwise decay, a common technique for annealing learning rates, is employed post epochs
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to reduce oscillations in the loss function around the global optimum. The decay function
is as follows:

ηt = η0 × rd
⌊ t

tmax ⌋ (13)

where the initial learning rate is denoted by η0, rd is the decay rate with t as the current
count of iterations and tmax as the preset iterations for decay. ⌊·⌋ represents the floor
operation, returning the largest integer not greater than the input value.

To assess the discrepancy between the prediction and the ground truth, cross entropy
is utilized as the loss function on pixels. With exponential decay rates set to β1 = 0.9 and
β2 = 0.999, the Adam optimizer is then run for training loss optimization by iteratively
updating the model parameters. The FCN models are trained with 20 epochs, and the batch
size is set to 2 (taking into account the limitations of GPU memory). In addition, a dropout
rate of 0.5 is implemented to activate only half of the hidden nodes or feature detectors
during each iteration, thereby weakening their interactions and effectively preventing
overfitting [83,84].

3.3. Model Initialization and Evaluation Metrics

To expedite and optimize the learning efficiency, a model-based transfer learning
strategy [85] is adopted instead of training from scratch. Following this strategy, the
weights and biases of the encoder network are initialized by pre-trained VGG19. Moreover,
the weights of all the deconvolutional layers in the decoding module are initialized by the
truncated normal distribution with a mean of 0 and standard deviation of 0.01, and their
biases are initialized as constant zero vectors.

It is widely acknowledged that pixel-level crack detection is essential to classify pixels
of the input image as either a crack (positive) or the background (negative). Therefore, four
cases may occur, which are outlined below:

• True Positive (crack pixels classified as crack pixels);
• False Negative (crack pixels classified as background pixels);
• False Positive (background pixels classified as crack pixels);
• True Negative (background pixels classified as background pixels).

To comprehensively evaluate the crack segmentation, three key statistical metrics are
introduced: precision, recall and F1 score. These metrics are defined as follows:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 − score =
2 × Precision × Recall

Precision + Recall
(16)

where TP, FP and FN denote the number of pixels with True Positives, False Positives and
False Negatives in the predicted outcomes, respectively.

3.4. Training Results and Discussion

The proposed encoder–decoder FCN is implemented on Windows 10 using Python 3.5
for programming and TensorFlow 1.4 and NumPy 1.16 for building the virtual environment.
All numerical experiments are performed on a desktop computer (GPU: NVIDIA GeForce
GTX 1060 GPU Ti, RAM: 8 GB, CPU: Intel® CoreTM i5-8400 CPU@2.8 GHz). With the
aforementioned training method and experimental configuration, the recorded training
time for each model is approximately 9 h on average after 9980 iterations, and it takes about
250 ms for a trained model to process a 448 × 448-pixel image.

The training and validation losses at each learning rate are illustrated in Figure 8a. It
can be intuitively seen that the loss value corresponding to Figure 8(a-2) exhibits the fastest
convergence and ultimately stabilizes within 0.014, resulting in best training effect. The
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loss curves associated with the other two learning rates, i.e., 1 × 10−3 and 1 × 10−5, also
demonstrate satisfactory convergence results, remaining stable at around 0.021 and 0.018,
respectively, which are sufficient for attaining global optimization.
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The average precision, recall and F1 score under epochs during training and validation
processes at different learning rates are displayed in Figure 8b. These indicator curves climb
rapidly in the first two epochs (nearly 1000 iterations), which, along with the observed
plummet in training loss, demonstrates the efficacy of the transfer learning. Then, the
convergence occurs after 16 epochs. Throughout the training process, the green curves
with the square symbols consistently remain at the uppermost part of Figure 8(b-1)–(b-3),
intuitively reflecting the exceptional performance of the FCN with an initial learning rate
of 1 × 10−4. The highest values (not all from the same epoch) are further selected from
the training and validation averages, and these results are summarized in Table 2. As
can be seen from the table, 1 × 10−4 is the optimal learning rate, and its corresponding
FCN model not surprisingly achieves the highest precision, recall and F1 score at 83.85%,
85.74% and 84.14%, respectively, highlighted in bold. Therefore, this model is used for
crack segmentation.

Table 2. Model performance at different learning rates.

Initial Learning Rate (×10−4) Highest Precision (%) Highest Recall (%) Highest F1 Score (%)

0.1 80.48 80.67 80.47
1 83.10 85.74 84.14
10 79.53 79.84 78.43

Note: The values highlighted in bold represent the best training results of our FCN.
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To test the effectiveness of the proposed FCN in detecting cracks of various morpho-
logical types and background complexities, the crack images in the test set are pre-divided
into four categories. (I) Hairline crack: the cracks are narrowly developed and susceptible
to changes in illumination, often resulting in fuzzy or discontinuous patterns. (II) Block
crack: the crack region exhibits a blocky pattern and occupies a significantly substantial
portion of the image. (III) Intersecting crack: the interconnected cracks show an intricate
morphology. (IV) Complex background crack: the cracks in backgrounds with complex tex-
tures, speckling, shadows caused by uneven lighting, or clutter are challenging to discern
through traditional methods.

Figure 9 depicts the FCN predictions of the above four crack types. Figure 9a–c
demonstrates the segmentation results for different types of crack morphologies. The
test results indicate that the proposed model exhibits good performance in accurately
segmenting hairline cracks, block cracks and intersecting cracks. The segmentation of
cracks under diverse and challenging conditions, including complex backgrounds and
varied lighting scenarios, is also tested and compared (Figure 9e–i). In addition, Figure 9j,k
display the prediction results for intact surfaces. The results demonstrate the robustness
of the proposed model in handling various noise interference. Therein, the predictions
of Figure 9a,c,d,g–j exhibit a significant level of agreement with ground truth. However,
there are minor inaccuracies in Figure 9b (the left sample) and Figure 9f, which might be
attributed to the insufficient variation in gradient of pixel values, leading to oversight of
the microcracks located at the bottom. In Figure 9k, a few pixels of the backgrounds are
falsely classified as cracks, possibly due to the combined interference of overexposure and
overlapping black markings.
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Figure 9. FCN predictions: (a) hairline crack; (b) block crack; (c) intersecting crack; (d) complex
background crack (mottling); (e) complex background crack (interference); (f) complex background
crack (clutter); (g) complex background crack (void); (h) different light condition (overexposure);
(i) different light condition (uneven illumination); (j) intact surface (correct sample); and (k) intact
surface (some pixels are False Positives).
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Although the overall accuracy of FCN segmentation is somewhat compromised due
to these omissions in detail, the extracted crack edges and skeletons still maintain an
acceptable level of validity (Figure 10).
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Figure 10. Extracted crack morphologies (The green lines represent the detected crack edges and the
yellow lines represent the detected crack skeletons.): (a) hairline crack; (b) block crack; (c) intersecting
crack; (d) complex background crack (mottling); and (e) complex background crack (clutter).

4. Experiment

In this section, an experiment is conducted to detect cracks in concrete specimens
subjected to static load tests, with the aim of verifying the practical feasibility of the
proposed method. The damaged concrete beams and slabs are neatly arranged on one
side of the laboratory, and the binocular photography system is positioned approximately
0.2 m away from these cracked concretes. The aperture is adjusted accordingly to optimize
exposure and capture cracks in natural indoor lighting, while simultaneously recording the
manually measured values of both crack width gauges with a 0.01 mm accuracy and crack
ruler as reference values for the actual crack width.

The experimental setup is illustrated in Figure 11, and a total of four cracks have been
identified. Among them, three complex background cracks, designated as CrackI, CrackII
and CrackIII, respectively, originating from the same beam specimen are artificially divided
into multiple fragments before photographing, that is, the crack areas between black dashed
lines in Figure 11a, to enhance the quantity of control groups for comparison. Additionally,
as shown in Figure 11b, the fourth block crack is denoted as CrackIV_01, which is observed
on a slab specimen and shot from the overhead perspective at a certain angle between the
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optical axis plane and the structural surface normal. The measured results are summarized
in Tables 3–5, where the maximum error is 0.144 mm, corresponding to a relative error of
36.0%. This is attributed to the non-negligible prediction bias of FCN for CrackI_01. Hence,
it is imperative to further optimize the performance of FCN for detecting hairline cracks.
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Figure 11. Concrete crack detection and measurement experiment: (a) divided crack fragments
(the crack segment numbering corresponds to the numbering in the bottom left corner of the crack
images in (c)); (b) binocular device overlooking a crack; and (c) visualization of the results for certain
fragments.

Table 3. Results of maximum width measurement for CrackI, CrackIII_06 and CrackIV_01.

Measurement Result CrackI_01 CrackI_02 CrackI_03 CrackIII_06 CrackIV_01

Calculated value (mm) 0.544 0.981 1.993 2.980 8.431
Reference value (mm) 0.400 1.045 2.106 2.887 8.5 *

Error (mm) 0.144 −0.064 −0.113 0.093 −0.069
Relative error 36.0% −6.1% −5.4% 3.2% −0.8%

Note: * indicates that the reference value is obtained by the crack ruler.



Sensors 2024, 24, 3 19 of 23

Table 4. Results of maximum width measurement for CrackII (01–05).

Measurement Result CrackII_01 CrackII_02 CrackII_03 CrackII_04 CrackII_05

Calculated value (mm) 0.803 1.601 1.206 1.722 2.168
Reference value (mm) 0.836 1.613 1.200 1.743 2.153

Error (mm) −0.033 −0.012 0.006 −0.021 0.015
Relative error −3.9% −0.7% 0.5% 1.2% 0.7%

Table 5. Results of maximum width measurement for CrackIII (01–05).

Measurement Result CrackIII_01 CrackIII_02 CrackIII_03 CrackIII_04 CrackIII_05

Calculated value (mm) 1.663 1.124 2.081 2.067 2.165
Reference value (mm) 1.706 1.045 2.090 2.026 2.129

Error (mm) −0.043 0.079 −0.009 0.041 0.036
Relative error −2.5% 7.6% 0.4% 2.0% 1.7%

Figure 11c presents the visible outcomes of certain crack fragments, among which the
refined red region effectively demonstrates the generalization capability of our FCN, while
the low error level further substantiates the validity of the proposed measurement method.
Specifically, CrackII_03 has achieved the most accurate quantification, with an error of
only 0.006 mm. As anticipated, CrackIV_01, exhibiting a calculated error of −0.069 mm,
confirms the binocular vision-based approach’s capability to maintain high measurement
accuracy even under oblique shooting conditions, thereby highlighting its superiority over
the monocular vision method in terms of shooting posture. Although the morphology
of CrackIII_06 is successfully extracted despite the interference of the strain gauge wire
and the shadow caused by this wire in the lower left corner, the associated error exhibits
a substantial increase in comparison to CrackIII_01, reaching 0.093 mm. One possible
explanation for this is that the uneven concrete surface renders the proposed method
inapplicable. Apart from displaying maximum values of crack width, their specific location
are also indicated through white bidirectional arrows, thereby offering a valuable reference
for re-inspection.

5. Conclusions and Discussion

In this paper, a non-contact method for detecting and measuring cracks is proposed
by combining a semantic segmentation network, specifically the encoder–decoder FCN,
with binocular stereo vision, which achieves a balance between efficiency and accuracy.
According to the research results, the following conclusions can be drawn:

1. To fit the ground truth to the fullest extent, the proposed FCN adopts the encoder–
decoder structure and skip connections to enable enhanced focus on details during
crack segmentation. The optimal FCN model is fine-tuned using a training dataset
consisting of 1108 concrete surface images with a resolution of 448 × 448 pixels,
resulting in satisfactory levels for all three evaluation metrics: precision at 83.85%,
recall at 85.74% and F1 score at 84.14%. These results demonstrate that the proposed
FCN can accurately detect cracks at the pixel level. Since a plate is a commonly
used substructure in civil engineering, an experiment of a steel plate is carried out to
validate the feasibility of the proposed methodology.

2. An integrated CV procedure is specifically designed to extract the edges and skeletons
of cracks from binary graphs predicted by FCN, with the aim of preparing data for
crack measurements. The performance of the CV procedure is subsequently assessed
on FCN predictions of various types of cracks in the test set, demonstrating that its
output is both acceptable and effective. Moreover, skeletonization results exhibit a
higher level of adherence to the actual crack topology in regions that are distant from
the image boundary.
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3. The proposed method is applied to quantitatively evaluate the cracking of concrete
specimens in real-life scenarios, with a comparison made against manual inspection
results. The experimental results demonstrate that our FCN possesses remarkable
generalization capability, and the binocular measurement method can also control
errors at a low level, thereby ensuring both robustness in detection and accuracy in
measurement. For crack width, the maximum error is 0.144 mm, while the mean
relative error stands at 5.03%, thus confirming the feasibility of the proposed method.

4. The experiment also involves an overhead shot of a target crack through the binocular
photography system. The calculated error of −0.041 mm, along with its corresponding
relative error of −0.8%, validates the high level of accuracy achieved by the binocular
vision-based measurement method even under tilted shooting conditions, emphasiz-
ing its superiority over the monocular vision method and making it more suitable for
implementation on remotely operated piggyback platforms, such as UAVs or robots.

However, there are still some limitations to this research. Future studies should aim
to integrate advanced algorithms like attention mechanisms and EfficientNet to further
enhance the model’s performance. Additionally, the incorporation of advanced feature
matching algorithms like LightGlue promises to yield more precise three-dimensional
reconstructions of cracks. In practical terms, the proposed binocular photography system
requires an external power source of 5V or higher. It is necessary to optimize the energy
management strategy for the entire detection system. This may involve reducing standby
power consumption and employing dynamic programming to determine the optimal flight
path of UAVs. This research, currently focused on crack segmentation and measurement,
should expand to include other surface defects like delamination and spalling in future
studies, broadening its scope and real-world applicability.
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