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Abstract: Due to the harsh environment of high humidity and dust in tunnel construction, the vision
measurement system needs to be equipped with an explosion-proof glass protective cover. The
refractive effect of the plate glass window invalidates the pinhole model. This paper proposes a
comprehensive solution for addressing the issue of plane refraction. First, the imaging model for
non-parallel plane refraction is established based on dynamic virtual focal length and the Rodriguez
formula. Further, due to the failure of the epipolar constraint principle in binocular vision systems
caused by plane refraction, this paper proposes the epipolar constraint model for independent
refractive plane imaging. Finally, an independent refraction plane triangulation model is proposed
to address the issue of triangulation failure caused by plane refraction. The RMSE of the depth of
field errors in the independent refraction plane triangulation model is 2.9902 mm before correction
and 0.3187 mm after correction. The RMSE of the positioning errors before and after correction are
3.5661 mm and 0.3465 mm, respectively.

Keywords: tunnel construction; visual measurement; plate glass refraction; distortion correction

1. Introduction

A Tunnel Boring Machine (TBM) is an extensive piece of equipment utilized in tunnel
construction. It combines various functions including excavation, removal of debris, and
lining. TBMs are widely used in many fields such as railroads, highways, water diversion
projects, and municipal pipelines. In the TBM digging process, the cutter is subjected to
complex and variable loads. The cutter consumes a lot during the construction process
and requires frequent replacement [1,2]. The tool change area [3] is shown in Figure 1. The
cutter change area is very narrow and not conducive to manual work. At present, TBM
tool-changing work is dangerous and inefficient [4]. This has led to an urgent demand for
robotic tool-changing technology in the field of tunnel construction. Currently, manual
operations are primarily relied upon for tool detection and replacement due to limitations
in technological development. During the construction process of TBMs, there are consid-
erable safety hazards related to manual operations in harsh construction environments.
These environments include deep burial, high water pressure, and high levels of dust,
which can potentially result in serious safety accidents such as casualties. Thus, achieving
intelligent tool-changing in harsh and complex tunnel construction environments requires
precise positioning and accurate measurement of the tool system.

Machine vision measurement technology has advantages over other measurement
technologies such as non-contact measurement, remote manipulation, information-rich,
fast response, and accuracy [5–7]. The environment of the TBM tool change bin is often
characterized by high pressure [8], high humidity, and dust. To ensure safety, the camera
inside the tool changing bin needs to be equipped with an explosion-proof glass protective
cover [9,10]. However, the traditional pinhole camera model cannot eliminate the refractive
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distortion caused by glass. The existing distortion models with a single factor (only consid-
ering the lens) cannot describe the imaging patterns of cameras under planar refraction [11].
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This paper presents a comprehensive solution for binocular measurement under the
refraction of plate glass. The specific contributions are as follows:

(1) The non-parallel plane refractive camera imaging model is established based on
dynamic virtual focal length and the Rodriguez formula.

(2) The main problems are the epipolar constraint failure and triangulation failure under
refraction images. This paper proposes an epipolar constraint model and triangulation
method based on independent refraction planes.

The remainder of this paper is structured as follows. Section 2 introduces the re-
lated work. Section 3 describes, in detail, the model for image distortion correction under
non-parallel plane refraction, the model for imaging epipolar constraint on independent re-
fractive surfaces, and the triangulation method for independent refraction planes. Section 4
validates the effectiveness of the proposed method by conducting a series of physical
experiments. Section 5 discusses the relevant issues. Section 6 presents the conclusion.

2. Related Work

The refraction effect of glass severely affects the accuracy of visual measurements.
Scholars have conducted in-depth research on the characterization and elimination of
refractive distortion. In the calibration of visual measurement system parameters under
planar refraction, Treibitz [12] studied the trajectory of camera viewpoints under planar
refraction environments. In addition, Treibitz proposed an imaging model for a camera
based on dynamic virtual focal length. The measurement accuracy of this model is signifi-
cantly greater compared to single-viewpoint models. However, this model requires prior
knowledge of the depth information of the target object. The camera’s optical axis must
also be parallel to the normal vector of the refractive surface. Agrawal [13] established an
imaging model for multiplane refraction. The multi-plane refraction imaging model has
been proven to have strong similarities to the single-plane refraction imaging model.

Chen [14] introduced a calibration method for determining the normal vector of the
refractive surface as well as the thickness of the glass. The experiment demonstrates that this
method exhibits high accuracy and robustness. Shimizu [15,16] proposed a camera depth
estimation method that utilizes the parallel plane refraction effect. However, this method
requires a complex calibration setup. Gong [17] proposed a 3D reconstruction model based
on plane refraction correction. This method applies to the scene of any number and direction
of plate glass. He also proposed a method for flexibly determining the normal vector of the
refractive surface without any auxiliary devices. Ke [18] examined how the thickness of a
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glass plate affects the resulting image. He used a target extremely close to the plate glass to
obtain the normal vector of the refractive surface and the distance between the plate glass
and the camera’s optical center. Huang S [19] proposed a multi-camera calibration method
based on planar refraction. Multiple cameras can capture calibration images from different
angles. This calibration method has high accuracy. The basic geometric relationships based
on plane refraction can be used to eliminate refraction errors. Shortis et al. [20] employ
corrective lenses or dome glass to eliminate refractive distortion, guaranteeing that the
light rays from every point are perpendicular to the refractive surface. This situation can
still use a single viewpoint model. However, this method requires extremely high accuracy.
In practical applications, manufacturing errors and installation deviations of lenses often
lead to other refractive errors.

Additionally, scholars have conducted research on stereo matching in binocular vision
under plane refraction. Yamashita [21] considered the refraction effect and proposed a
model for underwater 3D reconstruction. However, he did not consider the issue of po-
lar constraint failure under refractive effects. Huang et al. [22] proposed a multi-plane
refractive imaging model. He proposed the theory of dynamic epipolar constraint, which
solved the problem that the epipolar of stereo matching under plane refraction is a curve.
This method verifies the accuracy of matching points. However, the camera’s optical axis
remains parallel to the normal vector of the refractive surface. Gedge [23] studied the
effect of planar refraction on underwater imaging and stereo matching. He proposed a 3D
reconstruction model when the camera’s optical axis is not parallel to the normal vector of
the refractive surface, and the curve equations for the epipolar constraint in stereo matching
are calculated.

In summary, a situation of approximate correction in the research of visual measure-
ment methods under plane refraction remains. Many scholars have built plane refraction
imaging models that are too complex, with too many introduced external parameters. The
model is not concise and requires large computational efforts.

This paper investigates the problem of error correction for vision measurement systems
considering plane refraction and presents a complete approach to visual measurements.
This method includes image distortion correction, refraction plane normal vector solv-
ing, polar constraint modeling of refraction images, triangulation modeling of refraction
imaging, and refraction error measurement.

3. Methodology

The traditional pinhole camera model based on perspective imaging leads to vision
measurement errors due to refraction distortion. A new refractive imaging model needs to
be established to eliminate refractive errors. Ideally, the camera’s optical axis is parallel
to the normal vector of the refractive plane. Due to installation and manufacturing errors,
the camera’s optical axis is not guaranteed to be parallel to the normal vector of the
refraction plane. An image distortion correction model is established based on the concept
of dynamic virtual focal length in a parallel plane. It complements the non-parallel plane
camera rotation model to achieve correction. The main flow of this paper is shown in
Figure 2.
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3.1. Two-Dimensional Measurement with Monocular Vision under Non-Parallel Plane Refraction
3.1.1. Finding the Normal Vector of a Refraction Plane

In Figure 3, the camera’s optical axis is not parallel to the normal vector n of the
refractive plane. Based on the expansion offset effect of plane refraction, the normal vector
of the refraction plane of the plate glass is determined.
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Figure 3. An Imaging model when the camera’s optical axis is not parallel to the normal vector of the
refraction plane. (a) Plane refraction imaging and (b) image points on the imaging surface.

The camera coordinate system is established with O as the origin. The Mg1(ug1, vg1)
and Mg2(ug2, vg2) points are the refracted imaging points. M1(u1, v1) and M2(u2, v2) are
the image points without refraction. Mc(uc, vc) is the distortion center point. One can
maintain the calibration board posture and take two separate images, one directly imaged
and the other imaged through glass. These two images can then be used to get the refraction
plane normal vector. As depicted in Figure 3a, the vector McO is parallel to the normal
vector n of the refraction plane in the camera coordinate system. As depicted in Figure 3b,
the intersection of two straight lines in the ideal state is the distortion center point. The
intersection point between the normal vector of the glass refractive plane passing through
the optical center and the image plane is the distortion center. Therefore, different glass
attitudes can cause significant differences in the location of distortion centers. In practical
implementation, it is necessary to calculate multiple lines to ensure the accuracy of the
distortion center. The point closest to all the lines is taken as the distortion center.

The equation of the line connecting the refracted image point and the non-refracted
image point is:

x(vgi − vi) + y(ui − ugi) + viugi − uivgi = 0 (1)

The distortion center Mc(uc, vc) is the point closest to all straight lines, which can be
solved by linear least square method [23]. The objective function is established as follows:

arg min
(uc ,vc)

K

∑
i=1

(
uc(vgi − vi) + vc(ui − ugi) + viugi − uivgi∥∥(vgi − vi), (ui − ugi)

∥∥
2

)2

(2)

The normal vector of the refraction plane of the plate glass is

n = [
uc − u0

f dx
,

vc − v0

f dy
, 1] (3)

3.1.2. Modeling of Camera Rotation under Non-Parallel Plane Refraction

The image distortion correction model under parallel plane refraction is established
based on the dynamic virtual focal length. After determining the refraction plane normal
vector n, the position of the inclined plate glass in the camera coordinate system can be
accurately described. It can establish a camera rotation model under non-parallel plane
refraction. In Figure 4, the virtual camera coordinate system (blue dotted line in the figure)
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is established with point O as the origin. The tilt of plate glass can be viewed as a rotation
centered on the rotation axis past the origin O.
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Figure 4. Non-parallel plane refractive camera rotation model.

The unit vector v of the rotation axis can be found from the camera optical axis
direction vector w and the refraction plane normal vector n as follows:

v =
w × n
|w × n| (4)

The angle of rotation is as follows:

cos λ =
w · n

|w| · |n| (5)

The virtual camera coordinate system can be obtained by rotating the real camera
coordinate system around the rotation axis v using λ angle. First, the Qz(xz, yz, zz) of the
camera coordinate system is transformed into the virtual camera coordinate system. It
follows from the Rodriguez equation:

q′
z = sin λ(v × qz) + (1 − cos λ)(v · qz)v + qz cos λ (6)

where qz = [xz, yz, zz]T, qz
′ = [qz1, qz2, qz3]. The qz

′ is the coordinate of Qz in the virtual
camera coordinate system. In the virtual camera coordinate system, the intersection of the
line OQz with the virtual image plane is the image point Q2(x2, y2, z2).{

x2
qz1

= y2
qz2

= z2
qz3

z2 = − f
(7)

The following is from Equation (7):{
x2 = − f ·qz1

qz3

y2 = − f ·qz2
qz3

(8)

In conclusion, the coordinates of the image point in the virtual camera coordinate
system can be obtained. The correction for non-parallelism between the camera optical axis
and the normal vector of the refracting surface can be realized.

3.1.3. Modeling of Camera Imaging under Non-Parallel Plane Refraction

In Figure 5, the intersection point between the camera optical axis and the measure-
ment plane in the camera coordinate system is Q0. Q1 is any point on the measurement
plane. The image point of Q1 refracted by the plane on the virtual imaging plane is Q2. The
main point of the virtual camera is Q4. The incident angle is θa1. The distance between
line OQ2 and line L is denoted as dw1. In the camera coordinate system, the coordinates
of Q0 are (0, 0, h). In the virtual camera coordinate system, the coordinates of Q0, Q1, Q2,
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Q3, and Q4 are Q0(x0, y0, z0), Q1(x1, y1, z1), Q2(x2, y2, z2), Q3(x3, y3, z3), and Q4(x4, y4, z4).
The coordinates of Q0 and Q2 in the virtual camera coordinate system can be determined
based on the camera rotation model. The coordinates of Q4 in the virtual camera coordinate
system are (0, 0, −ƒ). In the camera coordinate system, the normal vector of the refractive
surface is n = [n1, n2, n3]. The normal vector of the measurement plane is w = [0, 0, 1].
The w can be corrected by the camera rotation model to obtain the normal vector of the
measurement plane in the virtual camera coordinate system as w1 = [−n1, −n2, n3].
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In the virtual camera coordinate system, the normal vector w1 of the measurement
plane and a certain point Q0(x0, y0, z0) in the measurement plane are known. From any
point Q(x, y, z) in the measurement plane:

−−⇀
QQ0

· w1 = 0 (9)

The point Q coordinate satisfies the following:

a(x − x0) + b(y − y0) + c(z − z0) = 0 (10)

After this, the equation of the measurement plane can be obtained as follows:

ax + by + cz + d = 0 (11)

where a = −n1, b = −n2, c = n3, d = −(ax0 + by0 + cz0).
In the virtual camera coordinate system, the distances Q2Q4 and Q3Q4 on the virtual

imaging surface are r2 and r3, respectively.
This can be obtained from the geometric relationship in Figure 5:

tan θa1 =
r2

f

dw1 = d sin θa1(1 −
√

1 − sin2 θa1√
n2

p − sin2 θa1

)

r3 − r2 =
dw1

cos θa1

(12)

Since the line Q2Q4 is collinear with the line Q3Q4, it follows:

x2

x3
=

y2

y3
(13)
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By combining Equations (12) and (13), x3 and y3 can be obtained. The coordinates of
Q3 can be obtained.

In the virtual camera coordinate system, the line OQ2 is parallel to the line L. In
Figure 5, the equation for line L is as follows:

x − x3

x2
=

y − y3

y2
=

z − z3

z2
(14)

The intersection point between the line L and the measurement plane is Q1. The
coordinates of Q1 in the virtual camera coordinate system can be obtained by combin-
ing Equations (11) and (14). Its converted coordinate in the camera coordinate system is
as follows:

q1 = − sin λ(v × q′
1) + (1 − cos λ)(v · q′

1)v + q′
1 cos λ (15)

Here, q1
′ = [x1, y1, z1]T, q1 = [q11, q12, q13], (q11, q12, q13) are the coordinates of Q1 in the

camera coordinate system.

3.2. Epipolar Constraint Modeling of Binocular Vision System under Nonparallel Plane Refraction

Based on the geometric relationship of plane refraction, the epipolar constraint model
of the binocular vision system under non-parallel plane refraction is derived. The virtual
camera coordinate system is introduced, and the conversion relationship between the
camera coordinate system and the virtual camera coordinate system is shown in Figure 5.
The coordinate system of the left camera is denoted as OlXlYlZl. The coordinate system of
the left virtual camera is denoted as OlXclYclZcl. The coordinate system for the right camera
is denoted as OrXrYrZr. The coordinate system for the right virtual camera is denoted
as OrXcrYcrZcr. The optical centers of the two cameras are Ol and Or. The base distance
between the two optical centers is a. The focal length of the cameras is ƒ. The left and right
virtual imaging planes are maintained parallel to the plate glass.

In Figure 6b, the two camera refraction planes are independent as shown. Based on the
virtual camera coordinate system, the epipolar constraint model of independent refraction
plane imaging is established. The distortion centers of the left and right virtual imaging
planes are denoted as Fcl and Fcr, respectively. The thickness of plate glass is d. Ol is the
origin of the left virtual camera coordinate system OlXclYclZcl. The left virtual camera
coordinate system serves as the world coordinate system. F1(x1, y1, z1) is any point on the
left virtual imaging plane. The line OlF1 intersects the front of the glass at point F2, and
after being refracted by the left plate glass, intersects the back of the glass at point F3. After
this, take any point Fh (xh, yh, zh) on the refraction ray and set zh = h. The inverse extension
of the line F3Fh intersects the left virtual imaging plane at point F4. Set the refraction planes
in the left and right cameras as Π1, Π2. As a result, the intersection of the refraction plane
Π1 with the left virtual imaging plane is the line F1F4. The distortion center Fcl (xcl, ycl,
zcl) of the left virtual imaging plane is on line F1F4. The coordinates of F4 is (x4,y4,z4). The
incident angle is θa2. The lengths of lines FclF1 and FclF4 are R1 and R2, respectively. The
distance between the incident and refraction rays is dw2.
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Figure 6. Independent refractive surface (a) imaging model and (b) epipolar constraint model.

From the geometric relationship in Figure 6:

R2
1 = (x1 − xcl)

2 + (y1 − ycl)
2

R2
2 = (x4 − xcl)

2 + (y4 − ycl)
2

tan θa2 =
R1

f

dw2 = d sin θa2(1 −
√

1 − sin2 θa2√
n2

p − sin2 θa2

)

R1 − R2 =
dw2

cos θa2
x1

x4
=

y1

y4
=

z1

z4
z1 = z4 = zcl = f

(16)

where the coordinate of Fcl is (0, 0, ƒ). After calculating the coordinates of point F4, then it
is obtained from the point F4 and Fh are co-linear:

x4

xh
=

y4

yh
=

z4

zh
z4 = f
zh = h

(17)

From Equations (16) and (17), the coordinates of points F4 and Fh can be obtained in
the same way. In the right virtual camera coordinate system, the coordinate of the right
camera optical center on the left virtual camera coordinate system is Or(a, 0, 0). After this,
it can be obtained as F9(x9, y9, z9): 

x9 − a
xh − a

=
y9

yh
=

z9

zh
z9 = f

(18)

The extension of the line FhF5 intersects the right virtual imaging surface at point
F8. The points F7, F8, F9, and the center of distortion Fcr are collinear, and the line of this
collinearity is Lr1. Therefore, it can be obtained that:
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x8 − x9

xcr − x9
=

y8 − y9

ycr − y9
=

z8 − z9

zcr − z9
y8 = y4

z8 = z4 = f

(19)

The solution for the coordinates of the distortion center Fcr in Equation (19) can be
referred to Section 3.1.1. After calculating the coordinates of F8(x8, y8, z8), the coordinates
of F7(x7, y7, z7) can be obtained in the same way. Any point on the left virtual imaging
plane can obtain the corresponding epipolar line on the right virtual imaging plane.

3.3. Triangulation Modeling of Binocular Vision System under Non-Parallel Plane Refraction

The traditional triangulation method based on a pinhole camera model is ineffective
in binocular vision measurement due to the plane refraction effect. This section analyzes
the binocular vision measurement system under independent refractive planes. The image
points of any space point P on the left and right imaging planes are Pl and Pr, respectively.
The refraction rays OlPl and OrPr are not necessarily in the same plane. This leads to the
failure of the conventional triangulation method based on the pinhole camera model. The
camera rotation model and the camera imaging model under non-parallel plane refraction
are proposed in Section 3.1.2. The model corrects the refraction error under non-parallel
plane refraction. On this basis, this paper establishes a binocular vision system triangulation
model under independent refractive planes.

In Figure 7, when the two refractive surfaces are independent, the camera coordinate
system should be first corrected with rotation. A triangulation model of a binocular vision
system with an independent refraction plane is established based on the virtual camera
coordinate system. The distortion centers of the left and right virtual imaging surfaces
are Wcl and Wcr, respectively. The image points of any space point W on the left and right
virtual imaging surfaces are points W1 and W7, respectively. The reverse extension of line
W3W intersects with the left virtual imaging surface at point W4. The reverse extension
of line W5W intersects with the right virtual imaging surface at point W8. Triangulation
modeling of binocular vision systems with independent refraction planes is based on a
virtual camera coordinate system. From the previous analysis, points W, W4, and W8
are coplanar.
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Triangular measurement of a binocular vision system under independent refractive
surfaces can be achieved by using ray coplanarity as a constraint. The coordinates of points
W4 and W8 can be solved from Equation (16).
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3.4. Three-Dimensional Measurement Solution Process under Plane Refraction

The main flow of this paper is shown in Figure 8. The refraction plane normal vector
n is solved by capturing before and after images of the refraction at the same attitude of
the calibration plate. The camera rotation model is established based on the Rodriguez
formula. The camera coordinate system is rotated and corrected to obtain the virtual camera
coordinate system. The coordinates of Q1 in the virtual space coordinate system can be
obtained by combining the equations of the measurement plane and the line L in the virtual
camera coordinate system. The coordinates in the camera coordinate system are obtained
from Equation (15). Both the left and right imaging planes undergo rotation correction, and
binocular measurement is accomplished by employing the epipolar constraint model and
the triangulation model under refraction effects.

The corner coordinates of the checkerboard image under the refraction effect are
known, and the corresponding coordinate points in the virtual coordinate system can
be obtained through simultaneous Equations (12) and (13). In Figure 7, the W1 and W7
coordinate points under the virtual coordinate system can be obtained. Further, the point
coordinates of W4 and W8 in the virtual coordinate system can be solved by Equation (16)
in Section 3.2. Finally, binocular measurements are realized using the refraction plane
imaging epipolar constraint modeling and the triangulation model.
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4. Experimentation and Analysis

A series of physical experiments were conducted to validate the effectiveness of the
proposed method. Section 4.1 presented the experimental setup. Section 4.2 conducted
experimental verification of camera imaging models under non-parallel plane refraction.
Section 4.3 studied the 3D measurement experiment of binocular vision under plane refrac-
tion. The camera calibration was performed using the most common Zhang’s calibration
method [24,25].

4.1. Experimental Setups

To validate the method proposed in this paper, a set of experimental platforms for the
vision scheme of the tool change robot was built [26]. This is shown in Figure 9. It consists
of a binocular camera, plate glass, target, motion module, and robot. Details are as follows:
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Figure 9. Experimental platform for vision program of the tool-change robot.

(1) The camera model is Cognex CIC-1300, which boasts a resolution of 1280 pixels × 1024
pixels. The focal length of the camera lens is 12.5 mm, and the field of view angle is
25◦. The measurement volume is 0.08 m3. The camera baseline distance is 205 mm.
The distance between the checkerboard calibration plate and the camera optical center
is approximately 610 mm.

(2) The factory-measured refractive index [27] of K9 optical glass is 1.5437, with a thick-
ness of 20 mm, which is considered as the true value.

(3) The number of target points is 5 × 6, with a distance of 39 mm between adjacent points.
(4) The motion module in Figure 9 can move in the left and right directions. Before the

experiment starts, the motion module can move the target near the working distance
of 600 mm. The motion module of the platform does not require high motion accuracy.

4.2. Experimental Validation of Camera Imaging Model under Non-Parallel Plane Refraction

This section verifies the positioning accuracy and measurement accuracy of the camera
imaging model (hereinafter referred to as the refractive imaging model) under non-parallel
plane refraction. Each set of experiments kept the last target attitude fixed, and images
without and with plate glass were collected separately. To compare the positioning error
and measurement error under different distortion center positions, the experimental section
conducted two sets of experiments with different glass postures: (a) Glass attitude 1
and (b) Glass attitude 2. Figures 10–14 show experimental data under two different
glass postures.

Figure 10 shows the distribution of image deviations under non-parallel plane refrac-
tion. Arrows indicate the direction of distortion. As shown in Figure 10a, the minimum
deviation of the image points is 0.5 pixels, and the maximum deviation is 9.2 pixels. As
shown in Figure 10b, the minimum deviation of the image points is 2.3 pixels, and the
maximum deviation is 12.1 pixels. From the figure, it is evident that the distortion center
is not the main point of the camera. The distortion center is shifted because the camera’s
optical axis is not parallel to the normal vector of the refraction plane of the plate glass.

In Figure 11, the cyan point is the distortion center point. The distortion centers of the
two experimental groups obtained by the least squares method are (953.07, 432.1) and (92.2,
395.81), respectively. In the two experiments shown in Figure 11, due to the difference in
glass placement attitude, there was a significant change in the intersection point between
the normal vector passing through the optical center and the image plane. The normal
vectors of the refraction plane for the two sets of experiments are n1 = (0.1268, −0.0284, 1)
and n2 = (−0.2262, −0.0431, 1). The camera rotation model corrects for the non-parallelism
of the camera optical axis and the normal vector of the refraction plane. Figure 12 shows
the image points before and after rotational correction with glass refraction.
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To verify the localization accuracy of the refraction imaging model, both the pinhole
camera model and the refraction imaging model are utilized to measure and compare the
points on the 2D measurement plane. As shown in Figure 13, P1 represents the pinhole
camera model under glass attitude 1. R1 represents the refraction imaging model under
glass attitude 1. P2 represents the pinhole camera model under glass attitude 2. R2 repre-
sents the refraction imaging model under glass attitude 2. The two experiments are shown
in Figure 13. The maximum localization errors of the pinhole camera model are 2.2707 mm
and 3.1139 mm, respectively. The maximum localization errors of the refracted imaging
model are 0.2428 mm and 0.3394 mm, respectively. The RMSE of positioning errors using
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the pinhole camera model are 1.3441 mm and 1.9937 mm. The RMSE of localization errors
using the refraction imaging model are 0.1135 mm and 0.1484 mm, respectively.
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Then, the measurement accuracy of the refraction imaging model is verified. To
comprehensively reflect the impact of plane refraction on measurement accuracy, pinhole
camera models and refractive imaging models are used to measure line segments L1, L2, L3,
R1, R2, and R3 on the two-dimensional measurement plane. The measured line segments
are shown in Figure 14.
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In Table 1, the length of the line segment measured without glass is taken as the true
value. The measurements of the pinhole camera model and the refraction imaging model
are compared with the true value. The measurement results of two sets of experiments are
shown in Tables 1 and 2. The RMSE of the measurement errors using the pinhole camera
model are 2.3821 mm and 2.4037 mm. The RMSE of the measurement errors using the
refraction imaging model are 0.2130 mm and 0.2136 mm, respectively. From the above
analysis, it can be concluded that the refraction imaging model can significantly improve
measurement accuracy.
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Table 1. Measurement error in Experiment 1. Units: mm.

Group Line
Segment Real Value

Pinhole
Camera
Model

Refraction
Imaging
Model

Pinhole Camera
Model Measurement

Error

Refraction Imaging Model
Measurement Errors

experiment
one

L1 156.6668 158.5312 156.8691 1.8645 0.2023
L2 194.8575 197.1360 195.0896 2.2785 0.2321
L3 249.9980 252.8859 250.2325 2.8978 0.2445
R1 155.6221 157.3648 155.6632 1.7427 0.0411
R2 194.9240 197.2314 195.1439 2.3074 0.2199
R3 249.0547 251.9907 249.3145 2.9360 0.2598

experiment
two

L1 156.5188 158.2746 156.4472 1.7558 0.0716
L2 194.7974 197.1148 195.0683 2.3175 0.2710
L3 249.9564 252.8827 250.1399 2.9263 0.1835
R1 155.7484 157.6053 155.9255 1.8569 0.1770
R2 194.8289 197.1602 195.0612 2.3313 0.2323
R3 249.9526 252.9136 250.2288 2.9610 0.2762

Table 2. Measurement error in Experiment 2. Units: mm.

Group Line
Segment Real Value

Pinhole
Camera
Model

Refraction
Imaging
Model

Pinhole Camera
Model Measurement

Error

Refraction Imaging Model
Measurement Errors

experiment
one

L1 156.0000 158.5312 156.8691 2.5312 0.8691
L2 195.0000 197.1360 195.0896 2.1360 0.0896
L3 249.7218 252.8859 250.2325 3.1641 0.5107
R1 156.0000 157.3648 155.6632 1.3648 0.3368
R2 195.0000 197.2314 195.1439 2.2314 0.1439
R3 249.7218 251.9907 249.3145 2.2689 0.4073

experiment
two

L1 156.0000 158.2746 156.4472 2.2746 0.4472
L2 195.0000 197.1148 195.0683 2.1148 0.0683
L3 249.7218 252.8827 250.1399 3.1609 0.4181
R1 156.0000 157.6053 155.9255 1.6053 0.0745
R2 195.0000 197.1602 195.0612 2.1602 0.0612
R3 249.7218 252.9136 250.2288 3.1918 0.5070

In Table 2, the actual dimensions between the target points of the marker are taken as
the real values. It can evaluate the actual measurement accuracy of the proposed method.
The RMSE of the measurement errors using the pinhole camera model were 2.2827 mm and
2.4179 mm, while the RMSE of the measurement errors using the refraction imaging model
were 0.3929 mm and 0.2627 mm, respectively. From the above analysis, it can be concluded
that the refraction imaging model can significantly improve measurement accuracy.

4.3. Experiments on 3D Measurement of Binocular Vision under Plane Refraction

First, the Zhang calibration method calibrates the internal and external parameters of
the two cameras. The method proposed solves the refraction plane normal vector. Table 3
demonstrates the calibration parameters. Where (fx, fy) is the camera focal length, (u0, v0) is
the coordinates of the camera main point, kc is the distortion coefficient, MR is the rotation
matrix, MT is the translation matrix, (uc, vc) is the distortion center, and n is the normal
vector of the refraction plane of the plane glass. Find the center of distortion and the normal
vector of the refraction plane. In Figure 15, the cyan point is the center distortion point for
the left and right cameras.
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Table 3. Camera parameters.

Left Camera Right Camera

(fx, fy)/mm (2438.07, 2438.08) (2443.13, 2443.13)
(u0, v0)/pixel (643.98, 500.01) (647.83, 487.49)

kc (−0.4082, 0.4359) (−0.4100, 0.4389)

MR

 0.9572 0.0008 −0.2893
−0.0087 0.9996 −0.0262

0.2892 0.0275 0.9569


MT [−211.4756, 1.3306, 53.3775]T

(uc, vc)/pixel (38.21, 735.40) (1092.19, −196.90)
n (−0.2483, 0.0961, 1) (0.1823, −0.2809, 1)
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4.3.1. Experimental Verification of Epipolar Constraint Model for Independent Refractive
Plane Imaging

After calibration of the internal and external parameters of the binocular vision system
is completed, the independent refraction plane imaging epipolar constraint model is exper-
imentally validated. It has the same basic principles as the shared refraction plane imaging
epipolar constraint model and has a wider range of applications. Therefore, this paper only
analyzes the epipolar constraint model of independent refractive plane imaging.

In the experiment, keeping the optical axis of the left and right cameras not parallel to
the normal vector of the refractive plane, the cameras collect one image with the plate glass
and one image without the plate glass.

To utilize a binocular vision system for 3D measurement, it is essential to initially
conduct feature point matching between the left and right images. However, Figure 16
demonstrates that the polar constraint principle of traditional binocular vision systems
is rendered ineffective due to the influence of the plane refraction effect. The green line
represents the limit constraint. In Figure 17, Position 1 indicates a large difference in the
longitudinal tilt angle of the left and right plate glass. In Figure 17, Position 2 indicates that
the left and right plate glass are parallel.

In Figure 17, when the tilt angle difference between the left and right plate glass in the
longitudinal direction is large, the matching error without refraction is less than 1 pixel,
and its RMSE is 0.2343 pixels. The RMSE of the matching error in the presence of refraction
is 11.1107 pixels. The traditional principle of polar constraints is no longer applicable to the
binocular vision systems affected by plane refraction.
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But it’s not that the polar constraint principle will fail as long as there is refraction.
When the left and right plate glass are nearly parallel in the longitudinal direction, the
refraction has minimal impact on the coordinates v of the image points. The normal vector
of the refractive surface of the left plate glass is nl = (−0.1181, −0.2283, 1). The normal
vector of the refractive surface of the right plate glass is nr = (0.0063, −0.2396, 1). When the
left and right plate glass are nearly parallel in the longitudinal direction, The matching error
with refraction is less than 1 pixel, and the RMSE of the matching error with refraction is
0.7573 pixels. The traditional polar constraint principle remains applicable in this situation.
In Figure 17, Position 1 indicates a large difference in the longitudinal tilt angle of the left
and right plate glass. In Figure 17, Position 2 indicates that the left and right plate glass
are parallel.

4.3.2. Experimental Validation of a Triangulation Model for Binocular Vision System under
Independent Refraction Planes

Finally, the proposed triangulation model of the binocular vision system under an
independent refraction plane is experimentally validated. It compares depth-of-field
errors, positioning errors, and measurement errors for space points with and without
considering refraction effects. Figure 18a shows the comparison of depth-of-field between
the checkerboard corners before and after correction, where the depth-of-field calculated
without refraction is taken as the true value. Figure 18b shows the comparison of the
depth-of-field error before and after correction. The RMSE of the depth-of-field error before
and after correction are 2.9902 mm and 0.3187 mm, respectively.



Sensors 2024, 24, 66 17 of 20Sensors 2023, 23, x FOR PEER REVIEW 17 of 20 
 

 

 
Figure 18. Comparison before and after calibration. (a) Depth of field and (b) depth of field error 
and positioning error. 

Figure 18b shows the comparison of positioning errors of checkerboard corner points 
before and after correction. The 3D coordinates calculated without refraction are used as 
the true spatial point coordinates. Figure 19 shows that the RMSE of the positioning errors 
before and after correction are 3.5661 mm and 0.3465 mm, respectively. 

 
Figure 19. Pollution type diagram. (a) Glass is polluted by sewage. (b) Glass is polluted by sludge. 

5. Discussion 
This paper presents a complete vision measurement scheme applicable to the pres-

ence of plate glass refraction effects. The effectiveness of the scheme was verified through 
a series of experiments. 

5.1. Analysis of the Proposed Method 
In Section 3.2, the normal vector n of the refractive surface is used to describe the 

camera imaging model accurately when the cameraʹs optical axis is not parallel to the nor-
mal vector of the refractive plane. The distortion center is used to obtain the normal vector 
of the refraction plane of the plate glass based on the expansion offset effect of plane re-
fraction. The established model for image distortion correction under plane refraction re-
alizes the correction of image distortion. This model can not only eliminate image distor-
tion but also intuitively reflect the impact of different incident angles and depth of field 
on measurement error. 

5.2. Stability Experiment under Simulated Tunnel Construction Environments 
Two types of stains shown in Figure 19 were attached to the outer surface of the plate 

glass to analyze how the tunnel construction environment affects the proposed plate glass 
calibration method. Refer to previous experiments on glass pollution. The first experiment 
(Non-pollution) is conducted under the ideal condition where glass is not polluted. The 
second experiment (Pollution A) simulated the condition of glass polluted by sewage. The 
third experiment (Pollution B) simulates the condition where glass is polluted by sludge 
and partially obstructed. According to the above experimental scheme, the calibration 

Figure 18. Comparison before and after calibration. (a) Depth of field and (b) depth of field error and
positioning error.

Figure 18b shows the comparison of positioning errors of checkerboard corner points
before and after correction. The 3D coordinates calculated without refraction are used as
the true spatial point coordinates. Figure 19 shows that the RMSE of the positioning errors
before and after correction are 3.5661 mm and 0.3465 mm, respectively.
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5. Discussion

This paper presents a complete vision measurement scheme applicable to the presence
of plate glass refraction effects. The effectiveness of the scheme was verified through a
series of experiments.

5.1. Analysis of the Proposed Method

In Section 3.2, the normal vector n of the refractive surface is used to describe the
camera imaging model accurately when the camera’s optical axis is not parallel to the
normal vector of the refractive plane. The distortion center is used to obtain the normal
vector of the refraction plane of the plate glass based on the expansion offset effect of plane
refraction. The established model for image distortion correction under plane refraction
realizes the correction of image distortion. This model can not only eliminate image
distortion but also intuitively reflect the impact of different incident angles and depth of
field on measurement error.

5.2. Stability Experiment under Simulated Tunnel Construction Environments

Two types of stains shown in Figure 19 were attached to the outer surface of the plate
glass to analyze how the tunnel construction environment affects the proposed plate glass
calibration method. Refer to previous experiments on glass pollution. The first experiment
(Non-pollution) is conducted under the ideal condition where glass is not polluted. The
second experiment (Pollution A) simulated the condition of glass polluted by sewage. The
third experiment (Pollution B) simulates the condition where glass is polluted by sludge
and partially obstructed. According to the above experimental scheme, the calibration
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experiment of the refraction plane of plate glass under the simulated tunnel construction
environment is carried out.

The plate glass calibration is accomplished using target points that are unpolluted or
only slightly polluted. The experimental results are shown in Table 4.

Table 4. Unit normal vectors and refractive indices.

Serial Number Unit Normal Vector Cosine Similarity

Left
glass

Non-pollution [−0.0500, −0.0475, 0.9976]T /
Pollution A [−0.0478, −0.0466, 0.9973]T 0.9999972
Pollution B [−0.0475, −0.0463, 0.9977]T 0.9999961

Right
glass

Non-pollution [−0.0036, −0.0235, 1.0000]T /
Pollution A [−0.0040, −0.0238, 0.9998]T 0.9999999
Pollution B [−0.0043, −0.0212, 1.0006]T 0.9999972

According to Table 4, compared to the Non-pollution condition, the cosine similarity
of the unit normal vector of the refractive surface under both polluted conditions is close
to 1. This shows that pollution A and pollution B have less of an effect on the solution
accuracy of the proposed method.

5.3. Future Work

Section 4.3 conducted stability experiments in simulated tunnel construction environ-
ments. However, the real tunnel construction scenes are even more harsh. Image restoration
using deep learning techniques serves as a set of potential solutions. The plate glass used
for the experiments in this paper is K9 optical glass. However, in practical applications,
some explosion-proof tempered glass will be used, whose glass performance may not be as
stable as optical glass. In the future, its practical application scenarios can be considered,
and several experiments can be conducted using glass with different parameters to verify
the stability of the model.

6. Conclusions

To overcome the failure of conventional vision measurement techniques under plate
glass refraction, this paper provides an effective and stable solution for refraction imaging
modelling, glass parameter calibration, and 3D coordinate solutions. It analytically realizes
the correction of refractive distortion images. The glass normal vector is obtained from
the calibration. When the camera’s optical axis is not parallel to the normal vector of the
refractive plane, a camera rotation model and a camera imaging model under non-parallel
plane refraction are established to correct refractive errors. In particular, an independent
refractive plane triangulation model is proposed to address the issue of triangulation failure
under planar refraction. This experiment verifies the positioning accuracy and measure-
ment accuracy of the camera imaging model under non-parallel plane refraction. These
experimental results show that the RMSE of the positioning errors before correction are
1.3441 mm and 1.9937 mm. The positioning errors after correction are 0.1135 mm and
0.1484 mm, respectively. The measurement errors before correction are 2.3821 mm and
2.4037 mm. The measurement errors after correction are 0.2130 mm and 0.2136 mm, respec-
tively. This experiment verifies the accuracy of the binocular vision system triangulation
model under independent refractive planes. The RMSE of the depth of field error before
and after correction are 2.9902 mm and 0.3187 mm, respectively. The RMSE of the po-
sitioning errors before and after correction are 3.5661 mm and 0.3465 mm, respectively.
From the above analysis, the proposed triangulation model under independent refractive
planes greatly improves the accuracy of depth-of-field and positioning. This proves the
effectiveness of the proposed model. While this solution is designed for tool changer robot
vision systems in harsh construction environments, it can serve as a reference for any vision
measurement application under glass window protection.
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