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Abstract: In this work, silver nanoparticles (AgNPs)/reduced graphene oxide (rGO) nanocomposites
were electrodeposited on glassy carbon electrodes (GCE) to construct electrochemical sensors for
the detection of hydrogen peroxide (H2O2) and dopamine (DA). The AgNPs were synthesized on
graphene oxide (GO) by the hydrothermal method, followed by the reduction of the GO during the
electrodeposition process, resulting in the formation of the nanocomposites on the surface of the
electrodes. The generation of AgNPs on the graphene sheets was verified by scanning electron mi-
croscopy (SEM) and electrochemical impedance spectroscopy (EIS). The AgNPs/rGO/GCE showed a
linear response to H2O2 in the range of 5 µM to 620 µM, with a sensitivity of 49 µA mM−1cm−2 and a
limit of detection (LOD) of 3.19 µA. The linear response of the AgNPs/rGO/GCE to DA ranged from
1 µM to 276 µM, the sensitivity was 7.86 µA mM−1cm−2, and the LOD was 0.18 µM. Furthermore, DA
and H2O2 were detected simultaneously in the same solution without interferences, and the sensors
displayed good stability over time. The preparation method for the sensors is relatively eco-friendly,
convenient, and efficient, exhibiting great potential for sensitive detection of DA and H2O2.

Keywords: silver nanoparticles; reduced graphene oxide; electrochemical sensors; dopamine; hydro-
gen peroxide

1. Introduction

Electrochemical biosensors can be divided into enzymatic and non-enzymatic biosen-
sors. Enzymes are proteins or RNAs produced by living cells with high specificity and
catalytic efficiency for their substrates. Therefore, enzyme-based biosensors are usually
highly selective and sensitive. However, since the catalytic performance of an enzyme
depends on its own spatial structure, changes in the external environment may lead to
decreased efficiency of enzymatic biosensors due to enzyme inactivation. Consequently,
non-enzymatic electrochemical sensors have received considerable attention in practical
applications [1]. In recent years, nanocomposites using graphene as the electrochemical
substrate and metal nanoparticles to provide catalytic activity have also attracted much
attention in the field of non-enzymatic electrochemical sensors.

Graphene, a single-atom-thick planar sheet composed of sp2-bonded carbon atoms,
has attracted much attention due to its unique electrical, mechanical, thermal, and optical
properties, thereby holding great promise in many advanced technologies, such as nano-
electronics, sensors, capacitors, and composites [2–9]. The favorable properties of graphene,
such as high conductivity, a large surface-to-volume ratio, and excellent chemical resistance,
make it an attractive substrate for composite materials. Accordingly, metal nanoparticle-
decorated graphene composites have become the focus of research in recent years. Silver
nanoparticle-modified graphene composites, in particular, have been extensively studied
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due to their effectiveness in a range of applications, including surface-enhanced Raman
scattering substrates, catalysis, and antibacterial properties [10–13].

H2O2 is a widely used oxidant that can be produced as a by-product of most oxidases.
It is widely used as a disinfectant in different chemical industries and an essential interme-
diate in many biological reactions, so its detection is receiving increasing attention [14–16].
Therefore, there is great interest in the fabrication of cost-effective, rapid, selective, sensi-
tive, and stable H2O2 sensors. A number of techniques have been designed to estimate
H2O2 concentrations, but most have disadvantages, including their requiring expensive
instrumentation, low selectivity, low sensitivity, or being time-consuming [17–19].

DA is a major catecholamine neurotransmitter that plays a vital role in the cardiovas-
cular and central nervous systems. The concentration level of DA in the body can affect the
physical health status of people. High DA levels can lead to cardiotoxicity, further leading
to increased heart rate, hypertension, and heart failure [20]. In contrast, low levels of DA in
the central nervous system are thought to be a major cause of several neurological disorders,
such as Parkinson’s disease, schizophrenia, and Alzheimer’s disease [21]. The level of
dopamine in the human body is affected by the concentration of dopamine precursors,
so the detection of dopamine precursors such as phenylalanine and tyrosine has become
popular [22–24]. Direct measurement of DA levels is also crucial for understanding the
biological functions and processes involved.

Hydrogen peroxide and dopamine are commonly used analytes in biosensor technol-
ogy because of their importance in their respective fields. Silver nanomaterials are widely
used in electrochemical detection, and recently Rayhane et al. successfully fabricated
H2O2 sensors using prepared silver nanoplate [25]. However, compared with the metal
particles themselves, GO and silver nanoparticles are more widely used because GO can
provide abundant growth sites for metal nanoparticles, and their complexes are more stable.
Wang et al. used a one-pot method in 2013 to prepare nano-silver-modified rGO for H2O2
detection with good sensitivity [26]. In 2015, Yang et al. synthesized a nanocomposite
AgNPs–Tween–GO where TWEEN80 was employed as a modifier of the GO and a stabilizer
of the AgNPs. Possibly due to the participation of the TWEEN80, which resulted in the
average size and better stability of the silver nanoparticles, the modified electrode obtained
by simple drop addition had a linear response to H2O2 in the range of 0.02 to 23.1 mM.
One downside to this approach was that it necessitated specific limiting conditions of high
pressure and high temperature during the preparation of the silver nanoparticles [27]. In a
recent study, AgNPs were immobilized on the surface of MoS2–GO to selectively detect DA
in the presence of uric acid and ascorbic acid without reporting the continuous detection
performance and repeatability [28].

Here, we report a rapid and eco-friendly approach for the fabrication of AgNPs/rGO-
based biosensors. The AgNPs/GO was first prepared using the hydrothermal method,
and the growth of the AgNPs on graphene sheets was examined by SEM and EIS. The
AgNPs/GO was converted to AgNPs/rGO by electrodeposition and modified on the
surface of the electrode to prepare the sensor. The sensor can detect DA and H2O2, with
the sensitivity, detection limit, and linear range being tested by electrochemical methods.
This facile, fast, and eco-friendly methodology produced sensors that were highly sensitive
and stable for DA and H2O2 detection.

2. Materials and Methods
2.1. Materials and Reagents

GO solution (GO, 1.27 wt%) was purchased from Chengdu Organic Chemicals Co.,
Ltd. (Chengdu, China). Anhydrous sodium citrate (C5H5O7Na3, ≥99%), NaCl (99.5%), and
silver nitrate solution (AgNO3, 0.5 M) were purchased from Shanghai Aladdin Biochemical
Technology Co., Ltd. (Shanghai, China). Hydrogen peroxide (H2O2, 30%) was purchased
from Tianjin Kemiou Chemical Reagent Co., Ltd. (Tianjin, China). Dopamine hydrochloride
(DA, 98%), KCl (99.5%), glucose (99%), and ethanol (C2H6O, 99.7%) were purchased
from Shanghai Macklin Biochemical Technology Co., Ltd. (Shanghai, China). Phosphate
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buffer solution (PBS) was purchased from Beijing Solarbo Science & Technology Co., Ltd.
(Beijing, China). Uric Acid (UA, 98%) was purchased from Bide Pharmatech Co., Ltd.
(Shanghai, China).

2.2. Apparatus

CV and amperometric measurements were performed on a CHI1040C electrochemical
workstation (Shanghai Chenhua Co. Ltd., China). EIS experiments were performed on
a CHI660E electrochemical workstation (Shanghai Chenhua Co., Ltd., Shanghai, China).
All the electrochemical experiments were performed using a standard three-electrode
system consisting of a 3 mm diameter glassy carbon electrode as the working electrode,
an Ag/AgCl electrode as the reference electrode, and a Pt wire electrode as the counter
electrode. The SEM was undertaken using a NOVA NanoSEM 450 for the characterization
of surface morphology. The AgNPs/GO was characterized using an X-ray diffractometer
(XRD; D/MAX-2400, Rigaku, The Woodlands, TX, USA) and a UV-Vis spectrophotometer
(Evolution 201, Thermo Scientific, Waltham, MA, USA).

2.3. Preparation of AgNPs/GO Composites

The AgNPs/GO was synthesized according to a reported method with slight modifi-
cations [29]. Briefly, 100 µL of 5 mM AgNO3 was mixed with 300 µL of 12.7 mg/mL GO in
2.6 mL ultrapure water. The solution was then ultrasonically dispersed for half an hour.
Afterward, the mixture was added to 17 mL ultrapure water, which had been heated to
60 ◦C and stirred magnetically for 4 h. The mixed solution was magnetically stirred at 60 ◦C
for 2 h after adding 14.8 mg of sodium citrate. Subsequently, the AgNPs/GO composite
solution was obtained.

2.4. Preparation of AgNPs/rGO Modified GCE

The GCE (3 mm in diameter) was polished with 1.0, 0.3, and 0.05 µm alumina powders
on a polishing cloth and rinsed with deionized water, followed by sonication in ethanol and
deionized water, in turn, and allowed to dry at room temperature. The polished electrode
should not be left exposed to air for an extended period. The polished glassy carbon elec-
trode was placed in 5 mL of an AgNPs/rGO complex solution and electrodeposited with a
standard three-electrode system at a voltage of −1.3 V for 600 s to obtain AgNPs/rGO/GCE.
For comparison, GO/GCE was prepared by drop addition, while rGO/GCE was prepared
by electrodeposition.

3. Results
3.1. The Growth of AgNPs on GO

Figure 1A shows the photos of a mixed solution of AgNO3 and GO containing sodium
citrate before and after heating. It can be seen that the color of the mixed solution of AgNO3
and GO changed from light yellow to brown-black after heating. The change in the color
of the solution indicated that the composition of the solution had changed. To further
demonstrate the growth of AgNPs on the surface of graphene sheets and to analyze the
microstructure characteristics of the AgNPs/rGO composites, the AgNPs/rGO composites
were electrodeposited on glassy carbon sheets and examined by SEM. For comparison,
the glassy carbon sheet modified by GO was prepared using the drop addition method.
The sheet structure with wrinkles that illustrated the fundamental feature of graphene
was observed in both the rGO and AgNPs/rGO samples (Figure 1B,C). This suggested
that the preparation process of AgNPs/rGO did not damage the GO structure. Moreover,
the growth of AgNPs on the graphene sheets was observed, demonstrating the successful
electrodeposition of AgNPs/rGO on the glassy carbon surface (Figure 1C).

To further explore the composition of the complex, UV-Vis and XRD analysis of the
complex solution were performed. As shown in Figure 2A, the GO and AgNPs/GO
were characterized by UV-Vis spectroscopy. The GO exhibited a characteristic peak at
around 230 nm, corresponding to the π-π* transition of C=C [30]. The observation of
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a shoulder peak at 230 nm in the AgNPs/GO sample indicated that the GO structure
remained intact during the AgNPs growth. Furthermore, the AgNPs/GO also displayed
a peak at approximately 427 nm, which accounted for the characteristic surface plasmon
resonance of the AgNPs with λmax within 400–500 nm [31]. XRD was applied to analyze
the characteristics of the GO and AgNPs/GO powder samples, including the crystalline
phase, morphology, and microstructure. Figure 2B depicts the typical characteristic (002)
peak at 10.81◦ of GO. Compared with the GO, the (002) peak of the AgNPs/GO displayed
a decreasing trend, attributable to the growth of AgNPs on the surface of the graphene
nanosheets, which hindered the re-stacking of the graphene nanoplates [32,33]. Moreover,
the AgNPs/GO had newly indexed peaks at 38.1◦, 44.3◦, 64.4◦, and 77.4◦, reflecting the
cubic phase of Ag (PDF card number: 00-001-1167). The results of the UV-Vis and XRD
showed that AgNPs were successfully grown on the surface of the graphene sheet, and the
2D nanostructure of GO was still present.
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Figure 2. Structure characterization of AgNPs/GO. (A) The absorbance spectra of GO and Ag-
NPs/GO. (B) The XRD spectra of GO and AgNPs/GO.

3.2. Electrochemical Characterization of AgNPs/rGO/GCE

The electrochemical properties of the surface-modified GCE were analyzed using
EIS, performed in 20 mM [Fe(CN)6]3−/4−, 0.1 M KCl over a frequency range of 106 Hz to
10 Hz. Nyquist plots of GCE, GO/GCE, rGO/GCE, and AgNPs/rGO/GCE are shown in
Figure 3A, where the diameter of the semicircle indicates the charge transfer resistance
(Rct). The rise in Rct after GO modification (GO/GCE) on the surface of the GCE could
be attributed to decreased conductivity caused by excessive oxygen-containing groups
on the surface of the GO. Therefore, after the electric reduction of the GO (rGO/GCE),
the reduction of oxygen-containing groups on the surface led to a sharp increase in the
overall conductivity of the electrode and a decrease in Rct. The growth of AgNPs on the
graphene sheet increased the specific surface area of the electrode and promoted electron
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transfer, thereby lowering the Rct of AgNPs/rGO/GCE. The analysis of AgNPs/rGO/GCE,
rGO/GCE, GO/GCE, and GCE by EIS indicated that AgNPs grew on the graphene and
that AgNPs/rGO/GCE was successfully electrodeposited on the surface of the GCE.
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CV tests were conducted on the modified electrodes to further investigate the elec-
trochemical properties of AgNPs/rGO/GCE. When immersed in PBS and subjected to
CV scanning at a voltage range spanning from −0.5 V to 0.4 V, the AgNPs/rGO/GCE
exhibited an oxidation peak at 0.15 V, which represented the characteristic peak of silver
nanoparticles, thereby demonstrating the growth of AgNPs on the GO surface. Moreover,
it could be seen that the AgNPs/rGO/GCE had a tiny reduction peak at 0 V, indicating
the reduction peak of Ag2O. Additionally, the reduction peak at −0.4 V might correspond
to the reaction of oxygen in the solution catalyzed by AgNPs. The obtained CV curves
remained stable over 30 cycles (Figure S1), suggesting the good electrochemical stability of
AgNPs/rGO/GCE.

3.3. The Changes in Specific Surface Area

To analyze the changes in the specific surface area of the GCE after modification with
AgNPs/rGO, the CV of the GCE and AgNPs/rGO/GCE were tested in a solution containing
20 mM K3[Fe(CN)6], 0.1M KCl, from −0.2 V to 0.8 V, with the scanning speed varied from
0.02 V/s to 0.2 V/s. With the Randles–Sevcik equation, Ip =

(
2.69 × 105)n

3
2 AD

1
2 V

1
2 C, the

specific surface area of each electrode was calculated. The specific surface area of the modified
material is measured in A/(cm2), while the concentration of the redox mediator is given in
C/(mol·cm−3). The cyclic voltammetry rate is represented as V/(V · S−1), and D/(cm2/s) is
the diffusion coefficient. The peak current is Ip/(A), and n refers to the number of transferred
electrons. The diffusion coefficient, D, of K3[Fe(CN)6] is 7.6 × 10−6 cm2s−1. The detailed
CV test results at varying scanning speeds of the GCE and AgNPs/rGO/GCE are shown in
Figures S2 and S3. The CV peak current of the AgNPs/rGO/GCE was observed to be greater
than that of the GCE. The peak currents were fitted to the scan rate to obtain Figure S4. The
electroactive area of the AgNPs/rGO/GCE was calculated to be 24.8 mm2.

Figure S5A shows the CV curves of the AgNPs/rGO/GCE at different scan rates. PBS
was chosen as the supporting electrolyte to obtain the maximum sensitivity of the sensor.
As can be seen from the figure, the potential and peak current depend on the scan rate. The
peak cathode current increased linearly as the scan rate increased from 20 to 200 mV s−1,
with a correlation coefficient of 0.973 (Figure S5B), indicating that the redox process of the
fabricated bio-nanocomposites was a surface-controlled process.

3.4. The Detection of H2O2 by AgNPs/rGO/GCE

Based on the previously reported mechanism [34–36], the electrocatalytic reaction of
H2O2 on the electrocatalyst occurred according to the following mechanism:
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H2O2 + e−
AgNPs→ OHads + OH−

OHads + H+ + e−
AgNPs→ H2O

According to the first equation, the H2O2 that was adsorbed on the AgNPs gained
an electron, producing (OH)ads and OH−. Subsequently, the (OH)ads received another
electron from the AgNPs and produced H2O. The reduction rate here depended mainly
on the adsorption of H2O2 on the electrocatalyst surface and the transfer of electrons from
the electrocatalyst to (OH)ads. Therefore, the enhanced adsorption and electron transfer
properties of the electrocatalyst are necessary for the electrocatalytic reduction of H2O2.

To verify the catalytic effect of AgNPs on H2O2 reduction, CV tests were conducted
on GO/GCE, rGO/GCE, and AgNPs/rGO/GCE in PBS solution containing 1 mM H2O2.
Upon the addition of 1 mM H2O2, there was a significant current peak at around −0.35 V,
accounting for H2O2 reduction catalyzed by AgNPs compared with AgNPs/rGO/GCE in
PBS solution without H2O2 (Figure 4A). On the contrary, GO/GCE and rGO/GCE barely
responded to H2O2, as illustrated in Figure 4B. This indicated that the presence of AgNPs
facilitated the transfer of electrons to H2O2 during the electrocatalytic reduction. The role of
AgNPs in this process was to increase the specific surface area of the electrode and catalyze
the reaction of H2O2, which enhances the electron transfer kinetics during its electrocat-
alytic reduction. Upon successively introducing H2O2 into the system, the amperometric
responses of the AgNPs/rGO/GCE were examined at −0.3 V. The AgNPs/rGO/GCE
displayed responses to H2O2 in a wide range, from 5 µM to 3.62 mM, and a response
time (t95) of around 3 s (Figure 4C). The response current increased linearly with H2O2
concentration between 5 µM and 620 µM, with an R2 of 0.998. The sensitivity was calculated
to be 49 µA mM−1cm−1, and the LOD was estimated to be 3.19 µM (S/N = 3).
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sponded to the DA in a wide range, from 1 µM to 776 µM. It was observed that the current 
response swiftly rose to a stable level within 3 s after adding DA, suggesting a quick re-
sponse rate of the system. Figure 5D exhibits the curve fiĴing of the response current to 
the concentration. The linear response range of the system was from 1 µM to 276 µM (R2 
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estimated to be 0.18 µM (S/N = 3). 

Figure 4. CV responses of different electrodes and amperometric tests of AgNPs/rGO/GCE to H2O2.
(A) CV curves of AgNPs/rGO/GCE in PBS solution with or without 1 mM H2O2. (B) CV curves
of AgNPs/rGO/GCE, rGO/GCE, and GO/GCE in PBS solution with 1 mM H2O2. (C) Current
responses at -0.3 V of AgNPs/rGO/GCE in PBS with different concentrations of H2O2. (D) The
calibration curve of the current responses in (C).
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3.5. The Detection of DA by AgNPs/rGO/GCE

CV measurements with a voltage spanning from −0.6 V to 0.6 V and a scanning rate
of 100 mV·s−1 were conducted on AgNPs/rGO/GCE in PBS solution containing 4 mM
DA to explore the optimal detection voltage for DA. Upon adding 4 mM DA, there was
an oxidation peak at 0.5 V and a reduction peak at −0.45 V, indicating that the AgNPs
catalyzed DA reduction in comparison to AgNPs/rGO/GCE in a PBS solution lacking DA
(Figure 5A). In contrast, GO/GCE and rGO/GCE showed minimal response to DA, as
illustrated in Figure 5B.
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In order to have a better signal-to-noise ratio of the system, the amperometric test was
conducted at a voltage of 0.25 V. Figure 5C illustrates the current changes in the system
when various concentrations of DA were added, and the AgNPs/rGO/GCE responded to
the DA in a wide range, from 1 µM to 776 µM. It was observed that the current response
swiftly rose to a stable level within 3 s after adding DA, suggesting a quick response rate of
the system. Figure 5D exhibits the curve fitting of the response current to the concentration.
The linear response range of the system was from 1 µM to 276 µM (R2 = 0.997). The
sensitivity was calculated as 7.86 µA mM−1cm−1, and the LOD for DA was estimated to be
0.18 µM (S/N = 3).

The CV curves of AgNPs/rGO/GCE responded at both 0.5 V and −0.45 V after the
addition of DA. However, the AgNPs/rGO/GCE had no obvious current response when
the amperometric tests were applied to detect DA at any voltage ranging from −0.2V
to −0.6V. In terms of the report from Chen et al., AgNPs-modified GCE would have a
reduction peak from −0.4 V to −0.6 V in the oxygenated solution [37]. Therefore, it was
speculated that when DA was added, oxygen catalyzed the reaction of DA, resulting in a
reduction peak of CV at this voltage. However, the oxygen in the solution would soon be
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exhausted, as amperometric tests would take a long period, and as a result, the reduction
peak was unsuitable for monitoring DA in the amperometric tests.

Tables 1 and 2 show the sensors used to detect H2O2 and DA in recent years. The sensor
performance prepared in this paper was comparable to the sensors previously reported,
and the preparation process was convenient, green, and fast. It is worth mentioning that
Golsheikh et al. electrodeposited AgNPs-rGO onto an ITO electrode surface in one step by
applying CV to the mixed solution of [Ag(NH3)2OH] and GO in 2013 [37]. Their method
of preparing the sensor was also very convenient, but the LOD of the prepared sensor
was high.

Table 1. A comparison of this work with works in the literature regarding the performance of the
H2O2 assays.

Sensor for H2O2 Linear Range (mM) Detection Limit (µM)

GQD-PNF-GO [38] 0.01–7.2 0.055
AgNPs-rGO(one-pot) [26] 0.05–5 10

AgNPs/PDA/rGO [39] 0.005–9.97 0.68
3D-rGO/AgNP [40] 0.016–27 6.8

Ag/ZIF–8 [41] 0.02–5, 5.5–10 6.2
N–graphene–AgND [42] 0.1–80 0.26
Ag nanowire array [43] 0.1–3.1 29.2

ERGO-Ag [44] 0.1–100 1.6
AgNPs/rGO [this work] 0.005–0.62 3.19

Table 2. A comparison of this work with works in the literature regarding the performance of the
DA assays.

Sensor for DA Linear Range (µM) Detection Limit (µM)

N-rGO [45] 1–60 0.1
PEDOT-GO [46] 6–200 2.0

rGO-Ag/PANI [47] 5–200 0.2
MoS2/Ag [48] 1–500 0.2

MoS2/rGO/AgNP [28] 2.5–12.5 0.009
AgNPs/rGO [this work] 1–276 0.18

3.6. Interference and Stability

To investigate the anti-interference performance of AgNPs/rGO/GCE on detecting
DA and H2O2 simultaneously, amperometric tests were conducted at 0.25 V and −0.3 V,
respectively, and the results are shown in Figure 6. The AgNPs/rGO/GCE displayed
negligible current response after the addition of NaCl, KCl, glucose, and UA compared
with the sharp response to H2O2 at −0.3 V or to DA at 0.25 V. Importantly, the presence of
H2O2 or DA did not interfere with the detection of the other.

To demonstrate the stability and utility of the method, we also evaluated the precision
and long-term stability of the AgNPs/rGO/GCE. Eight sensors modified with AgNPs/rGO
by the same method were prepared, and the peak currents of CV in PBS solution containing
1 mM H2O2 for each electrode were recorded. As shown in Figure 7A, a relative standard
deviation of 1.7% for the eight electrodes was obtained, indicating a high reproducibility
of our method for preparing sensor electrodes. In addition, these electrodes were used to
measure the peak current at weekly intervals for 6 weeks to test the long-term stability.
When not in use, the electrodes were immersed in PBS and placed at 4 ◦C. The sensitivity
still maintained around 75% of the initial value after 6 weeks (Figure 7B), demonstrat-
ing good stability of the sensors. Similar results were obtained for DA detection using
AgNPs/rGO/GCE (Figure 7C,D). The relative standard deviation of DA detection was
1.81%. After 6 weeks, the current response of the sensors to DA remained at 62.4% of the
initial value.
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Figure 6. Selectivity test. (A) The current response of AgNPs/rGO/GCE was obtained by adding
25 µM H2O2, 0.1 M NaCl, 0.1 M KCl, 0.1 M glucose, 0.1 M UA, 0.1 M DA, and 25 µM H2O2 to PBS
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PBS solution at a voltage of 0.25 V.
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Figure 7. Stability test. (A) Peak currents of eight different AgNPs/rGO/GCEs in PBS solution
containing 1 mM H2O2. (B) Changes in the peak current of oxidation in a PBS solution containing
1 mM H2O2 for eight different electrodes after 1–6 weeks in the refrigerator. (C) Peak currents of eight
different AgNPs/rGO/GCEs in PBS solution containing 10 µM DA. (D) Changes in the peak current
of oxidation in a PBS solution containing 10 µM DA for eight different electrodes after 1–6 weeks in
the refrigerator.

4. Conclusions

In this work, AgNPs/GO composites were prepared in solution, followed by the
electrodeposition of AgNPs/rGO on the surface of GCE to obtain AgNPs/rGO/GCE.
The modification of AgNPs/rGO on GCE effectively increased the specific surface area
of the GCE and gave the GCE the capacity to respond to H2O2 and DA, respectively.
The sensors exhibited high sensitivity, a wide linear range, low detection limit, excellent
reproducibility, and relatively good long-term stability for both H2O2 and DA. Besides, the
AgNPs/rGO/GCE responded to H2O2 and DA at different voltages and could detect them
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simultaneously. This convenient and eco-friendly method might have great potential for
sensor preparation for multiple target detection.

Supplementary Materials: The following supporting information can be downloaded at: https:
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