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Abstract: Micromachined electric field mills have received much interest for the measurement of DC
fields; however, conventional designs with lateral moving shutters could have shutter lifting in the
presence of strong fields, which affects their performance. This paper presents a MEMS electric field
mill utilizing a vertical movement shutter to address this issue. The sensor is designed and fabricated
based on a flexible PCB substrate and is released using a laser-cutting process. The movement of
the shutter is driven by an electrostatic actuator. When the driving signal is a sine wave, the shutter
moves in the same direction during both the positive and negative half-periods. This facilitates the
application of a lock-in amplifier to synchronize with the signal at twice the frequency of the driving
signal. In experimental testing, when the vertical shutter is driven at a resonance of 840 Hz, the
highest sensitivity of the sensor is achieved and is measured to be 5.1 V/kVm−1. The sensor also
demonstrates a good linearity of 1.1% for measuring DC electric fields in the range of 1.25 kV/m to
25 kV/m.

Keywords: electric field sensor; electric field mill; flexible PCB; MEMS; micromachining; electrostatic
actuator; laser micromachining

1. Introduction

A DC (direct current) electric field sensor (EFS) is a device designed to measure and
quantify the strength of static or slowly changing electric fields in a given environment.
They are useful for applications that involve static or slowly changing electric fields. In
power utilities, they can be used to evaluate the electromagnetic environment in an electric
power transmission system [1] and the design of insulators [2], and to ensure the safety
of power workers [3]. In industrial manufacturing processes, they can be used to prevent
electrostatic discharges (ESDs) to protect electronic equipment [4]. In atmospheric science,
they are used to study the mechanisms of thunderstorms [5] and predict lightning [6]. They
are also useful in the study of climate and geophysics [7].

Common techniques to measure DC electric fields include induction probes, optical
sensors, and electric field mills (EFMs). An induction probe has a sensing electrode placed
in an electric field, and when it is in equilibrium status, the voltage on the electrode
is proportional to the field, which can be measured by using a high-input impedance
electrical meter. Some benefits of induction probe type EFSs include a low cost and small
size, but they require re-zeroing in shielding conditions, which is inconvenient in long-term
applications. Optical sensors are usually based on Pockel’s effect, where an electric field
can change a light waveguide crystal’s birefringent properties, and thus, the polarity of
the light transversing the light waveguide will be changed [8]. Optical sensors cause
minimal distortion of the electric field to be measured, but the optical equipment is often
expensive and not stable in a variable temperature environment [9]. An EFM usually has
a rotating grounded shutter over a set of sensing electrodes. The rotation of the shutter
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exposes and covers the sensing electrodes periodically, which generates an AC current
with an amplitude proportional to the strength of the electric field. Traditional EFMs can
stably work outside in various weather conditions, but they are bulky and require high
power consumption and frequent maintenance. Besides these three common measurement
techniques, some other types of electric field sensors reported in the literature include a
graphene-based device [10], a ferroelectric material-based sensor [11], and a steered-electron
sensor [12].

Recently, microelectromechanical field mills (MEFM) have been reported by multiple
research groups [13–18]. They offer the benefits of small size, low cost, light weight, low
power consumption, and minimal maintenance requirements. Similar to a traditional
EFM, MEFMs employ grounded shutters vibrating above or adjacent to sensing electrodes.
However, when these sensors are exposed to a strong electric field, grounded shutters
will lift toward the field, which can affect their shielding ability, significantly reducing the
sensor sensitivity. This is because the induced charge on MEFM electrodes is very sensitive
to the gap between the shielding shutter and the underlying sensor electrodes. A vertical
vibrating shutter type EFM is a promising design to overcome this issue, as the lifting of
the shutter can be compensated for by adjusting the vibration range. The concept was first
simulated by C. Gong et al. in 2004 [19], where they demonstrated that a vertical movement
shutter has a similar shielding effect. However, until now, no MEFM has been reported
using a vertical vibration shutter, except S. Ghionea et al., who reported a device that only
works for measuring AC fields in 2013 [20].

In this work, we designed a vertical movement shutter type of MEFM by using
a flexible PCB (FPCB) substrate. FPCB has the benefit of leveraging a commercialized
manufacturing process that is faster and lower cost, making it an ideal choice for academic
research in prototyping many MEMS devices without the need for a cleanroom. Recently,
an increasing number of devices based on FPCB have been implemented [21–24]. In
comparison to traditional silicon-based devices, their FPCB-based counterparts exhibit
comparable performance levels while concurrently showcasing a marked improvement
in durability. In this design, the shutter movement is driven by an electrostatic actuator.
A simulation was performed to investigate the micro-spring spring constant, resonant
frequency, and interference from the driving signal. After the simulation, the sensor was
fabricated and tested, and it demonstrated a sensitivity of 5.1 V/kVm−1 when operating
at resonance.

2. Sensor Design
2.1. Working Principle

Figure 1 illustrates the working principle of this sensor. It consists of a grounded
shutter and grounded sensing electrodes. The shutter is supported by micro-springs, which
are not shown in Figure 1. In the center of the shutter, there is a grounded area to form
an electrostatic actuator together with an electrode under it. When a voltage is applied
to this electrode, the shutter will move. Obviously, if the electrode is closer to the shutter,
a stronger electrostatic force can be generated. If the voltage provided is a sine wave
V = V0sin(ωt), where ω = 2πf, at t = 0 and t = π, the voltage on the actuator is V = 0, and
the shutter has no movement (Figure 1a). At t = π

2 , the voltage on the actuator is V0, and
at t = 3π

2 , the voltage on the actuator is −V0. In both situations, the actuator will drive
the shutter to move downward for a distance of d (Figure 1b). If the shutter moves up and
down periodically within an electric field, the sensing electrodes detect variations in the
field caused by the changes in the fringing effect. As a result, varying charges are induced,
leading to the generation of an alternating current. Based on Gauss’s law, the total induced
charge on the sensing electrodes is equal to the total electric flux. At t = 0 and t = π, the
electric field on the sensing electrodes is E1, and the induced charge can be calculated as:

Q1 =
∮

S
E1ε0ds (1)
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Figure 1. Sensor working principle. When an AC voltage is applied to the electrostatic actuator:
(a) At t = 0 and t = π, the shutter is at the same height as the sensing electrodes. (b) At t = π

2 and
t = 3π

2 , the shutter is pulled down and the sensing electrodes are exposed to a stronger field and
more surface area is exposed.

At t = π
2 and t = 3π

2 , the shutter movement is d, the electric field on the sensing
electrodes is E2, and the induced charge can be calculated as:

Q2 =
∮

S
E2ε0ds (2)

where ε0 ≈ 8.85 × 10−12 F/m is the vacuum dielectric constant and S is the surface area of
the sensing electrodes.

Considering the shutter has the same direction of movement for both the positive and
negative half period of the sine wave on the actuator, the induced charge equation can be
written as:

∆Q = |(Q1 − Q2)sin(ωt)| (3)

This is equivalent to (Q1 − Q2)sin(ωt) modulated with an amplitude 1 square wave at
the same frequency. Substituting the Fourier series of the ideal square wave into (3), then:

∆Q =
4
π
(Q1 − Q2)sin(ωt)

∞

∑
n=1

1
2n

sin((2n − 1)ωt) (4)

Expanding Equation (4) we obtain:

∆Q =
4
π
(Q1 − Q2)sin(ωt)

[
sin(ωt) +

1
3

sin (3ωt) +
1
5

sin (5ωt) + · · ·
]

∆Q =
4
π
(Q1 − Q2)

[
sin(ωt) sin(ωt) +

1
3

sin(ωt) sin(3ωt) +
1
5

sin(ωt) sin(5ωt) + · · ·
]

∆Q =
4
π
(Q1 − Q2)

{
1
2
(1 − cos(2ωt))− 1

6
[cos(4ωt)− cos(2ωt)]− 1

10
[cos(6ωt)− cos(4ωt)] + · · ·

}
(5)
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Ignoring all high frequency components in Equation (5), and substituting (1) and (2)
into (5), if only considering components at frequency 2ω, Equation (5) can be simplified as:

∆Q2ω = −4cos(2ωt)
3π

∮
S
(E 1 − E2)ε0ds (6)

And so, the generated current at frequency 2ω is:

I2ω =
d∆Q2ω

dt
(7)

Substituting (6) into (7), we get the equation for the current at frequency 2ω:

I2ω =
8ωsin(2ωt)

3π

∮
S
(E1 − E2)ε0ds (8)

This current signal is detectable after being amplified using a high impedance amplifier
and then extracted from the noise by using a lock-in amplifier.

2.2. Working Principle

COMSOL Multiphysics software 6.0 was used for the simulations. The COMSOL
material library was employed for defining the material properties of copper and polyimide.
The 3D model created in COMSOL is shown in Figure 2a, and its dimension parameters are
listed in Table 1. Figure 2b illustrates the schematic diagram of the model, demonstrating
the arrangement of the sensor components. As we can see, the sensing electrodes and
shutter are on one polyimide substrate, while the driving electrode, guard line, and bottom
shielding electrode are on another polyimide substrate. In practice, they can be separated
by using a spacer, but in the simulation, a spacer is not used in the model. The grounded
shutter is supported by four S-shaped micro-springs and is placed 100 µm over the driving
electrode. The sensing electrodes are at the same height as the shutter. The first simulation is
to find the spring constant and shutter movement distance driven by the actuator. Figure 3a
shows the shutter’s downward movement when a voltage of 200 V is applied on the
actuator, which results in a peak deflection of 5.59 µm. Cross-section views of the shutter
downward movement are shown in Figure 3b–d. Figure 4 plots the simulated deflection
for the drive voltages of 50 V, 100 V, 150 V, and 200 V, resulting in electrostatic forces on
the shutter of 4.82 × 10−6 N, 1.97 × 10−5 N, 4.6 × 10−5 N, and 8.69 × 10−5 N, respectively.
The overall spring constant is calculated to be 15.5 N/m.
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Table 1. COMSOL 3D model properties.

Property Value (µm)

Spring length 2000
Spring width 60

Copper thickness 18
Polyimide thickness 25

Sensing electrodes length 1000
Sensing electrodes width 60

Shutter finger length × width 1000 × 60
Gap between sensing electrodes and shutter finger 10

Electrostatic driving electrode width 2120
Electrostatic driving length 1920
Guard line length × width 1920 × 120

Distance from electrostatic driving electrode to shutter 100

The resonant frequency of a micro-springs supported shutter is also simulated. It has
multiple orders of vibration modes, and Table 2 lists the results of the first three modes. As
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we can see, the first order is up and down at 493 Hz, the second order is tilt along the x-axis
at 568 Hz, and the third order is tilt along the y-axis at 1045 Hz. Both the secondary and
third orders have half of the structure move up and half move down, where the induced
charges on each side will cancel each other; therefore, no signal will be generated. The
first-order vibration mode will have a maximized induced charge.

Table 2. Resonant frequency simulation results.

Mode Picture Frequency (Hz)

1
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The high voltage on the driving electrode is a concern in that it may produce extra
induced charges on the sensing electrodes. To minimize this interference, in the design,
two grounded guard lines are placed on each side of the driving electrode to separate it
from the sensing electrode, and another grounded electrode is placed under the driving
electrode and guard lines to prevent an electric field from emanating from below (on the
other side of the PCB). Figure 5 depicts the distribution of the electric field between the
driving electrode and the surrounding grounded structures. We can see that the sensing
electrodes are minimally affected by the driving voltage. For example, when 200 V at
246.5 Hz is applied to the driving electrode (the shutter has a resonant frequency of 493 Hz),
the induced charge on the sensing electrodes is 2.5 fC. The generated current is:

Iω =
d∆Q

dt
= ω(Q1 − Q2)cos(ωt) (9)
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Using Equation (9), the amplitude of the current is calculated to be 3.9 pA. In an
electric field of 10 kV/m, the movement of the shutter (driven by 200 V) results in an
induced charge of 0.17 pC, while at rest (0 V drive), the induced charge is 0.153 pC. Using
Equation (8), the amplitude of the generated current is calculated to be 44.7 pA. Compared
to the interference from the driving electrode, the sensing signal is 11.5 times stronger than
the driving signal interference, and the frequency is two times higher.
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3. Sensor Fabrication

After the simulation, the sensor patterns were designed using a free and open-source
PCB design tool named KiCAD 7.0 The generated Gerber and drill files are demonstrated
in Figure 6a. These files were sent to a PCB manufacturer called PCBway (https://www.
pcbway.com/, accessed on 30 November 2023) to fabricate the structure. The flexible PCB
samples are shown in Figure 6b,c, where Figure 6b is the shutter and sensing electrodes,
and Figure 6c is the actuator driving electrode. These samples have two conductive layers,
where Figure 6b,c shows the front view, and the black features on these two pictures are
the features on the back side. According to the manufacturer’s datasheet, the thickness of
the copper is 18 µm and that of the polyimide is 25 µm, and minimum line width is 60 µm.

The shutter sample needs to be released to separate the sensing electrodes. This
was completed by using a laser etching process. The equipment used is the A Series
Laser Micromachining system, which is an ultraviolet (355 nm) diode-pumped solid-state
picosecond laser dicer from Oxford Lasers Ltd. (Didcot, Oxfordshire, UK). The cutting
paths were created by using AlphaCAM 2023 R2 software. The laser beam peak pulse
energy was set to 0.12 mJ and the pulse duration was 6 ps. The laser pulse frequency setting
was 400 Hz, cutting speed 1 mm/s, and the diameter of the laser beam was 10 µm. Using
30% of this laser power, 15 cutting passes were required to cut through the polyimide-only
areas and 30 passes were required for areas having both copper and polyimide.

The released micro-springs, shutter, and sensing electrodes are shown in Figure 6e,
where two corners are cut to expose the electrodes on the layer below it. After soldering
wires to the sample, then the sensor is assembled by aligning the released sample on top of
the actuator driving electrode and using taps to fix all of the parts. As the polymer substrate
is partially transparent, in the alignment process, the cross-shaped alignment marks on
both layers will make the process easier.

Figure 7a shows the picture of the released micro-springs, shutter, and sensing elec-
trodes. The picture was taken using a Leica DM6 M microscope (Leica Microsystems,
Wetzlar, Germany). As we can see, the micro-springs, shutter, and sensing electrodes have
slight deformations, but the shutter and the sensing electrodes are still aligned very well.
After assembly, the separation distance from the shutter to the driving electrode under it is
measured to be 105 µm by using a microscope. Figure 7b shows the initial location of the
shutter fingers and sensing electrodes in the zoomed-in area of Figure 7a. As an illustration
of the shutter movement test, the application of 200 V to the driving electrode results
in noticeable shutter finger movement, shown in Figure 7c. We can see that the sensing
electrodes remain focused and unchanged, while the shutter fingers move downward,
altering the focal status. By refocusing the shutter finger and observing the displacement
of the fine object adjustment knob of the microscope, the movement of the shutter fingers
was measured as 10 µm. As detailed in Section 2.2, the electrostatic force exerted on the
shutter at 200 V is 8.69 × 10−5 N. Therefore, the spring constant of the shutter’s supporting
springs is calculated to be 8.7 N/m.

https://www.pcbway.com/
https://www.pcbway.com/
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trodes. The picture was taken using a Leica DM6 M microscope (Leica Microsystems, 
Wetzlar, Germany). As we can see, the micro-springs, shutter, and sensing electrodes have 
slight deformations, but the shutter and the sensing electrodes are still aligned very well. 

Figure 6. Sensor fabrication process. (a) The view of the design PCB and generate Gerber files.
(b) Manufactured shutter and sensing electrodes. (c) Manufactured actuator driving electrodes.
(d) Bending the sample manually to show the flexibility. (e) After laser cutting, the micro-springs
are released and the shutter and sensing electrodes are separated. (f) Place (e) on top of (c) to form
the sensor.
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Figure 7. Released shutter and sensing electrodes under the microscope. (a) Whole area. (b) Zoom
picture of the electrodes at the initial rest position. (c) Zoom picture after applying 200 V on the
driving electrode.

4. Sensor Testing
4.1. Test Setup

The fabricated sensor was tested in the laboratory. Figure 8 shows a functional diagram
of the test setup. The sensor was placed on a grounded metal plate, and the distance from
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the sensor surface to the metal plate was measured to be 0.5 mm. Another metal plate was
placed above the sensor, and the two metal plates were separated by two 4.5 mm thick
spacers on each side, then the distance from the top metal plate to the surface of the sensor
was 4 mm. A DC power supply was connected to the top metal plate to generate a test DC
electric field. The actuator driving sine wave was generated by an Agilent 33120A signal
generator (Agilent Technologies, Santa Clara, CA, USA), followed by three 1:7 transformers
in parallel in the primary side and in series in secondary side. When an amplitude 10 V
sine wave was provided by the signal generator, the output driving signal amplitude was
measured to be 193 V. The output of the sensing electrodes was sent to a transimpedance
amplifier (TIA), with a gain of 107. After the TIA, an interfering signal was detected, which
had the same frequency as the actuator driving signal and overloaded the lock-in amplifier.
This is because the deformation of the shutter after release and the flatness of the electrodes
was not perfect, which caused the electric field from the driving electrode to reach the
sensing electrodes more easily.
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To minimize this interference while not attenuating the sensing signal, a sixth-order
high-pass Butterworth filter with a cutoff frequency of 500 Hz was employed. The gain
for infinite frequency was set to 1, and the quality factor Q was selected to be 0.707.
The frequency response of this filter was simulated by using Cadence Orcad 22.1 Pspice
(Cadence, San Jose, CA, USA), and Figure 9 shows the result. Since the driving signal
frequency was only half the sensing frequency, it was attenuated more. After the high-pass
filter, the signal was fed to an SR510 lock-in amplifier. During the test, the lock-in amplifier
integration time was set to be 1 s, and the lock-in frequency was set to be 2f. The output of
the lock-in amplifier was sent to an oscilloscope and a digital multimeter. By adjusting the
lock-in amplifier sensitivity, different ranges of electric field can be measured.
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4.2. Frequency Response Test

After setting up the test apparatus, the first test performed was to find the actual
resonant frequency, where the sensor has its maximum response. In this test, we selected
the lock-in amplifier sensitivity to be 2 mV. Then we set the signal generator amplitude to
be 8 V. After transformer amplification, the amplitude of the signal driving the actuator was
153 V. The frequency was swept from 160 Hz to 580 Hz with an increment of 10 Hz. The
DC power supply output voltage was set to be 100 V, which can create a test electric field
of 25 kV/m at each frequency, enabling and disabling the output of the DC power supply.
The responses of the sensor shown on the digital multimeter were recorded and are plotted
in Figure 10. The analog output of the SR510 lock-in amplifier is given by the equation:

Vout = 10Ae(AvVi cos∅+ VOS) (10)

where Ae is the expanded setting on the lock-in amplifier panel; Av equals the reciprocal of
the sensitivity setting, which is 2 mV in this test; Vi is the magnitude of the input signal
to the lock-in amplifier; Φ is the phase difference between the signal and reference; and
VOS is the offset. However, the SR510 only gives the in-phase component X of Vout. The
amplitude of Vout can be derived by both the in-phase and quadrature component Y:

Z =
√

X2 + Y2 (11)

In this test, for each frequency, we measured the X component by setting the phase to
be 0◦, and measured the Y component by setting the phase to be 90◦, then calculated the Z
component using Equation (11). The test results are shown in Figure 10. The Z component
maximum occurs at 420 Hz, which indicates that the shutter resonant frequency is 840 Hz.
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4.3. Sensor Sensitivity Test

In this section, we explore the sensor sensitivity. For a linear sensor, the transfer
function can be described by:

E = A + Bs (12)

where s is the input signal, E is the output signal, A is the output signal E at zero input
signal s = 0, and B is the slope of the line. B is also called sensitivity [25]. Therefore, the
sensor sensitivity is:

B =
E − A

s
(13)
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For this test, we set the signal generator amplitude to be 10 V, and after transformer
amplification, the amplitude of the signal driving the actuator was 193 V. As the in-phase X
component peaked at 800 Hz (the driving signal at 400 Hz), we chose the lock-in amplifier to
display the X component, the phase was set to be 0◦, and we set the signal generator output
frequency to be 400 Hz. The DC power supply output voltage was set to be 10 V, which
provided a 2.5 kV/m test electric field when turned on. To explore the highest sensitivity of
the sensor, the SR510 lock-in amplifier sensitivity was pushed to the lowest before overload
to be 100 µV. Figure 11 shows the test results. As we can see, when the 2.5 kV/m field
turns on and off, the sensor output is averaged to be 12.8 V. The sensor sensitivity can be
calculated to be 5.1 V/kVm−1. The noise level of the sensor is 0.3 V, and the resolution
of the sensor is calculated to be 62.5 V/m. Table 3 compares the EFMs presented in this
paper and some reported in recent years. This sensor demonstrates significantly higher
sensitivity and comparable resolution.
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Table 3. Comparison between references and this work.

Reference Year Sensitivity Resolution

MEMS EFM [13] 2001 40 µV (kV/m)−1 N/A
Thermal actuator EFM [14] 2009 0.1 mV (kV/m)−1 42 V/m
Thermal actuator EFM [15] 2006 0.4 mV (kV/m)−1 240 V/m

Torsional Resonance EFM [16] 2018 5 mV (kV/m)−1 N/A
Comb drive EFM [18] 2017 10 mV (kV/m)−1 N/A

EFM in this paper 2023 5.1 V (kV/m)−1 62.5 V/m

4.4. Sensor Response Linearity Test

In order to explore the sensor response linearity, a test was performed to measure the
sensor response from 1.25 kV/m to 25 kV/m. In this test, the driving signal amplitude
was 193 V, and the frequency 400 Hz. The lock-in amplifier sensitivity was selected to be
1 mV. When the DC power supply swept the voltage from 5 V to 100 V, electric fields from
1.25 kV/m to 25 kV/m were generated. Figure 12 plots the sensor response (each reading
has an error of ±0.03 V). The linearity of the sensor is calculated to be 1.1%, with an average
sensitivity of 0.49 V/kVm−1.
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5. Conclusions

This paper introduces an MEFM employing a vertical movement shutter based on a
flexible PCB substrate. The shutter is driven by an electrostatic actuator. The sensor struc-
ture was fabricated by a commercial PCB manufacturing process followed by laser cutting
for release. The fabricated sensor demonstrated a linear response in electric fields ranging
from 1.25 kV/m to 25 kV/m. The highest sensitivity was measured to be 5.1 V/kVm−1.
This sensor has the potential to compensate for the shutter lift-up issue of common MEFMs
by providing an initial bias voltage on the actuator. This allows this type of sensor to be
applied in a wide range of DC electric field measurements from sub-kV/m to over MV/m.
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