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Abstract: This study systematically reviews the integration of artificial intelligence (AI) and remote
sensing technologies to address the issue of crop water stress caused by rising global temperatures
and climate change; in particular, it evaluates the effectiveness of various non-destructive remote
sensing platforms (RGB, thermal imaging, and hyperspectral imaging) and AI techniques (machine
learning, deep learning, ensemble methods, GAN, and XAI) in monitoring and predicting crop
water stress. The analysis focuses on variability in precipitation due to climate change and explores
how these technologies can be strategically combined under data-limited conditions to enhance
agricultural productivity. Furthermore, this study is expected to contribute to improving sustainable
agricultural practices and mitigating the negative impacts of climate change on crop yield and quality.

Keywords: crops; water stress; machine learning; deep learning; artificial intelligence (AI)

1. Introduction

Despite international efforts to reduce greenhouse gas emissions over the past several
decades, the global surface temperature has increased by approximately 2.45 ◦C compared
to the 19th century. This global warming has triggered sudden natural disasters worldwide,
including heat waves, cold waves, heavy rain, droughts, and floods [1]. Additionally, these
conditions can significantly affect agricultural ecosystems, especially climate conditions [2].
Consequently, the impact of climate change has contributed to declines in the yield and
quality of agricultural products [3]. Crop damage caused by climate change has been
reported in several countries, including Thailand, India, China, and the United States.
Hence, various studies have been conducted in an effort to reduce the impacts of climate
change over recent years [4,5]. These impacts have been highlighted not only in popular
media, such as the news, but also in a lot of relevant research [5–8].
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Currently, the agricultural industry consumes 80–90% of the world’s freshwater re-
sources [9], and the intensity and frequency of precipitation caused by climate change are
expected to increase the demand for irrigation water. Under these circumstances, one of
the key elements of sustainable agricultural applications is to monitor the crop water stress
levels [10,11]. Water stress evaluation can help to control the amount of water used and
prevent excessive water consumption, which significantly impacts crops’ yield and quality.

Traditional methods for evaluating crop water stress involve measuring the soil mois-
ture content and analyzing meteorological variables and various physiological parameters,
such as water potential and stomatal conductivity [12,13]. Although these methods can
provide direct information about the crop water stress level, the traditional methods are
time-consuming, laborious, and destructive [14]. These are significant drawbacks for the
evaluation of water stress levels in field crops. Moreover, using traditional methods would
make it difficult to cover large areas [15,16].

Non-destructive and rapid crop water stress monitoring technologies have been devel-
oped to overcome these limitations. Remote sensing coupled with various optical sensors
(RGB, thermal, multispectral, and hyperspectral imagery) is used, and these platforms are
also applied to satellites, aircraft, drones, and handheld devices for the rapid collection of
digital data. These digital data can be analyzed using artificial intelligence (AI) techniques
to assess the chemical and physical properties of crops [17–19]. Remote sensing tech-
nologies have been applied for crop classification [20], yield prediction [21], the detection
and management of diseases and pests [22], and crop water stress detection [23]. These
technologies generate large datasets, including open-source satellite data from platforms
such as Google Earth Engine [24,25]. To transform the collected data into meaningful
information, various preprocessing steps are required. However, manually analyzing such
vast amounts of data is time-consuming. Hence, AI technology is employed to address
this challenge.

The use of artificial intelligence (AI) for crop water stress analysis began in earnest in
the mid-1970s. For instance, Millard et al. [26] conducted a study in April 1976, measuring
crop temperatures using infrared scanners and IR photography from both aircraft and
ground platforms in wheat fields subjected to various water stress levels. Since then,
AI technologies have played important roles in predicting optimal irrigation timing and
quantity, reducing water waste, and increasing crop yields [27]. These technologies have
improved the efficiency of irrigation systems and water management. In particular, AI-
based drones and satellite systems enable precise irrigation monitoring for crop health, soil
moisture levels, and water usage across large areas [28].

To date, AI has been widely used in crop identification [16,29], disease detection [30],
and yield prediction [31]. Specifically, for crop water stress assessment, machine learning
and deep learning algorithms are primarily employed. Several techniques, such as Random
Forest (RF), Support Vector Machine (SVM), and Convolutional Neural Network (CNN) ar-
chitectures, are intensively used, and generative AI models such as Generative Adversarial
Network (GAN) models have recently been applied [32].

Accordingly, this study comprehensively reviewed the trends of various sensing
platforms utilizing machine learning and deep learning techniques for crop water stress
analysis over the past decade. The primary objective of this study was to present the AI
techniques used in crop water stress analysis and to evaluate the related technical methods
used. Specifically, we focused on collecting and analyzing AI techniques utilized in remote
sensing technologies. While most previous studies have concentrated on thermal imaging,
multispectral/hyperspectral sensors [13,33], or water stress studies on specific crops [34–36], ex-
cluding RGB, this study analyzed not only these sensing technologies but also AI techniques
for evaluating water stress in a variety of field crops.

This study provides an in-depth analysis of how AI technologies can contribute to
managing crop water stress and promoting efficient water resource utilization; it also aims
to offer solutions for agricultural challenges caused by extreme climate conditions. In
addition, optimal approaches to maximize the applicability and effectiveness of AI-based
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technologies in agriculture are suggested. The findings from this analysis are expected
to contribute to strategies ensuring the sustainability of agriculture in the future and to
further advance the application of AI technologies in the agricultural sector.

2. Materials and Methods

To investigate the latest trends in remote sensing and artificial intelligence techniques
for evaluating crop water stress in the context of climate change, a systematic process of
literature collection and screening was conducted. The primary databases selected for this
purpose were Google Scholar, Scopus, Web of Science, and ScienceDirect. Google Scholar
provides a broad range of resources across various academic fields, while Scopus offers
citation analysis, allowing for the evaluation of research’s impact and quality. Web of Sci-
ence is particularly strong in citation counts and impact factor analysis, while ScienceDirect
offers access to the latest research in science, technology, and medicine. These databases are
well-suited for a comprehensive review of studies related to agriculture, remote sensing,
and artificial intelligence.

For the literature search, keywords such as “Machine learning”, “Deep learning”,
“Water stress”, “Crop”, “Remote sensing”, and “Climate change” were used to target
journal and conference papers published over the past decade (2013–2024). The search
terms were restricted to appear in the “title”, “abstract”, or “keywords” sections of the
papers. The search scope was limited to “journals”, and the document types included
“research articles”, “reviews”, and “articles in press”. Additionally, the search was restricted
to papers published in English.

Through this process, approximately 130 papers were collected, and additional liter-
ature was gathered using supplementary keywords such as “RGB”, “Thermal imaging”,
“CWSI”, and “Hyperspectral”. Given the practicality of hyperspectral techniques in evalu-
ating crop water stress, multispectral technology was also investigated. Table 1 provides a
summary of the search strings used for each database.

Table 1. Search term strings per database. A comprehensive review of the literature was conducted to
analyze the application of machine learning and deep learning techniques in evaluating crop water
stress using different data modalities. The total number of collected research papers for each modality
was as follows: for Crop Water Stress Index (CWSI), 21 papers were identified; for RGB images,
11 papers were collected; for thermal images, 32 papers were gathered; and for hyperspectral images,
31 papers were found.

Keyword Search Terms and Criteria Number of Papers

CWSI Machine learning, Deep learning,
Water stress, Crop, CWSI 21

RGB Machine learning, Deep learning,
Water stress, Crop, RGB 11

Thermal Machine learning, Deep learning,
Water stress, Crop, Thermal 32

Hyperspectral imagery Machine learning, Deep learning,
Water stress, Crop, Hyperspectral 31

During the literature collection process, basic keywords such as “Machine learning”,
“Deep learning”, “Water stress”, “Crop”, “Remote sensing”, and “Climate change” were
initially used. However, many irrelevant materials were retrieved, and some necessary
studies were omitted. To address this issue, the search was refined in over 20 iterations
by adding or removing keywords to identify the optimal search terms. Additional key
terms, including “RGB”, “Thermal”, and “Hyperspectral”, were also employed. As a result,
approximately 95 papers were collected, and the literature was categorized according to
remote sensing techniques in order to avoid duplication and clarify the application cases of
each technology.
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• Examples of crop water stress assessment using RGB imaging;
• Examples of crop water stress assessment using thermal imaging;
• Examples of crop water stress assessment using CWSI;
• Examples of crop water stress assessment using hyperspectral imaging.

The selected articles were re-filtered based on their relevance to crop water stress
assessment, using the following exclusion criteria to strengthen the focus and relevance
of the research: First, review papers were excluded. Although review papers provide
comprehensive analyses of existing studies, they do not present specific experimental data,
which were necessary for this research. Second, studies employing destructive methods
were also excluded. Destructive methods are not suitable for maintaining crops in actual
agricultural environments, making non-destructive techniques more favorable. Third,
studies that did not utilize AI-based approaches were excluded. AI methods are critical
for enhancing the precision of crop water stress assessments, and they reflect the latest
advancements in technology. Lastly, studies that focused on crops that were not subjected
to water stress were excluded, as the primary goal of this research was to evaluate crop
water stress, placing such studies outside our scope.

• Review articles;
• Assessment of crop water stress with destructive methods;
• No AI learning;
• Crops not under water stress.

In the end, 46 articles were selected. The selected articles were published by Elsevier,
Springer, MDPI, IEEE, etc., and were selected based on the publishers that are commonly
selected for literature reviews. The keywords and additional filtering choices for the
literature selection are shown in Figure 1. The flow of the paper is shown in Figure 2.
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3. Remote Sensing

Methods for measuring water stress in crops are based on the interaction between the
crop and soil. In general, measuring crops’ water status and soil moisture content directly in
the field is laborious, time-consuming, and destructive [37–39], so there is a need for a time-
saving, accurate, easy, and non-destructive method to detect crops’ water status in order to
curb yield and economic losses early [40]. Recent research to assess crop water stress has
been conducted by using remote sensing data as an alternative to traditional measurement
methods. The advantage of using remote sensing is the provision of information on the
spatial and temporal variability of crops, allowing for more comprehensive analysis and
forecasting [41–47]. A brief description of the remote sensing techniques used to assess
water stress in crops is provided below (Figure 3).
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3.1. RGB Imaging

Using the literature review methodology described above, a total of five papers were
selected in which RGB imaging technology was used for crop water stress assessment. RGB
imaging is the simplest remote sensing technique for crop detection, based on silicon sensors
that are sensitive to the visible-light band (400–750 nm) and capable of two-dimensional
imaging. Typically, the raw data of an image are represented as a matrix of intensity values
corresponding to photon fluxes in the red (~600 nm), green (~550 nm), and blue (~450 nm)
spectral bands of visible light. RGB images are widely used in crop science because of their
low cost and ease of operation and maintenance [48]. Therefore, a variety of deep learning
and machine learning techniques have been used to assess crop water stress [49–51]. The
following Table 2 summarizes the use of RGB imaging to assess moisture stress in crops; it
is organized by crop type, best-performing model, methodologies used, paper objectives,
author, publisher, country, and year.

Table 2. RGB imaging for crop water stress evaluation.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Chickpea SVM

SVM,
K-Nearest Neighbors,

DT,
Naive Bayes (NB),

Discriminant Analysis
(DA)

Using images of
chickpea shoots to
identify crop water

stress due to low soil
moisture

[52] IEEE India 2020
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Table 2. Cont.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Maize

Convolutional
Neural

Network
(CNN)

CNN

Recognizing and
quantifying water

stress in maize using
digital imagery

[53] Elsevier China 2020

Soybean

Partial Least
Squares

Discriminant
Analysis
(PLS-DA)

Partial Least Squares
Discriminant

Analysis

Applicability and
limitations of RGB

image-based crop vigor
indices in determining
chilling stress in soya

beans

[54]
Korean Society of

Agrometeorol-
ogy

Korea 2021

Wheat CNN-LSTM-
CNN

CNN,
Long Short-Term
Memory (LSTM),

CNN-CNN,
LSTM-LSTM,

CNN-LSTM-CNN

Identification and
automatic detection of
water stress in wheat

crops

[55] Elsevier China 2022

Wheat and
maize GoogLeNet

AlexNet, GoogLeNet,
Inception V3,

MobileNet V2,
ResNet-50

Development of a
device for real-time
assessment of water
stress in wheat and

maize crops

[56] Elsevier India 2024

Monitoring crops’ water content using RGB imaging requires preset lighting condi-
tions as well as specific leaf orientation for the camera. This limits the applicability of
RGB imaging for assessing moisture content in the field [48]. Therefore, the use of RGB
imaging for crop water stress assessment is considered to be limited and is mainly used in
conjunction with thermal imaging techniques [57,58].

3.2. Thermal Imaging

Through the literature review methodology described above, a total of 13 papers were
selected in which thermal imaging techniques were used for crop water stress assessment.
High-resolution thermal imaging cameras have a spectral range of 3–14 µm, with the most
commonly used wavelengths being 3–5 µm or 7–14 µm [48]. Thermal imaging cameras are
relatively more expensive than simple-to-operate RGB cameras, which also have limited
features when used for crop water assessment. However, thermal images perform better
than RGB images in analyzing crop moisture stress, because thermal images are more
reliable and sensitive to changes in crop moisture content due to their higher penetration
compared to RGB wavelengths. Therefore, thermal imaging is a more suitable imaging
technology for crop moisture stress analysis than RGB imaging [59,60]. The following
Table 3 summarizes the use of thermal imaging to assess water stress in crops, and it is
organized by crop type, best-performing model, methodologies used, paper objectives,
author, publisher, country, and year of publication.

Table 3. Thermal imaging for crop water stress evaluation.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

- ANN ANN Implementing a system for
monitoring water stress in crops [61] IEEE Romania 2018

Grapes -
Rotation

Forests (ROF),
DT

Thermal-image-based
estimation and field assessment

of water stress in grapes
[62] PLOS Spain 2018

Wheat
Classification

and Regression
Tree (CRT)

CRT algorithm

Thermal-image-based biomass
and grain yield prediction of
wheat grown under moisture

stress in sodic soil
environments

[63] Elsevier Australia 2021
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Table 3. Cont.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Brassica Random Forest
(RF) RF

Assessing crop moisture status
with simulated baseline canopy

temperature and predicted
CWSI for brassica in China

[64] MDPI China 2021

Rice ANN ANN
Canopy moisture content

prediction based on
thermal–RGB imaging in rice

[65] MDPI China 2021

Cherry ANN ANN
Thermal-image-based

assessment of cherry moisture
status

[66] Elsevier Chile 2022

Sugarcane Inception-
Resnet-v2

Inception-
Resnet-v2

Predicting water stress in
sugarcane crops based on

thermal imagery
[67] Elsevier Brazil 2022

Tomato VGG-19 VGG-19
Water stress classification in

tomato crops based on thermal
and optical aerial imagery

[68] J.UCS Italy 2022

Wheat ResNet50

ANN,
K-Nearest
Neighbors

(KNN),
Logistic

Regression
(LO), SVM,

LSTM

Water stress assessment using
thermal–RGB imaging in winter

wheat
[57] MDPI India 2022

Rice

Generative
Adversarial

Network
(GAN)

GAN Monitoring moisture stress with
reconstructed thermal images [32] IEEE Indonesia 2022

Rice RF RF
Moisture-parameter-based

moisture status estimation in
rice using thermal imagery

[69] Elsevier China 2023

Cotton MobilenetV3

VGG16,
ResNet-18,

MobilenetV3,
DenseNet-201,
CSPdarknet53

Predicting water stress in cotton
crops based on thermal imagery [70] Elsevier China 2024

Wheat

Gradient-
Boosting

Decision Tree
(GBDT)

GBTD,
PLS,
SVM

Diagnosing water stress in
wheat growth [71] Elsevier China 2024

3.3. CWSI

Using the literature review methodology described above, a total of 10 articles were
selected in which CWSI technology was used to assess crop moisture stress. Moisture stress
is one of the most influential factors contributing to crop yield losses. Water deficit during
critical stages of growth, such as during vegetative growth, flowering, or fruit development,
can lead to significant yield losses [72,73]. Previous studies have used canopy temperature
as an efficient way to rapidly and non-destructively monitor crops’ responses to water
stress [74,75], This revealed that canopy temperature provides important clues to changes
in the water status and yield of crops under stress and non-stress conditions during drought
periods [76,77]. The Crop Water Stress Index (CWSI), based on canopy–air temperature
difference and vapor pressure deficit (VPD), has been developed and is a promising tool
for assessing water stress in crops [74]. The expression for CWSI is as follows:

CWSI =
Tl − Twet

Tdry − Twet
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where Tl is the temperature of the leaf; Twet is the lower bound of the canopy temperature,
corresponding to a well-watered leaf with fully open stomata; and Tdry is the upper bound
of the canopy temperature, corresponding to a leaf with fully closed stomata, i.e., a non-
permeable leaf [78]. Previous research has shown that the CWSI takes less time to detect
water stress at the farm level because it can measure water stress remotely; hence, this
method was the most commonly used indicator for assessing water stress in crops [79–82].
However, the CWSI has not been adopted in several applications, due to the following
reasons [78]: (i) Temperatures from the associated crop canopy, general leaf population,
and soil backgrounds, which are mixed when measured by handheld or high-altitude
airborne radiometers. (ii) The normalization of the CWSI is much more complex when
atmospheric conditions change than using VPDs only [83–85]. However, we believe that
widespread use of the CWSI could be a viable option if high-resolution canopy temperature
can be accurately monitored [79]. The following Table 4 summarizes the use of the CWSI to
assess water stress in crops, and it is organized by crop type, best-performing model, the
methodologies used, paper objectives, author, publisher, country, and year.

Table 4. CWSI for crop water stress evaluation.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Sugar beet,
wine grape Nash–Sutcliffe Nash–Sutcliffe,

linear model

Estimating baseline canopy
temperature for CWSI

calculations
[86] ASABE USA 2020

Rice FF-BP-ANN

Self-Organizing
Maps (SOM),
Feedforward

Backpropagation
Artificial Neural

Network
(FF-BP-ANN)

Using machine learning
techniques to determine optimal

CWSI values for rice
[87] Taylor &

Francis India 2023

Maize Linear
regression (LR) LR

Development of a
thermal-imaging-based CWSI
approach for the assessment of

water stress and yield prediction
in maize

[88] Wiley Thailand 2023

Maize CatBoost

ANN,
LSTM,

RF,
CatBoost,

SVM,
KNN,

Multiple Linear
Regression (MLP),

Stacked-RF,
Stacked Regression,

Weighted
Ensemble

CWSI prediction for corn crops [89] Elsevier USA 2023

Cotton

Extreme
Gradient
Boosting

(XGBoost)

SVM,
XGBoost,

Backpropagation
Neural Network

(BPNN)

Evaluation of CWSI estimation
during the cotton growing season

based on UAV multispectral
imagery

[90] Elsevier China 2024

Wheat,
mustard

ANN5 (ANN
with five
hidden

neurons)

SVM,
ANN,

Adaptive
Neuro-Fuzzy

Inference System

CWSI prediction using relative
humidity, air temperature, and

canopy temperature
[91] Research

Square India 2024

Sorghum,
maize RF

RF,
SVM,
PLS

Comparing the applicability of
the CWSI to the

Three-Dimensional Drought
Index (TDDI), which consists of

temperature, air temperature, and
five vegetation indices.

[92] Elsevier China 2024
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Table 4. Cont.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Citrus

Long
sequences:

CNN-LSTM;
short

sequences:
ConvLSTM

ConvLSTM,
CNN-LSTM

CWSI-based water stress
prediction [93] MDPI Morocco 2024

Maize RF
PLS,
SVM,

RF

Determining water stress indices
for monitoring and mapping crop

water stress variability
[94] MDPI South

Africa 2024

Wheat MLP

MLP,
SMOreg,

M5P,
RF,

IBK,
Random Trees (RT),

bagging,
Kstar

CWSI prediction for wheat crops [95] ASCE India 2024

3.4. Hyperspectral Imaging

Through the literature review methodology described above, a total of 18 articles
were selected that used multispectral and hyperspectral imaging techniques for crop
water stress assessment. The application of imaging spectroscopy for crop phenotyping
originated from studies on the remote sensing of vegetation [48]. Imaging spectroscopy
is a technique for detecting and classifying objects by measuring the light reflectance
of finely divided wavelengths in the optical part of the electromagnetic spectrum [96].
However, multispectral satellite remote sensing cannot effectively detect early signs of
stress in crops (e.g., nutrient deficiencies, crop diseases) in a timely manner, as the accuracy
of the retrieved variables is often limited due to limitations in spectral resolution [97]. This
has led to the need for remote sensing instruments and sensors with high spectral and
spatial resolution [98]. The use and development of hyperspectral imaging have been
crucial to eliminating those problems, providing hundreds of bands from which to obtain a
more detailed spectral response of the target feature than multispectral imaging [20]. The
following Table 5 summarizes the use of hyperspectral imaging to assess water stress in
crops, and it is organized by crop type, best-performing model, the methodologies used,
paper objectives, author, publisher, country, and year.

Table 5. Multispectral and hyperspectral imaging for crop water stress evaluation.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Grapes RF XGBoost,
RF

Hyperspectral-data-based
water stress assessment in

grapes
[99] MDPI South

Africa 2018

Lettuce ANN ANN
Hyperspectral-data-based
water stress assessment in

lettuce
[100] MDPI Brazil 2019

Maize

SVM and
K-means

Clustering
Algorithm

SVM and K-Means
Clustering
Algorithm

Hyperspectral-data-based
analysis for water stress

assessment and recovery in
maize

[101] Elsevier Belgium 2019

A variety of
leaves CNN CNN Estimating leaf water content to

quantify water stress [102] IEEE Pakistan 2019

Soybeans,
maize PLSR PLSR Assessing plants’ physiological

water stress responses [103] MDPI Denmark 2020
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Table 5. Cont.

Crop Best Model Methodologies Objective Authors Publisher Nation Year

Chickpeas 3D to 2D CNN 3D to 2D CNN
Assessing water stress in

chickpeas based on hyperspectral
data acquired by UAVs

[104] IEEE India 2021

Potatoes RF,
XGBoost

RF,
MLP,
CNN,
SVM,

XGBoost,
AdaBoost

Hyperspectral-data-based water
stress assessment in potatoes [105] MDPI Colombia 2021

Maize RF
RF,

ANN,
MLR

Managing water stress in maize
crops and estimating crop traits [106] Elsevier China 2021

Maize SVM RF,
SVM

Moisture stress detection and
optimal wavelength region

selection based on hyperspectral
data during corn’s grain-filling

stage

[107] IEEE India 2022

Pearl millet RFE-SVM

SelectFromModel
RF (SFM-RF),

SelectFromModel
SVM (SFM-SVM),

SelectFromEnsemble
RF (SFE-RF),

Recursive Feature
Elimination SVM

(RFE-SVM),
Chi2

Identifying canopy moisture
stress in pearl millet crops [108] IEEE India 2022

Grapes RFC
Optimized RF

Classifier (RFC),
ANN

Hyperspectral-data-based water
stress assessment in grapes [109] ASABE USA. 2022

Peanuts -

SelectFromModel
RF (SFM-RF),

SelectFromModel
SVM (SFM-SVM),

SelectFromEnsemble
RF (SFE-RF),

Recursive Feature
Elimination SVM

(RFE-SVM)

Canopy water stress assessment
based on hyperspectral data in

peanuts
[110] IEEE India 2023

Maize RF
LASSO,
PLSR,

RF

Monitoring plant water stress for
plant transpiration rates [111] SpringerLinkBelgium 2023

Grapes PLS PLS

Soil moisture and grape water
stress detection based on

hyperspectral data under diffuse
illumination

[112] Elsevier USA 2023

Wheat SVM

Wavelet Index
Model,
MLR,

RF,
SVM

Monitoring moisture status in
winter wheat [113] SpringerLink China 2023

Wheat

(multi-random
ensemble on

PLSR)
MRE-PLSR

RFR (RF
Regression),

PLSR,
MRE-PLSR

Predicting yield at different
growth stages of wheat crops

under moisture stress conditions
[114] Elsevier China 2024

Broccoli PyCaret PyCaret,
PLS-DA

Assessment of water stress in
broccoli based on AutoML and

hyperspectral data
[115] Elsevier Greece 2024

Rice GBDT GBDT

Integrating leaf moisture data
from multiple rice varieties to

create a model to estimate crop
moisture status

[116] SpringerLink China 2024
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4. Artificial Intelligence
4.1. Machine Learning

Machine learning is an evolving field of computational algorithms that are designed to
imitate human intelligence by learning from their surroundings. This field has a major role
to play in the new era of big data [117]. Machine learning uses algorithms that learn from
data, allowing computers to teach themselves information from data to solve problems.
These learning algorithms are used in many fields, including image processing, prediction,
analytics, and more [118]; they are broadly divided into supervised learning, unsupervised
learning, and reinforcement learning.

1. Supervised learning is a method of using pairs of input data and corresponding
output values to learn a function that allows the system to predict the output for new
inputs [119].

2. Unsupervised learning is a method of classifying patterns among data by uncovering
the hidden structure of input data without an output [120].

3. Reinforcement learning is a subfield of machine learning in which software agents
learn behaviors that maximize their cumulative reward in the environment [121].

4. Reinforcement learning (RL) offers distinct advantages for real-time decision-making
and automation in agriculture; its capacity to continuously learn and adapt through
interactions with the environment makes it especially effective for dynamic and
changing agricultural conditions. Although the use of RL in crop water stress research
is currently limited [122], its potential to greatly enhance adaptive management and
optimize irrigation strategies suggests that further exploration and experimentation
are worthwhile [123–125].

The selection of the algorithm approach depends on the type of problem to be solved,
the number of variables involved, and the type of model that best fits the data, among
other factors [118]. In particular, SVM and PLS algorithms have been effectively used to
analyze remote sensing data as models for crop water stress assessment. The following
Table 6 is a summary of the use of machine learning for crop water stress analysis in the
above research cases.

Table 6. Examples of using machine learning to analyze crop water stress.

Algorithms Used Number Uses Percentage (%)

SVM(R) 6 23.6%

PLS(DA) 3 11.5%

KNN 2 7.7%

DT 2 7.7%

SVM-based models 2 7.7%

DA 1 3.8%

NB 1 3.8%

ROF 1 3.8%

K-Means 1 3.8%

CRT 1 3.8%

LO 1 3.8%

RFC 1 3.8%

PyCaret 1 3.8%

SOM 1 3.8%

LR 1 3.8%

ANFIS 1 3.8%

Total 26 100%
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4.1.1. Support Vector Machines

Support Vector Machines were introduced by Vapnik in 1995 and are classification
models based on statistical learning theory that can be applied to both classification and
regression problems [126]. Although SVMs were developed in the late 1970s, they started to
gain popularity in the field of remote sensing in 2003 [127]. SVMs primarily aim to find the
hyperplane that maximizes the margin between two classes [128]. When data are linearly
separable, SVMs separate the two classes using the hyperplane that achieves the widest
margin. However, in cases where the data are not linearly separable, SVMs use kernel
functions to map the data into a higher-dimensional feature space, where an optimal hyper-
plane is found. SVMs can utilize various kernel functions (e.g., linear kernel, polynomial
kernel, and Gaussian kernel) to map nonlinear data into higher dimensions, and choosing
an appropriate kernel function significantly affects their classification performance [129].

In this process, support vectors are the most critical data points that contribute to
defining the hyperplane separating the two classes. The remaining data points do not
influence the position of the hyperplane, which is one reason SVMs can achieve high
classification accuracy even with a small amount of data [130]. Additionally, SVMs are
known to be robust against overfitting, as they strike a balance between performance on
the training data and the ability to generalize to new data [127]. The following Figure 4
shows the structure of the SVM.
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highlights the support vectors, which help to define the margin and the hyperplane separating Group
1 and Group 2.

Such SVMs are utilized in various fields, including medicine [131,132], statistics [133,134],
and text analysis [135,136]. In the agricultural sector, SVMs are particularly applied in crop
prediction and classification [137,138], as well as in yield forecasting [139,140].

4.1.2. Partial Least Squares Regression

Partial Least Squares Regression was introduced by H. Wold in 1975 [141]. Developed
to handle large datasets, PLS combines path analysis, principal component analysis, and
regression analysis [142,143], integrating dimensionality reduction with parameter estima-
tion. PLS iteratively applies simple bivariate regression (least squares) between columns
or rows of matrices in order to estimate covariates for each model. The process begins by
generating latent factor variables from the independent variable data (X matrix), which are
then used to model the relationship with the dependent variable (Y). In a PLS model, the
contribution of each variable is evaluated through standardized model coefficients, which
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represent the relationships between variables. A larger positive coefficient indicates that the
independent variable has a stronger positive influence on the dependent variable [143,144].
This method is particularly useful for modeling complex relationships involving multiple
variables, making it suitable for exploratory research or studies where complex causal
relationships are not yet fully understood [145,146].

PLS is often confused with principal component analysis (PCA). PCA transforms
the original set of variables into principal components (PCs), where the first principal
component explains most of the data’s variance, and subsequent components account for
progressively less variance. Unlike PLS, which models the relationship between indepen-
dent variables (X) and dependent variables (Y), PCA focuses on explaining the variance
within the independent variables (X) alone, without considering their relationship to the
dependent variable (Y) [147,148]. The following Figure 5 shows the structure of the PLS.
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PLS is applied in various fields, including technology adoption analysis [149], leisure
studies [150], linguistics and education [151], and marketing [152]. In the agricultural sector,
PLS is primarily used for analyzing the behavior of agricultural practitioners [153–155].

4.2. Deep Learning

Deep learning is an extension of classical machine learning, using a variety of functions
to add more “depth” to models and represent data in a hierarchical way with multiple
levels of abstraction [156,157]. One of the benefits of deep learning is feature learning; it
automatically extracts features from raw data, with higher-level features in a hierarchy
formed by combinations of lower-level features [158]. Deep learning also uses more com-
plex models than machine learning, allowing for massively parallel processing. These
deep learning models excel at classification and prediction due to their hierarchical struc-
ture and large learning capacity, and they are flexible enough to adapt to diverse and
complex data analyses [159]. Deep learning has been applied to a wide range of fields,
including automatic speech recognition, image recognition, natural language processing,
drug discovery, and bioinformatics [160]. Deep learning is a relatively new technology,
especially in agriculture; however, many researchers have tried to implement it in several
applications, such as disease detection and identification, fruit and object classification, and
many more [161]. In particular, ANN, CNN, and RNN algorithms have been effectively
used to analyze remote sensing data as models for crop water stress assessment. The
following Table 7 is a summary of the use of deep learning for crop water stress analysis in
the above case.
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Table 7. Examples of using deep learning to analyze crop water stress.

Algorithms Used Number Uses Percentage (%)

CNN-based models 9 47.3%

ANN-based models 6 31.6%

BPNN 2 10.5%

MLP 1 5.3%

LSTM 1 5.3%

Total 19 100%

4.2.1. Artificial Neural Networks

The concept of an ANN, introduced by W.S. McCulloch and W. Pitts, is a mathematical
representation of the neurons in the human brain, designed to simulate the way in which
the brain processes information [162]. ANNs began to be widely used in research with
the introduction of the backpropagation (BP) training algorithm for feedforward neural
networks in 1986 [163]. ANNs are biologically inspired computational models composed of
hundreds of single-unit artificial neurons that are trained to adjust their parameters in order
to produce outputs similar to those of known datasets [164]. By learning from historical
data, once sufficiently trained, ANNs can adapt to recurring changes and detect patterns
in complex data [165,166]. One of the most prominent types of ANN is the Multilayer
Perceptron (MLP) neural network, which consists of an input layer, an output layer, and one
or more hidden layers in between, with each layer containing multiple artificial neurons.
These neurons receive input signals, apply weights to calculate a weighted average, and
generate outputs through an activation function [167]. The following Figure 6 shows the
structure of the ANN.
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Figure 6. Artificial Neural Network structure. This figure depicts the structure of an Artificial Neural
Network (ANN) composed of an input layer, hidden layers, and an output layer; it shows how each
node is interconnected to process data and derive output values.

ANNs can perform regression analysis on highly nonlinear problems and are applied
to find nonlinear relationships between input and output datasets [168]; they are mainly
utilized for classification and recognition using multispectral information [169]. In agri-
culture, ANN models have been used in crop development modeling [170], crop yield
prediction [171,172], evapotranspiration estimation [173], and crop water stress assess-
ment [174–176].

4.2.2. Convolutional Neural Networks

In 1980, K. Fukushima proposed the neocognitron, which can be considered to be
the predecessor of CNNs [176]. In 1990, LeCun et al. [177] published a seminal paper
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that established the modern framework for CNNs, and since the early 2000s, ConvNets
have had great success in detecting, segmenting, and recognizing objects and regions in
images [158]. The basic building blocks of a CNN consist of three types: convolutional,
pooled, and fully connected layers [178]. The convolutional layer detects local connections
between features from previous layers, and the pooling layer merges semantically similar
features into one [158]. The following Figure 7 shows the structure of the CNN.
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CNNs can automatically learn important features from images and find hidden pat-
terns. When learning more data, this system can be more advanced at finding deep features
in images [179]. In agriculture, CNN models are being used for crop mapping [180], crop
disease diagnosis [181–184], weed and crop recognition [185,186], yield prediction [187],
and crop water stress detection [57].

4.3. Ensemble Learning

One of the earliest examples of ensemble learning is the work of Dasarathy and Sheela
in 1979, which introduced the idea of partitioning feature space using multiple classi-
fiers [188]. Since then, there has been an explosion of research on ensemble learning, with
the main methods being bagging, boosting, and stacking [189,190]. Ensemble learning
is a method that combines multiple base learners to make predictions on new inputs.
Bayesian learners consist of a variety of machine learning algorithms, such as decision
trees, neural networks, and linear regression, which take labeled data as inputs and create
a predictive model. This method allows for predictions on new, unlabeled data [191]. Such
ensemble learning can reduce the risk of overfitting owing to a variety of base models,
and by combining the results of different classification algorithms, it can reduce general-
ization error without increasing the variance of the model [192]. In addition, traditional
ensemble learning has been applied to a variety of fields by incorporating basic machine
learning models [193,194]. However, in recent years, there have been many attempts to
apply deep learning to ensemble learning [195,196]. Ensemble learning has a wide range of
applications, including fake news detection [197], web-based attack detection [198], battery
health estimation [199], dissolved oxygen prediction [200], and short-term electricity load
prediction. In the agricultural field, ensemble learning has been used for growth diagnos-
tics [201], yield prediction [202], pest classification [203], disease recognition [204], and
crop classification [205]. XGBoost and RF algorithms have been effectively used to analyze
remote sensing data to assess crop water stress. The following Table 8 are examples of how
ensemble learning algorithms are used to analyze crop water stress in the above cases.

Table 8. Examples of using ensemble learning to analyze crop water stress.

Algorithms Used Number of Uses Percentage (%)

RF 5 38.4%

XGBoost 3 23.1%

RF-based models 2 15.4%

SVM and K-means Clustering Algorithm 1 7.7%
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Table 8. Cont.

Algorithms Used Number of Uses Percentage (%)

Inception-Resnet-v2 1 7.7%

AdaBoost 1 7.7%

Total 13 100%

4.3.1. Extreme Gradient Boosting

Extreme Gradient Boosting is an algorithm based on the boosting tree model, intro-
duced by Tianqi Chen and Carlos Guestrin in 2014, which is optimized for decision and
regression trees [206]. The gradient boosting algorithm was developed for its very high
predictive power; however, it has the disadvantage that it requires a lot of training time be-
cause one decision tree must be created at a time to minimize the error of the previous trees
in the model. XGBoost was created to eliminate this drawback [207]. XGBoost primarily
utilizes gradient-boosted decision trees, emphasizing speed and performance. Boosting
is an ensemble method that adds new models to correct the errors of existing models.
XGBoost generates a new model to predict the residuals (errors) left by the previous models
and then adds it to the existing models to improve the final prediction. When adding
new models, the algorithm uses gradient descent to minimize errors [208]. The following
Figure 8 shows the structure of the Boosting algorithm. It illustrates the structure of the
boosting algorithm, where multiple decision trees are sequentially trained.
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XGBoost is very effective at reducing computation time and making optimal use
of memory resources [209]. In the agricultural sector, XGBoost is being used in various
fields, such as yield prediction [210–212], evapotranspiration prediction [213], crop fore-
casting [214], etc.

4.3.2. Random Forest

Random Forest was introduced by L. Breiman in 2001 [215]. RF is an ensemble machine
learning algorithm that uses a subset of features and bootstrap samples to create regression
trees [216]. The essential components of this ensemble are predictors with a tree structure,
and each tree is generated by introducing randomness into the process, which is why
this procedure is referred to as a “Random Forest” [217]. Random Forest is an algorithm
that generates multiple decision trees through randomization and then trains them using
bootstrap sampling; for classification tasks, it derives the final prediction through voting,
while for regression tasks, it averages the predictions. Each tree is created by randomly
selecting predictors and determining the optimal splits, and “out-of-bag” (OOB) data
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are used to evaluate the model’s performance [218]. The following Figure 9 shows the
structure of the Bagging algorithm. Figure 9 demonstrates the process of the bagging
algorithm, where multiple samples are drawn, and each decision tree is trained separately.
The predictions from each tree are then aggregated to produce the final prediction.
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The RF algorithm performs efficiently on large databases and can handle thousands of
input variables without overfitting, achieving fast and high prediction accuracy [215]. In
agriculture, RF is used in a variety of applications, including crop classification [219,220],
yield prediction [221], and crop forecasting [222].

5. Case Analysis

In this section, we systematically organize the collected cases according to their re-
spective remote sensing and AI techniques. Subsequently, we present the results of specific
studies that evaluate and compare the performance of each technique. Through this anal-
ysis, we aim to provide a clearer understanding of the strengths and limitations of each
technique. The cases have been organized based on the most frequently used AI techniques
and have been analyzed in detail, considering aspects such as study area, study period,
data acquisition methods, number of data, and accuracy. The specific applications are
as follows:

5.1. SVM

Azimi et al. [52] proposed a method for identifying water stress in chickpeas based
on RGB images. The SIFT and HOG feature extraction techniques were employed. For
analysis, KNN, decision trees, Naive Bayes, and SVM were used, with SVM achieving the
highest accuracy of 73%.

Mohite et al. [107] proposed a method for detecting water stress in maize crops using
drone-based hyperspectral imagery. The hyperspectral data from the influential wavelength
bands were utilized for water stress detection. SVM and RF were used for analysis, with
SVM demonstrating the highest performance in the 670–780 nm wavelength range.

Sankararao et al. [108] proposed a method for detecting water stress in pearl millet
crops using drone-based hyperspectral imagery. Hyperspectral data were processed with
various machine-learning-based feature selection techniques to extract wavelength bands
sensitive to water stress. SVM and RF were used for analysis, with SVM achieving an
accuracy of 95.38%. For early stress detection, the method achieved an accuracy of 80.76%.

Zhuang et al. [113] proposed a method combining continuous wavelet transform and
machine learning techniques to predict the water status of winter wheat. The wavelet
transform decomposed data into frequency components at various scales, enabling simulta-
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neous analysis of time and frequency information. The resulting multi-wavelength features
were used for prediction. SVM and RF were employed for analysis, with SVM achieving an
accuracy of 93% in predicting plants’ water content.

SVM has a strong advantage in handling nonlinear data and is widely used in agricul-
tural research due to its ability to manage complex patterns. The data collected from RGB
or hyperspectral images are high-dimensional and intricate, making SVM highly effective
for classifying such data. SVM is particularly well suited for capturing subtle variations
across different wavelength bands and, when combined with feature selection techniques,
can produce more precise results. Additionally, SVM is adept at managing nonlinearity and
high-dimensional data, making it superior in handling data complexity compared to other
analysis methods. When analyzing data at various scales, such as with wavelet transforms,
SVM excels at extracting the core patterns by combining time and frequency information.
The following Table 9 provides a detailed analysis of the collected cases that utilized the
SVM model.

Table 9. Case analysis with SVM.

Authors Study Area Study Period Data Acquisition
Methods Number of Data Accuracy

[52]
National Institute of Plant

Genome Research
(NIPGR)

5 months

The images were
taken indoors
using a Canon
camera in auto

mode.

A total of 8000 images
were collected, with 240

images per plant.
73%

[107]

Institute of Agricultural
Research, Chinese

Academy of Agricultural
Sciences

From October 2020
to May 2022

Measurements
were taken directly
in the field using a

handheld
spectrometer.

A total of 246 sample data
points. 93%

[108]
Xinxiang City in Henan

Province and Xingtai City
in Hebei Province, China.

From October 2022
to June 2023

Hyperspectral data
was collected

during flight using
a drone.

A total of 900 samples
were collected from 12
treatments in Xinxiang

and Xingtai, with 30
samples per treatment in

Xinxiang and 45 in
Xingtai.

95.38%

[113] Henan Province, China 2020 to 2022 - - 93%

5.2. PLS

Wan-Gyu et al. [54] proposed a method for detecting drought stress in soybeans using
RGB images. Various vegetation indices were extracted from the RGB images to analyze
changes in the leaf color and canopy cover of the soybean crops. PLS-DA was used as the
analysis technique. The results indicated that leaf color changes were more sensitive to
drought stress than canopy cover changes.

Sobejano-Paz et al. [103] proposed a method for assessing water stress in soybean and
maize crops by combining hyperspectral and thermal imagery. Key variables included
stomatal conductance, transpiration rate, and photosynthesis, with additional parameters
such as plant temperature and canopy height included alongside hyperspectral data. PLS-R
was used for the analysis, demonstrating accurate predictions for both soybeans and maize.
For soybeans, temperature-related variables were identified as the primary factors, while
for maize, canopy height was found to be the most significant variable.

Kang et al. [112] proposed a method for evaluating water stress in grapevines using
hyperspectral imagery. Water stress was assessed by predicting leaf water potential, stom-
atal conductance, and soil moisture content. Spectral data were collected under diffuse
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lighting conditions. PLS-R was employed for analysis, demonstrating very high accuracy
in predicting leaf water potential and soil moisture content.

The Partial Least Squares (PLS) algorithm effectively predicts key physiological vari-
ables such as stomatal conductance, transpiration rate, and photosynthesis. Specifically,
the PLS-R model analyzes various wavelength bands to capture drought-sensitive spectra,
enabling more precise predictions by utilizing wavelength bands that are not typically
employed in conventional vegetation indices. Additionally, PLS excels in reducing the vari-
ability within spectral data, making it particularly strong in generating accurate predictions.
The following Table 10 provides a detailed analysis of the collected cases that utilized the
PLS model.

Table 10. Case analysis with PLS.

Authors Study Area Study Period Data Acquisition
Methods Number of Data Accuracy

[54]
Central Institute of

Agricultural Engineering
located in Bhopal, India

from July to
October 2020

RGB images were
captured from the top of

the rainout shelter using a
commercial digital

camera.

RGB images were
captured a total of

26 times.
-

[103]

Riso Environmental Risk
Assessment Facility

(RERAF) in Roskilde,
Denmark

from March to
June 2018

Data were collected
directly using a FLIR Tau2

324 camera (thermal
imaging) and a Cubert

UHD 185 camera.

144 soybean
samples, 126 maize

samples
92%

[112]

a Vitis vinifera L. cv.
Riesling vineyard located

in Prosser, Washington,
USA

In 2021

Spectral data were
collected using a

ground-based
hyperspectral camera.

A total of 179 leaf
samples and 62 soil
moisture samples

89%

5.3. ANNs

Chandel et al. [57] proposed a method for detecting water stress in winter wheat crops
using high-resolution thermal–RGB imagery combined with advanced AI techniques. The
method integrated weather and soil data. LSTM was employed as the analysis technique,
achieving a prediction accuracy of 96.7%.

Mazare et al. [61] proposed a thermal imaging analysis system for real-time detection of
plant water stress. The system utilized a FLIR thermal camera to analyze plant temperature
distribution and a deep learning algorithm was employed to learn and recognize early
signs of water stress. An ANN was used as the analysis technique, achieving an accuracy
of 97.8%.

Elsherbiny et al. [65] proposed a method for predicting water stress in rice crops
using visible light and thermal imagery. Color and texture features were extracted from
RGB images, while temperature indices were derived from thermal data. An ANN was
employed as the analysis technique, utilizing a total of 21 key features as input variables.
The model demonstrated a high accuracy of 99.4%.

Carrasco-Benavides et al. [66] proposed a method for predicting water stress in cherry
trees using thermal imagery. Canopy temperature and relative humidity data were ex-
tracted from infrared thermal images. An ANN was used as the analysis technique to
predict stem water potential and stomatal conductance, achieving accuracies of 83% and
75%, respectively. The model based on canopy temperature and stomatal conductance
demonstrated an overall prediction accuracy of 81%.

King et al. [86] proposed a data-driven model for predicting the Crop Water Stress
Index (CWSI) using canopy temperature in sugar beet and grape crops. A neural network
model was employed for analysis, achieving a Nash–Sutcliffe efficiency greater than 0.88 in
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predicting the lower limit temperature (TLL) and an RMSE of less than 1.1 ◦C, indicating
high accuracy.

Cherie et al. [87] presented a comparative study of AI techniques for calculating the
Crop Water Stress Index (CWSI) in rice crops. Key meteorological variables such as relative
humidity, air temperature, and canopy temperature were used to calculate the CWSI. FF-
BP-ANN and SOM were employed as the analysis techniques, with FF-BP-ANN achieving
the highest accuracy, at 97%.

Kumar et al. [91] proposed an AI-based method for predicting the Crop Water Stress
Index (CWSI) in rice and Indian mustard crops. The model was compared with experimen-
tally calculated CWSI values based on data collected under various irrigation levels. ANN,
SVR, and ANFIS models were employed as the analysis techniques, with ANN5 (featuring
five hidden neurons) achieving the highest accuracy, at 99%.

Muni et al. [95] presented a comparative study of AI techniques for predicting the
Crop Water Stress Index (CWSI) in wheat crops. The CWSI values were derived from
experimental data. MLP, SMOreg, M5P, RF, IBk, RT, bagging, and Kstar were used as the
analysis techniques, with MLP showing the highest predictive accuracy, achieving an MAE
value of 0.013.

Osco et al. [100] proposed a method for evaluating water stress in lettuce crops using
hyperspectral imagery. Hyperspectral data were collected over 14 days from lettuce plants
under induced stress conditions. An ANN was employed as the analysis technique,
achieving an accuracy of 80% at the beginning of the experiment and 93% by the end.

Artificial Neural Networks (ANNs) excel at learning nonlinear relationships and
handling multiple variables simultaneously, making them highly effective for accurately
predicting complex issues such as crop water stress. Due to their hierarchical structure,
ANNs can automatically learn key patterns in data, allowing for more refined predictions
than other models. ANNs are particularly well suited for managing multiple physiological
indicators, supporting precise water management and efficient irrigation decision-making.
The following Table 11 provides a detailed analysis of the collected cases that utilized the
ANN model.

Table 11. Case analysis with ANN.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[57]

Research farm at the Central
Institute of Agricultural

Engineering (CIAE) located in
Bhopal, India.

From 2019 to 2021.

Images were collected from a
distance of 1 m using an
integrated thermal-RGB

imaging system based on
Raspberry Pi.

A total of 3200
images (1600 RGB
and 1600 thermal

images).

96.7%

[61]
University of Pitesti and
Polytechnic of Bucharest,

Romania
In 2018

Images were automatically
captured every 1 to 10 min

using a FLIR thermal camera
(300 × 128 resolution).

A total of 50,000
images 97.8%

[65]
Zhejiang University located

in Hangzhou, Zhejiang,
China

From 10 July to 21
September 2018

Captured directly using a
Canon PowerShot SX720 HS
camera and a FLIR Tau2-640

thermal imaging camera.

A total of 400 images
were captured, of
which 360 images

were used.

99.4%

[66]
A cherry orchard spanning
13.2 hectares in the Curicó

region of Chile.

2017–2018 and
2018–2019.

Captured at a distance of 3.5 m
using a FLIR thermal imaging

camera (TIS60, Fluke
Corporation).

Collected physical
indicators and

thermal imaging data
from a total of 24

trees.

83%

[86] Idaho, Wyoming, and Oregon
in the United States.

Over a period of five
years.

Collected based on directly
measured canopy temperature
and surrounding environmental

data.

- 88%
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Table 11. Cont.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[87]
Irrigation Laboratory at the

Indian Institute of
Technology, Roorkee.

During the rice
growing season.

Data collected from laboratory
measurements of

meteorological variables:
relative humidity, air

temperature, and canopy
temperature.

- 97%

[91]

Agricultural research station
at the National Institute of
Technology in Hamirpur,

India.

From 2017 to 2019.

Humidity and air temperature
were recorded every 10 min,
and canopy temperature was

measured with a portable
infrared thermometer.

Indian mustard: 1260
for development,

1350 for validation;
wheat: 1530 for

development, 1458
for validation.

99%

[95] - From December 2022
to April 2023.

Data were directly collected
using a portable infrared
radiometer and a weather

observation station.

- -

[100]

Growth chamber (Phytotron)
under controlled conditions
at the Federal University of

Mato Grosso do Sul in Brazil.

-

Spectrum data were collected in
the range of 325–1075 nm using

a FieldSpec HandHeld ASD
Spectroradiometer.

360 spectral
signatures were

measured, with 90
collected over four

days of the
experiment.

93%

5.4. CNNs

Zhuang et al. [53] proposed a method for detecting water stress in maize crops using
phenotypic images of leaves. A total of 18,040 images reflecting three different water stress
conditions were utilized. A CNN was employed as the analysis technique to extract feature
maps, which were then used by an SVM classifier to categorize the water stress levels. The
method achieved an accuracy of 88.41%.

Chandel et al. [56] proposed a system for real-time detection of crop water stress using
an AI-based mobile device. GoogLeNet was employed to collect images in real time and
classify water stress levels. The system achieved high accuracy rates of 97.9% for maize and
92.9% for wheat crops; additionally, it demonstrated fast processing speeds, with results
generated within 200 milliseconds after image input.

Chandel et al. [57] proposed a method for detecting water stress in winter wheat crops
using high-resolution thermal–RGB imagery combined with advanced AI techniques. The
collected images were analyzed using the ResNet50 model, achieving high accuracy rates
of 98.4% for thermal images and 96.9% for RGB images.

Melo et al. [67] proposed a method for detecting water stress in sugarcane crops using
thermal imagery. Thermal images of sugarcane were collected with a thermal camera
and analyzed using the Inception-ResNet-v2 model, which achieved 23% higher accuracy
compared to manual evaluation. Specifically, the model attained accuracy rates of 83%,
90%, and 98% when predicting available water capacity (AWC) levels of 25%, 50%, and
100%, respectively, in sugarcane.

Aversano et al. [68] proposed a method for detecting water stress in tomato crops
using thermal and optical imagery captured by drones. The VGG-19 model was employed
for analysis, achieving an accuracy of 80.5% with the thermal images.

Jin et al. [70] proposed a method for detecting water stress in cotton crops under film-
mulching drip irrigation using thermal imagery. The MobileNetV3 model was employed
for analysis, achieving high accuracy, with an F1 score of 0.9990 and a processing speed of
44.85 ms.

Nasir et al. [102] proposed a method for estimating plants’ leaf water content using
hyperspectral imagery. A CNN was employed for analysis, achieving a high accuracy of
98.4% and an RMSE of 4.183.
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Sankararao et al. [104] proposed a method for detecting water stress in chickpeas
using UAV-based hyperspectral imagery. The analysis was conducted using a 3D-2D CNN
model, achieving a high accuracy of 95.44%.

CNN-based deep learning models demonstrate excellent performance in detecting
water stress. CNNs can learn the phenotypic features of crops, allowing for non-invasive
monitoring of water status and providing quantitative assessments of the degree of water
stress. Models such as GoogLeNet and ResNet50 offer higher accuracy compared to other
techniques, with prediction performance significantly improving through the integration of
thermal imagery and multiple variables. Models such as DL-LSTM combine meteorological
and soil variables to aid in real-time water management decisions, while transfer learning
helps address data scarcity issues. MobileNetV3, with its fast processing speed and low
computational complexity, is considered to be well-suited for agricultural applications, and
3D-2D CNN models accurately capture subtle stress variations by utilizing multiple bands.
The following Table 12 provides a detailed analysis of the collected cases that utilized the
CNN model.

Table 12. Case analysis with CNN.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[53] Shaanxi Province, China.

The experiment
began on 18 June

2014 and continued
throughout the plant

growth period.

Images were collected from a
height of 4.5 m using a CCD
camera mounted on a fixed

platform.

A total of 18,040 digital
images 88.41%

[56] Central region of India. From November 2021
to June 2022.

Image data were collected in
the field using a Raspberry Pi

device and various RGB
cameras, including a Canon

PowerShot SX740, Raspberry
Pi camera, and smartphone.

A total of 3200 RGB
images

97.9% for maize
and 92.9% for

wheat

[57]

Research farm at the
Central Institute of

Agricultural Engineering
(CIAE) located in Bhopal,

India.

From 2019 to 2021.

Images were collected from a
distance of 1 m using an
integrated thermal-RGB

imaging system based on
Raspberry Pi.

A total of 3200 images
(1600 RGB and 1600

thermal images).
98.4%

[67]
University of São Paulo

(USP/ESALQ) located in
São Paulo, Brazil.

From 11 August 2019,
for a duration of

120 days.

Images were collected using a
FLIR ONE Pro LT thermal

imaging camera, which was
connected to a smartphone.

A total of 4050 thermal
images -

[68] A tomato farm near
Benevento, southern Italy.

The entire growth
cycle of tomato crops.

Collected thermal and optical
images using a drone (UAV).

6600 thermal and
6600 optical images 80.5%

[70] Shihezi University in the
Xinjiang region of China.

From May 2023 to
August 2023, a total

of 150 days.

The FLIR ONE Pro thermal
imaging camera was

connected to a smartphone
for use.

A total of
1300 thermal images -

[102]
Institute of Space

Technology located in
Islamabad, Pakistan.

-

The reflection spectra of plant
leaves were collected in the

laboratory using a
spectroradiometer.

402 image data sets were
collected for 11 plant

species, with each image
containing 3457 spectral

bands.

98.4%

[104]

International Crops
Research Institute for the

Semi-Arid Tropics
(ICRISAT) located in

Hyderabad, India.

-

Data were collected using a
Pika-L Hyperspectral
Imaging (HSI) camera

mounted on a drone (UAV).

208 data lines were
collected, with

26 genomes per treatment
and 8 repetitions.

95.44%

5.5. Ensemble

Das et al. [63] proposed a method for detecting water status in vineyards using mobile
thermal imaging and machine learning techniques. Random Forest (RF) was employed for
analysis, achieving an R2 of 0.61 in cross-validation and 0.65 in predictions.
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Yang et al. [64] proposed a method for detecting water stress in Chinese cabbage by
predicting canopy temperature. Random Forest (RF) was used as the analysis technique,
achieving high accuracy, with R2 values of 0.90 in the first experiment and 0.91 in the
second experiment.

Wu et al. [69] proposed a method for estimating water stress in rice crops using
multi-temporal temperature indices and machine learning techniques. Random Forest was
employed for analysis, achieving R2 values of 0.78 for PWC, 0.77 for CWC, and 0.64 for
CEWT, demonstrating high accuracy.

Wang et al. [71] proposed a method for detecting water stress in winter wheat crops
using UAV-based multispectral and thermal remote sensing. The Gradient-Boosting Deci-
sion Tree (GBDT) technique was employed for analysis, achieving high accuracy, with R²
values of 0.88 for NGS prediction and 0.90 for EWC prediction.

Katimbo et al. [89] proposed an AI-based model for predicting evapotranspiration (ET)
and crop water stress. CatBoost and Stacked Regression were employed as the analysis
techniques, achieving high accuracy, with an RMSE of 0.06–0.09 for CWSI prediction and
0.27–0.72 mm/day for ETc prediction.

Pei et al. [90] proposed a method for detecting water stress in cotton crops using UAV-
based multispectral imagery and texture information. XGBoost was employed for analysis,
achieving high accuracy, with an R2 of 0.90 and an RMSE of 0.05 for CWSI prediction.

Chen et al. [92] proposed a method for detecting water stress in sorghum and maize
crops using UAV remote sensing and a multidimensional drought index. Random Forest
Regression (RFR) was employed for analysis, achieving high accuracy, with R2 = 0.76 and
RMSE = 1.15% for sorghum and maize.

Kapari et al. [94] proposed a method for detecting water stress in maize crops using
multispectral and thermal images collected by UAVs, along with machine learning algo-
rithms. Random Forest was employed for analysis, achieving high accuracy, with an R2 of
0.85 and an RMSE of 0.05 for CWSI prediction.

Loggenberg et al. [99] proposed a method for detecting water stress in grape crops
using hyperspectral imaging and machine learning. Random Forest and XGBoost were
employed as the analysis techniques, achieving accuracies of 83.3% and 80.0%, respectively.

Martin et al. [105] proposed a method for detecting water stress in potato crops using
hyperspectral imaging and machine learning algorithms. Random Forest and XGBoost
were employed for analysis, with XGBoost showing the highest performance across all
growth stages, ultimately achieving an accuracy of 99.7%.

Niu et al. [106] proposed a method for predicting water stress in maize crops using
UAV-based multispectral imagery. Random Forest, Artificial Neural Networks (ANNs),
and Multivariate Linear Regression (MLR) were employed as analysis techniques, with the
Random Forest model achieving the highest accuracy, recording an R2 of 0.89 and an RMSE
of 0.066.

Thapa et al. [109] proposed a method for detecting water stress in grape crops using
hyperspectral imagery and machine learning. Random Forest and Artificial Neural Net-
works (ANNs) were employed as analysis techniques, achieving 73% and 70% accuracy,
respectively.

Mertens et al. [111] proposed a method for detecting water stress in maize using
near-range thermal and hyperspectral imagery on an indoor automated plant phenotyping
platform. Random Forest and LASSO were employed as analysis techniques, with the
LASSO model achieving the highest accuracy, recording an R² of 0.63 and an RMSE of 0.47.

Mao et al. [114] proposed a method for predicting yield loss due to water stress in
wheat crops using hyperspectral imagery. Various analysis techniques were employed,
including Random Forest Regression (RFR), Partial Least Squares Regression (PLS-R), and
multiple random ensembles. Among these, the multiple random ensemble model based on
PLS-R demonstrated the highest accuracy.

Zhang et al. [116] proposed a method for predicting leaf water content (LWC) in
rice using hyperspectral remote sensing combined with machine learning. The Gradient-
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Boosting Decision Tree (GBDT) technique was employed for analysis, achieving high
accuracy, with R2 = 0.86 and RMSE = 0.01.

RF and GBDT have demonstrated strong performance in predicting the CWSI and
crop water status, significantly improving accuracy by integrating meteorological and
thermal data. CatBoost and XGBoost excel particularly in combining multispectral indices
and texture information, making them crucial tools for real-time monitoring and irrigation
management. LASSO has shown high accuracy in predicting evapotranspiration rates, and
models utilizing spectral bands offer promising potential as efficient tools for water stress
detection and management. The following Table 13 provides a detailed analysis of the
collected cases that utilized the Ensemble model.

Table 13. Case analysis with Ensemble.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[63]

Conducted at two
locations in the

Goondiwindi region of
Australia: medium

salinity soil (MS) and
high salinity soil (HS).

From May to
November 2018.

Thermal images were
collected with a FLIR Tau 2
camera on a DJI Matrice 600

Pro drone, along with a
MicaSense RedEdge-M
multispectral camera.

- -

[64]
South China Agricultural

University located in
Guangzhou, China.

From 27 November
2020 to 31 December

2020, and from 25
May 2021 to 20 June

2021.

Canopy temperature was
measured at 0.3 m every
10 min with an infrared

radiometer, while weather
sensors recorded air

temperature, humidity, wind
speed, and photosynthetically

active radiation.

- 0.91%

[69]
Luogao Experimental

Base in Jiangsu Province,
China.

From 2019 to 2020.

Thermal images were
collected using a FLIR SC620
thermal camera from a height

of 1 m, at 2-hour intervals
between 8 AM and 4 PM.

A total of 205 data 78%

[71]

China Agricultural
University Experimental

Station in Zhuozhou,
Hebei Province, China

March to June, 2021
and 2022

UAV multispectral and
thermal remote sensing

14 vegetation indices and 2
thermal indices measured
over 6 key growth stages

90%

[89]

West Central Research,
Extension, and Education

Center, University of
Nebraska-Lincoln,

Nebraska, USA

2020 and 2021

Sensor data assimilation
(weather sensors, soil

moisture sensors, infrared
thermometers, etc.), real-time

climate and soil moisture
monitoringh

540 total data points
(30 days × 3 months ×

2 years)
-

[90]

Yuli County, Xinjiang,
China, in the alluvial

plain downstream of the
Tarim and Peacock Rivers

Cotton sown on
4 April 2021, and
harvested on 20
September 2021

UAV-based multispectral and
thermal imaging using

MicaSense Altum camera
attached to DJI M200 V2 UAV

2946 valid images collected
over five field measurement

dates
90%

[92]
Jichangbuyi Miao

Township, Anshun City,
Guizhou Province, China

Crops were sown in
May 2023, with data

collected until
maturity in August.

A DJI Matrice300 RTK UAV
equipped with MS600Pro

multispectral and Zenmuse
H20T thermal-infrared

sensors was used.

Ground-based VMC data
were collected from
155 samples (108 for
training and 47 for

validation).

76%

[94]

Smallholder farm in
southern Africa,

specifically in the
Swayimana rural area,

uMshwathi Local
Municipality,

KwaZulu-Natal Province,
South Africa.

8 February 2021 to
26 May 2021.

Collected using a DJI Matrice
300 UAV equipped with a

MicaSense Altum sensor and
a handheld infrared

thermometer.

3576 images 85%
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Table 13. Cont.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[99]

Welgevallen
experimental farm,

Stellenbosch, Western
Cape, South Africa.

-

Terrestrial hyperspectral
imaging using the SIMERA

HX MkII hyperspectral
sensor.

A total of 60 leaf spectra
samples 83.3%

[105]

Tibaitatá Research Center,
Corporación Colombiana

de Investigación
Agropecuaria

(AGROSAVIA),
Cundinamarca, Colombia

In 2021

Hyperspectral imagery
(400–1000 nm) using

128 spectral bands from a
Surface Optics Corporation

710-VP camera

A total of 116 images 99.7%

[106]
A 1.13-hectare maize field
located in Zhaojun Town,

Inner Mongolia, China

2018 and 2019
growing seasons

UAV imagery was collected
using a self-developed

hexacopter equipped with a
MicaSense RedEdge camera

for multispectral imagery,
and a DJI Phantom 4 Pro for

RGB imagery.

A total of 165 multispectral
and 161 RGB images were
collected in 2018, and 135

multispectral and 134 RGB
images in 2019.

89%

[109]

An experimental
vineyard in arid

southeastern Washington,
USA.

Data collected over
two growing seasons.

Hyperspectral images
acquired from a

ground-based utility vehicle.
- 73%

[111]

PHENOVISION
automated phenotyping

platform, a
semi-controlled

greenhouse, Belgium.

-

Proximal thermal and
hyperspectral imaging using

a high-throughput plant
phenotyping platform.

14,744 images and
288 additional

physiological trait images
were collected.

63%

[114]

Comprehensive
Experimental Base of the

Chinese Academy of
Agricultural Sciences,
Xinxiang City, Henan

Province and Yanli
Experimental Base,
Xingtai City, Hebei

Province, China

From 2022 to 2023

UAV-based hyperspectral
data acquisition using a

DJM600 Pro UAV equipped
with a Resonon Pika L

nano-hyperspectral scanner.

- -

[116]
Hefei, Anhui Province

and Fuyang, Anhui
Province, China

From 2021 to 2022

Hyperspectral remote sensing
using the ASD FieldSpec 4

device for spectral data
collection.

A total 91 sample data
points 86%

5.6. Others

Elsherbiny et al. [55] proposed a hybrid deep learning network for diagnosing the
water status of wheat crops using IoT-based multimodal data. The analysis employed a
hybrid model combining a CNN and LSTM, achieving an accuracy of 100%.

Das et al. [63] proposed a method for detecting water stress in wheat crops using UAV-
based thermal imaging and machine learning. The analysis employed the Classification
and Regression Tree (CRT) technique. The model achieved high accuracy, with an R² of 0.86
and RMSE of 41.3 g/m2 for biomass prediction, and an R2 of 0.78 and RMSE of 16.7 g/m2

for grain yield prediction.
Ismail et al. [32] proposed a method for smart agriculture that involves generating

reconstructed thermal images from visible-light images. The analysis employed Generative
Adversarial Networks (GANs) as the technique. The reconstructed thermal images demon-
strated high accuracy and achieved visual quality comparable to actual thermal images.

Pradawet et al. [88] proposed a method for detecting water stress in maize crops using
thermal imaging and machine learning models. They introduced an enhanced Crop Water
Stress Index (CWSI), which demonstrated a high correlation with leaf stomatal conductance,
achieving an R2 value of 0.90.
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Bounoua et al. [93] proposed a method for predicting crop water stress using satellite-
based remote sensing data. They employed CNN-LSTM and ConvLSTM models for
analysis, with the CNN-LSTM model achieving the highest accuracy, with an RMSE of 0.119.

Asaari et al. [101] proposed a Convolutional Neural Network (CNN)-based regression
method for detecting drought stress in maize crops and analyzing the recovery process
using hyperspectral imaging. They combined Support Vector Machine (SVM) with K-
Means Clustering to remove nonlinear effects and measure the spectral similarity of plants.
The SVM classification achieved an accuracy of over 96%.

Adduru et al. [110] proposed a method for the early detection of water stress in peanut
crops using UAV-based hyperspectral imaging and machine learning techniques. The
analysis employed SVM, Random Forest (RF), and XGBoost. The SVM model achieved the
highest accuracy, at 96.46%.

Malounas et al. [115] proposed a method for detecting drought stress in broccoli crops
using hyperspectral imaging and AutoML (Automated Machine Learning). The analysis
utilized PyCaret, AutoML, and PLS-DA (Partial Least Squares Discriminant Analysis).
PyCaret achieved the highest accuracy, with an F1 score of 1.00.

In crop water stress research, which often involves extended study durations, the
amount of available data can be limited. Therefore, Generative Adversarial Networks
(GANs) hold significant potential for enhancing the accuracy of water stress detection
across diverse environmental conditions through data augmentation. This capability
positions GANs as a crucial tool for advancing precision agriculture. The following Table 14
provides a detailed analysis of the collected cases that utilized the different model.

Table 14. Case analysis using different models.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[55] Zhejiang University,
Hangzhou, China

from October 2019 to
January 2020.

IoT-based multimodal data
acquisition, including RGB images,

soil moisture sensors, air temperature,
relative humidity, and wind speed.

876 images expanded
to 5256 with

augmentation.
100%

[63]

Goondiwindi,
northeastern grains

growing region,
Australia.

2018 wheat growing
season (May to

November).

UAV thermal remote sensing with a
FLIR Tau 2 camera on a DJI Matrice

600 Pro, collecting data
- -

[32]
Ismail, Daddy

Budiman, Ervan Asri,
Zass Ressy Aidha

-
Visible images were used to generate

thermal images using a deep
learning-based GAN model.

- -

[88]

Phitsanulok Province,
Thailand (Thapo
sub-district and

Wang Thong district)

from 2018 to 2020

Data were collected using a FLIR C2
camera for thermal imaging

positioned above the crop canopy,
along with soil moisture sensors and

weather data.

- 90%

[93]

Ourgha Farm,
Khnichet rural
commune, Sidi

Kacem Province,
Morocco

from 2015 to 2023

Remote sensing data obtained from
Landsat 8 satellite images processed

through Google Earth Engine,
focusing on the Crop Water Stress

Index (CWSI).

50 Landsat 8 satellite
images -

[101]

PHENOVISION
high-throughput

phenotyping
platform, VIB, Ghent,

Belgium

50 days of plant
growth were

monitored, beginning
from the V2 growth

stage.

Hyperspectral imaging using a
VNIR-HS line scan push-broom

camera (ImSpector V10E), capturing
images across 194 spectral bands

(400–1000 nm).

1900 hyperspectral
images were

collected from six
drought treatment

groups.

96%

[110]

International Crops
Research Institute for

the Semi-Arid
Tropics (ICRISAT),
Hyderabad, India

from November 2021
to February 2022.

Hyperspectral imaging using a
Resonon Pika-L camera on a DJI

Matrice-600 Pro UAV, capturing 300
bands (385–1020 nm).

16,000 samples were
collected with 1000
per genotype per

class.

96.46%
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Table 14. Cont.

Authors Study Area Study Period Data Acquisition Methods Number of Data Accuracy

[115]
Agricultural

University of Athens,
Athens, Greece

In 2024

Hyperspectral imaging with a
Snapscan VNIR camera on a

three-wheel platform using natural
sunlight.

120 images were
captured, reduced to

90 after outlier
removal (42 from
drought onset, 48
from acclimation).

-

6. Latest AI Technologies
6.1. Generative Adversarial Networks

To address the lack of data, researchers have used several techniques (Figure 10).
The first is to augment the data by applying various geometric and color transformations,
angular rotations, mirroring, etc., to the image [223–229]. The second way is to use transfer
learning to improve performance [230–236]. These data augmentation techniques have
led to improved model performance. In recent times, GANs [237] have gained traction as
a third way to address data sparsity. GANs are a new generative modeling framework
proposed by Goodfellow et al. that aims to generate data with the same characteristics as
the training instances by synthesizing new data that are visually similar to the data in the
training set [237]. Compared to traditional data augmentation techniques, GANs induce
more variation and enrich the original dataset through representation learning, and they
consistently improve model performance when combined with traditional augmentation
methods and original data [238–240]. Various GAN architectures have been developed for
image synthesis, including AutoGAN [241], BIGGAN [242], and DCGAN [243]. However,
GAN models run the risk of producing low-quality images due to instability in training, and
their performance is sensitive to hyperparameter settings [237,244,245]. Therefore, effective
use of GANs requires careful hyperparameter tuning, network structure engineering, and
various training tricks [246]. GAN operates by having the generator take random input
to create fake images, while the discriminator compares the generated fake images with
real images to distinguish between them. During the training process, the discriminator
learns to better differentiate between real and fake images, and the generator improves its
ability to create increasingly realistic fake images. Through this adversarial learning, the
generator eventually produces refined images that can deceive the discriminator, making
the generated images almost indistinguishable from real ones [247].
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Research on crop water stress assessment using GANs has been collected in studies that
propose methods to generate thermal images based on visible images [32]. Although there
is a limited amount of prior research on crop water stress assessment using GANs, several
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works related to this topic have been carried out, including Data augmentation [248–250],
disease detection [251], weed control [252], fruit detection [253], crop phenotyping [254],
and quality assessment [255]. Considering these studies, GANs have great development
potential in crop water stress assessment. Given the manual effort required, such as the
tuning of hyperparameters, we believe that there is significant potential for further research
in crop moisture stress assessment.

6.2. Explainable AI

Explainable AI (XAI) is a technology that enables end users to understand the learn-
ing models and decision-making processes of AI systems, helping them to trust AI sys-
tems [256]. The main goals of XAI are to build user trust, increase transparency and
accountability, and improve model performance by making it possible to understand how
AI models work and how they make decisions [257,258]. In recent years, XAI has rapidly
gained popularity, with new interpretable machine learning methods being proposed,
reviewed, and applied in various scientific fields [259–262]. XAI enhances model trans-
parency, helps users trust the system, supports the decision-making process, and makes it
easier to debug and improve models [263]. However, there are many limitations, including
difficulties in interpreting complex models, variability in posterior models, data bias, and
misunderstanding of causality. To overcome these limitations, using hybrid models seems
to be an effective way to simplify the model and balance performance [264] (Figure 11).
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Figure 11. Comparison between general Machine Learning and Explainable AI (XAI) Approaches.
The top section depicts the standard machine learning process, where models make decisions without
explanations. In contrast, the bottom section shows the XAI approach, which generates explainable
models and provides transparency through an explanation interface.

Crop water stress assessments rely on various parameters (soil moisture content,
canopy temperature, photosynthesis rate, chlorophyll content, etc.). XAI can help analyze
and interpret these data and clarify how each parameter contributes to the assessment
of water stress. However, there is still a lack of published research using XAI to assess
water stress in crops. However, XAI is already being used in a variety of agricultural
applications, including crop recommendations [258], agricultural data analytics [265], and
yield prediction [266], and it is beneficial in detecting diseases in crops [267–269]. Since
water stress in crops can be considered a component of disease, the applicability of XAI
technology to crop water stress assessment is considered to be high. Considering the
complex model interpretation, it is expected that research on crop water stress assessment
using XAI will be actively conducted in the future.

7. Conclusions

The assessment of crop water stress is a crucial process for agricultural productivity
and resource management. To conduct this assessment effectively, utilizing remote sensing
technologies is essential. This study provides a comprehensive analysis of remote sensing
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and artificial intelligence (AI) techniques for the non-destructive and efficient evaluation of
crop water stress induced by climate change. The main conclusions are as follows:

• The use of remote sensing technologies has demonstrated the potential for non-
destructive and precise evaluation of crop water stress. In particular, the use of
thermal imaging data has proven effective, and CWSI-based thermal analysis holds
significant potential for rapid and accurate water stress assessment.

• Data analysis utilizing machine learning and deep learning models shows high po-
tential for predicting crop water stress. Notably, CNN-based models are expected to
achieve excellent performance through RGB and thermal imaging data.

• Ensemble learning techniques combining various models have shown superior pre-
diction performance compared to single models. Ensemble models such as RF and
XGBoost can effectively learn complex data patterns and contribute to improved
prediction accuracy.

• The research on generating thermal images based on visible-light images using GANs
has a high potential for addressing data scarcity issues. Reconstructed thermal images
are expected to effectively assess water stress conditions.

• Explainable AI (XAI) contributes to increasing user trust by explaining the decision-
making processes of AI models. XAI is useful in interpreting the impact of various
variables in water stress assessment and holds promise for future applications.

Overall, this study has derived high-accuracy models. However, developing tech-
nologies that can adapt to accelerating climate change and variable production conditions
remains a crucial challenge. The application and development of various AI techniques
are necessary to overcome the limitations of existing models. In particular, crop research
typically takes about one year, and any management errors could prevent achieving the
desired results within that year. Upon analyzing the collected cases, most studies either
built models with a small number of images or increased data through automatic capture
every five to ten min. However, this only increases the quantity of data, not its quality. Gen-
erative algorithms like GANs are expected to make a significant contribution to addressing
this data scarcity issue. Additionally, while XAI algorithms have not yet been directly
applied to water stress evaluation, they could be useful in considering complex variables
by improving model transparency. This study is anticipated to contribute to solving data
scarcity issues and enhancing the accuracy and efficiency of decision-making in future crop
water stress assessments.
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