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Abstract: Currently, it is necessary to maintain the quality of aquifers and water bodies, which means
the need for sensors that detect molecules as emerging pollutants (EPs) at low concentrations in
aqueous complex solutions. In this work, an electronic tongue (e-tongue) prototype was developed to
detect 17β-estradiol in tap water. To achieve such a prototype, an array of sensors was prepared. Each
sensor consists of a solid support with interdigitated electrodes without or with thin films prepared
with graphene oxide, nanotubes, and other polyelectrolytes molecules adsorbed on them. To collect
data from each sensor, impedance spectroscopy was used to analyze the electrical characteristics of
samples of estrogen solutions with different concentrations. To analyze the collected data from the
sensors, principal components analysis (PCA) method was used to create a three-dimensional plane
using the calculated principal components, namely PC1 and PC2, and the estrogen concentration
values. Then, damped least squares (DLS) was used to find the optimal values for the hyperplane
calibration, as the sensitivity of this e-tongue was not represented by a straight line but by a surface.
For the collected data, from nanotubes and graphene oxide sensors, a calibration curve for concentra-
tion given by the 10PC1×0.492−PC2×0.14–14.5 surface was achieved. This e-tongue presented a detection
limit of 10−16 M of 17β-estradiol in tap water.

Keywords: e-tongue; graphene oxide; polyelectrolytes; layer-by-layer films; impedance spectroscopy;
emerging pollutants; estrogen; 17β-estradiol; complex matrices; principal components analysis

1. Introduction

Nowadays, personal care and pharmaceutical products (PPCP), also referred to as
emerging pollutants (EPs), are acknowledged as an environmental threat since they are
being accumulated in aquifers and water bodies [1–14]. Although many water treatment fa-
cilities have been built for their purification, new EPs are still being discovered, and there is
a lack of sensors that can properly monitor them with a reasonable maintenance cost, mean-
ing these facilities are unfit and lack the means to fulfill their purpose in its integrity [15].

The only feasible solution to this problem is to improve the facilities with new sensors
capable of accurately detecting these new EPs. The new sensors should be small, capable
of real-time analysis, and inexpensive. Additionally, for a sensor to be fit for this type
of application, it also needs to be capable of identifying the concentration of a specific
molecule present in a complex solution. This is because water is composed of, in addition
to water molecules, many different salts and substances [1,15–17].

Estrogen is an endocrine-disrupting chemical (EDC); it has been already confirmed
that these molecules cause harm to humans in the form of “cancer, developmental prob-
lems, diabetes, and possibly also obesity and the metabolic syndrome” [17], among other
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possibilities. It has also been proven that estrogen is present in riverbank infiltrations [15]
and sewage [16], confirming the need for a sensor capable of detecting it [18,19].

The detection of estrogen has been a relevant topic for over two decades now. But,
since 1996, the yeast estrogen screen method (YES) that employs chemical sensors has
been successful in detecting low concentrations of estrogen [20]. Later, in 2018, the Arxula
yeast estrogen screen method, an improvement on the classic YES method, was validated,
and it proves relevant still [21]. This method can detect the concentration of estrogen-like
substances by making them react with estrogen reactors (ERs) and measuring the result.
However, it requires sampling and long periods of incubation in a lab. This increases
its cost and requires transportation of the samples without providing real-time analysis.
Additionally, the method of gas chromatography–mass spectrometry was used to determine
the concentration of EE2 in the central south coast of Chile [15]; in this study, values between
4.18 and 48.14 ng/g dry weight were obtained.

To overcome the above-mentioned limitations, e-tongue systems are proposed to
detect estrogen, as this type of systems has been able to detect low concentrations of other
substances in complex solutions [22–28]. An e-tongue system consists of an array of sen-
sors; an electrical system for the measurement of electrical characteristics of the aqueous
solutions, for example, a potentiometer or an impedance analyzer; and a computer. With
this arrangement, electric signals can be sent to the sensors while monitoring their electrical
response when immersed in the aqueous samples [26,27,29–35]. These studies demon-
strated that the electric behavior of electrical sensors can be appraised from the impedance
and conductivity properties of the sensors and of the aqueous solutions analyzed [27,28].
This implies that, if the sensor is an appropriate transductor to a substance, changes to
the values of the impedance and conductivity are correlated with the presence of the sub-
stance to be detected. Recently, Paulo Zagalo et al. [19] demonstrated that the thin films
polyethyleneimine (PEI) and poly (sodium 4-styrene sulfonate) (PSS) can be used to detect
low concentrations of 17α-ethinylestradiol. Following these results, the main objective
of this work was to create an e-tongue system containing an array of different sensors to
detect 17β-estradiol in aqueous complex matrices such as tap water. Each sensor consists
of interdigitated electrodes deposited on a solid support covered or not by sensorial layers
capable of receptivity to the presence of a predefined substance. For that, the sensorial
layers were prepared with the polyelectrolyte’s poly (allylamine hydrochloride) (PAH), PEI,
poly{1-[4-(3-carboxy-4-hydroxyphenylazo) benzene sulfonamido]-1,2-ethanediyl, sodium
salt} (PAZO), multi-walled carbon nanotubes (mwcnt), and graphene oxide (GO). Different
combinations of polyelectrolytes were tested regarding their ability to detect the estrogen
concentration in tap water. The data acquired from the multiple sensorial devices allowed a
multivariate analysis. To extract as much information as possible from each sensor, usually,
the electrical measurements consist of the impedance spectra. The result is a series of
“coma-separated values” (csv) files, where each file represents a concentration measured
with a sensorial device. These data were analyzed by principal components analysis (PCA)
and damped least squares (DLS) methods [26,27,29–31]. The developed e-tongue proved
able to detect very low concentrations of estrogen molecules up to 10−16 M.

2. Materials and Methods
2.1. Sensor Array

A sensor can produce an output signal based on its characteristics that should be
sensitive to the environment around the sensor [36]. As the aim was to develop an e-tongue
to detect 17β-estradiol, we firstly focused on developing sensors that react to the presence
of this estrogen.

To produce a sensor capable of reacting to different concentrations of a molecule,
besides the electrodes, a sensorial layer is used to increase the sensitivity and reproducibility.
The sensorial layer makes it possible for the sensor impedance to change depending on the
number of certain molecules present in its surroundings. The sensorial layer consists of
thin films that allow it to react discriminately or not toward a target substance.
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Nanostructured sensorial layers based on layer-by-layer (LbL) thin films of poly-
electrolytes were deposited on the sensorial area of ceramic substrates previously coated
with gold interdigitated electrodes devices acquired from Metrohm DropSens (Oviedo,
Asturias, Spain) [24]. The polyelectrolytes used were PAH, PAZO, PEI, poly(sodium
4-styrenesulfonate) (PSS), GO, and mwcnt, and the respective chemical structures are pre-
sented in Figure 1a–e. These polyelectrolytes are common in sensor development and used
in the references [19,22–25,37,38]. The choice of these polyelectrolytes was based on the
fact that the preparation of these films is already well established, and the same film can
detect different molecules, as has already been demonstrated.
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For the preparation of the sensorial layers of controlled thickness, the inexpensive and
precise LbL method was used [39]. This method is based in adsorption of polyelectrolytes’
layers of opposite electrical charges at solid liquid interface. The procedure for preparation
of LbL films by applying the LbL method is described in [39] and consists of the immersion
of the solid support with interdigitated electrodes in the polycationic solution for 60 s,
washing the adsorbed layer in ultra-pure water, and drying it with flux of nitrogen; next is
the immersion of the solid support with the layer adsorbed in the polyanionic solution for
60 s followed by washing the solid support with the bilayer al-ready adsorbed in ultra-pure
water and then drying it again with a flux of nitrogen. This process is repeated as many
times as the desired number of the different layers considered. The combination of one
layer from each of the two different polyelectrolytes is called a bilayer. The sensitivity
of the film will be dependent on the compounds used, the number of bilayers, and the
thickness of each layer. The thickness is dependent on immersion time and the monomeric
concentration of the polyelectrolyte solution. In the present case, solutions of PAH, PAZO,
PEI, PSS, mwcnt, and GO with a monomeric concentration of 10−3 M were prepared.
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2.2. Estrogen Solutions

To prepare tap water samples with diverse and precise concentrations of estrogen,
a solution with a high concentration was prepared and diluted. The base solution has
a concentration of 10−5 mol/L and was prepared by weighing 0.27 mg of 17β-estradiol
and mixing it in 100 mL of methanol (MH3OH). Whenever a set of concentrations was
to be prepared, first, 1 mL of the base solution was mixed with 9 mL of tap water and
1 mL of methanol; then, this dilution was repeated until all the desired concentrations were
prepared. To maintain a constant concentration of 10% methanol, only 0.9 mL of methanol
was added in the sequential dilutions. The tap water used in all the solutions was obtained
from the tap and immediately used to prepare the solutions.

2.3. Impedance Measurements

The electrical properties of the developed sensor devices were analyzed by impedance
spectroscopy. The impedance analyzer used in this work was the Solartron 1260 Impedance/
Gain-Phase Analyzer, coupled to a 1296A Dielectric Interface module. The analysis param-
eters are defined in the SMaRT Impedance software (version 3.3.1).

For reasons explored in Section 2.4, it is important to constantly maintain the level of
immersion and temperature while measuring. To maintain a constant level of immersion
of the electrode throughout the measures, the electrode was immersed in 2 mL contained
in a 5 mL beaker until it reached the beaker’s floor. To constantly maintain the effects from
the temperature, the measurements were taken right after the solution was removed from
the fridge, where it was stored at 4 ◦C, and the solution was stored in it again right after
pipetting. This way, even if the second and third loops suffered some variation due to
the temperature variation, as the solution stayed exposed to room temperature for some
minutes while the measurements were being taken, it was neglectable compared to the
variation resulting from the degradation of the film and constant throughout the different
films and different concentrations.

2.4. Effect of the Electrode’s Area Immersed in the Sample Solutions

To confirm the effect of the immersion and emersion of the interdigitated electrode
on the measurements, an experiment was conducted by measuring the impedance spectra
by immersing the interdigitated electrodes in different positions, namely in four possible
positions, as illustrated in Figure 2. It was immersed from one position to the other, until it
was fully immersed at position p4, capturing the effect of those positions when the upper
(not immersed) part of the electrode was dry. After that, the positions were measured again
while lifting the electrode, and thus, it was possible to see the effect of leaving the upper
part wet when taking a new measurement.
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The results are presented in Figure 2, where the measures taken while immersed the
electrode are identified with a _1, and the measures taken when emerged are identified
with _2.

Although for each measurement taken, three consecutive measurements were taken,
to improve the readability of the result, only the first one is presented. This does not
compromise the accuracy of the results because the margin of error between these three
measurements of the same position was negligible compared to the difference between
the positions.

To maintain a consistent level of immersion of the electrode throughout the measures,
the electrode was immersed in 2 mL contained in a 5 mL beaker until it reached the beaker’s
floor. To constantly maintain the effects from the temperature, the measurements were
taken right after the solution was removed from the fridge, where it was stored at 4 ◦C, and
the solution was stored in it again right after pipetting.

2.5. Data Treatment

The principal component analysis (PCA) is a statistical algorithm used to extract
important information from data represented in a matrix containing observations de-
scribed by multiple inter-correlated quantitative variables. This algorithm starts by au-
toscaling all the values in each column, resulting in zeros representing the average of the
column. Then, it calculates the optimal weights by solving the eigenvector problem for the
covariance matrix.

By trying to identify the same concentration with multiple sensors simultaneously, a re-
dundancy in the dimensions of the dataset is created. To solve this, e-tongue training can be
optimized by reducing its dimension. PCA was the main algorithm used for this purpose.

PCA makes it possible to convert the impedance values of each sensor into a variable
that can be calibrated to deduce/predict the concentration. This variable will be the result
of a principal component (PC) or a mix between them. PC1 is the vector of weights that
best preserves the distance between the values in the dataset. PC2 is perpendicular to PC1
and maximizes the distances within this condition. PC3 is the vector for the plain described
between PC1 and PC2; if the dataset has fewer than three dimensions, this will be a null
vector. Once the dimension of the dataset has been reduced, if a pattern emerges from the
PCs, it is possible to predict the concentration by calibrating the sensor.

The maximization is obtained by resolving an eigenvalue problem because the covari-
ance matrix has eigenvectors that point in the direction that maximizes the variance. The
covariance matrix is an n × n matrix, where n is the number of variables in the dataset, and
it holds the variance of each variable along the diagonal and the covariance of each variable
with the others through the variable’s respective column. An eigenvector is a matrix whose
direction is preserved when multiplied by its matrix, and a scale factor between the result
and the original is observed; this scale is called the eigenvalue. To solve this type of problem,
first, the eigenvalues are determined by finding the determinant at which the covariance
matrix minus the identity matrix equals zero (1). Then, by applying the definition of the
eigenvector mentioned above, we can solve the system of equations that makes the product
between the covariance matrix and the eigenvector match the product between one of the
possible eigenvalues and the eigenvector (2). Finally, because the solution gives only the
direction of the eigenvector, we define it with absolute values that make it a unit vector.
This algorithm is explained in further detail in references [40–42].

det(covarianceMatrix − λ × I) = 0, (1)

covarianceMatrix × eigenVector = eigenValue × eigenVector, (2)

Using classes in the discrete domain to represent the different concentrations creates a
discretization error, which occurs when a function of a continuous variable is represented
in the computer by a finite number of evaluations [43]. To avoid this error, the sensor’s cali-
bration will be the result of a fitting algorithm, i.e., a continuous function that approximates
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the training set. Curve fitting is based on regression analysis, and it can be used by solving
the least squares problem. The least squares problem is the minimization of the sum from
all the squared errors. The more common methods for solving this type of problem are
the damped least squares (DLS) and the Gauss–Newton algorithm (GNA). DLS and GNA
are similar, and the main difference between them is that DLS uses the gradient descent
method. The gradient descent method serves to find local minimums and helps DLS be
more robust than GNA. However, this also means DLS is slower than GNA. In the context
of machine learning, it is common to prioritize accuracy over speed, as the time it takes to
calibrate the module and the time the module takes to produce results are independent.

DLS can also be called the Levenberg–Marquardt algorithm (LMA or just LM), and it
is an iterative procedure. It takes an initial guess of the parameters as a seed, and in cases
with multiple minimums, it can only convert to the global minimal error if the initial seed
is good. There already exist open-source routines that solve least squares problems using
the DLS, making it easily accessible.

In this work, DLS was used through the Python function curve_fit from the SciPy.Optimize
library to calculate all the trendlines presented in the results as well as the calibration surface
used with the PCA.

3. Results
3.1. Effect of Repeated Measurements

The preliminary results demonstrated that the sensorial layer degrades with the
measuring time since the film with the passage of electrical current reacts with the solution
where it is immersed. Passing an electric current through the sensorial layer triggers
chemical reactions, damaging the film’s molecules. While the sensor is immersed in an
aqueous solution, the thin film can also desorb over time. When measuring the impedance
spectra, one loop takes approximately 1 min and 20 s. As such, it is expected that most of
the damage done to the sensorial layer comes from passing electric current through the
thin films.

In this section, first, an initial analysis of the degradation with the (PAH⁄PAZO)5 film
is presented. Then, a complete analysis of the degradation of the films (PAH⁄PAZO)5,
(PEI⁄GO)5, (PEI⁄mwcnt)5, and (PEI⁄PSS)5 is presented.

To observe and characterize the effect of the degradation on the sensor presented
in the results from the sensor with a (PAH⁄PAZO)5 film, two films of (PAH⁄PAZO)5 were
prepared and immersed in the estrogen concentrations of 0 M and 10−6 M. Then, each
was measured over two sets of 15 loops; every set of loops lasted 20 min. The results
of the 60 measurements are presented in Figure 3. The points from 10−6 M and 0 M are
represented by orange and blue, respectively. The points to which more loops correspond
are represented with a lighter color.

To better visualize the data, certain frequencies are fixed, and the results are plotted
over several loops. The chosen frequencies are the ones with either the highest or the
lowest variance between the loops. However, the frequency where either the highest or
the lowest variance in the degradation is observed can be different depending on the
concentration, but to compare them, they must be plotted at the same frequency. As a
compromise, they are fixed at the frequency where either the highest or the lowest variance
in the degradation is observed between the two concentrations. This results in four graphs:
two for the impedance and two for the phase, as illustrated in Figure 4.

All the deviations in these measurements can be attributed to either degradation
or temperature change. As the samples were stored in a fridge and measured before
reaching room temperature and were exposed to a higher room temperature for over
40 min, the rise in their temperature is not negligible. However, if the temperature was the
only effect to cause deviation, both samples should present similar tendencies, but that
is not the case. The conclusion reached is that the sensor suffers more degradation with
higher concentrations.
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on the sensor device. Blue and orange points correspond to estrogen concentrations of 0 M and
10−6 M, respectively.

As such, the experiment was repeated with the solutions at room temperature, remov-
ing the temperature variable, to confirm the effect of the degradation by the number of
loops. The results are illustrated in Figure 5a.
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Figure 5. Impedance magnitude at 1 Hz as a function of the number of loops in measurements of
(a) (PAH⁄PAZO)5, (b) (PEI⁄GO)5, (c) (PEI⁄mwcnt)5, and (d) (PEI⁄PSS)5 film deposited on the sensor
device. Blue and orange points correspond to 0 and 10−6 mol/L, respectively.

These results reveal that most of the variance in the previous analysis was the result of
the temperature change, confirming that both the temperature and the number of measure-
ments taken influence the results. The same analysis of the degradation was repeated for
films of (PEI⁄GO)5, (PEI⁄mwcnt)5, and (PEI⁄PSS)5, as illustrated in Figure 5b–d, respectively.

These results show that (PEI⁄PSS)5 and (PEI⁄GO)5 suffer great degradation for lower
frequencies, where there is the best resolution; however, only (PEI⁄PSS)5 shows insignificant
discrimination between the extreme concentrations for the first loop. As such, this analysis
suggests that the film (PEI⁄PSS)5 is incapable of discerning the concentration of estrogen in
tap water.

3.2. Results with Individual Films

To study each film through different concentrations of estrogen in tap water, twelve
(PEI⁄GO)5, (PEI⁄mwcnt)5, and (PAH⁄PAZO)5 LbL films were prepared on solid supports
with interdigitated electrodes. They were used to sample four concentrations of 10−10,
10−13, 10−16, and 0 mol/L three times each. The concentration of 0 mol/L is considered
at a concentration of 10−19 to fit within the plot of the trend line, but this presumption is
not a gross error, as the sample is tap water, and it is also expected that it would already
contain estrogen, possibly in a concentration higher than the 10−19 considered. The results
extracted from these sensors as well as a control interdigitated electrode, without any films,
are presented in Figure 6.
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For better readability, Figure 7 and Table 1 present the impedance shown in Figure 6
but fixated at the frequencies where the largest variations can be observed. The point
with the concentration of 10−19 M was not considered when plotting the trend line, as it
represents the control with an unknown concentration. As such, there is a big discrepancy
between where the tendency predicts the point to be and where it is.
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measured with sensor device with (I) (PEI/GO)5, (II) (PEI/mwcnt)5, and (III) (PAH⁄PAZO)5 film
deposited on it at different estrogen concentrations.
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Table 1. Magnitude and phase at different estrogen concentrations for the PEI/mwcnt film at 1 Hz
for the first loop.

Concentration
(mol/L)

Control Sample 1 Sample 2 Sample 3

Magnitude
×10−5 (Ω) Phase (◦) Magnitude

×10−5 (Ω) Phase (◦) Magnitude
×10−5 (Ω) Phase (◦) Magnitude

×10−5 (Ω) Phase (◦)

0 7.19 −72.0 2.47 −83.0 2.79 −81.8 2.90 −83.0

10−16 7.85 −72.1 2.34 −83.8 2.54 −81.6 2.98 −81.6

10−13 8.06 −71.3 2.81 −83.0 2.63 −80.7 2.66 −82.0

10−10 10.54 −71.2 3.24 −82.2 2.68 −81.6 3.79 −80.0

With these results, some conclusions can be drawn for each film. In the film (PEI/GO),
the phase shows significant discrimination between the concentrations. For the film
(PEI/mwcnt), it can be concluded that both the amplitude and the phase of the impedance
were sensitive to the variation in the concentration for samples 1 and 3. Among the samples
collected with (PAH/PAZO), sample 3 showed a different behavior from samples 1 and 2 in
both the impedance and the phase, which indicates that its point for 10−10 M concentration
could be an outlier. As such, for the (PAH/PAZO) film, the phase showed a clear tendency
along the concentration. However, the amplitude did not show significant discrimination
between the different concentrations relative to the margins of error. Additionally, in all
films, the effects of the degradation could only be observed in the loops, as each point had
an unused film. And, as expected, the trend lines between the loops are almost parallel to
each other since the effect from the degradation is considerably consistent within a small
number of loops.

3.3. Initial PCA Results

To test if using information from multiple frequencies can improve the performance of
the features from these films, an initial PCA was used. The results were four plots for each
feature monitored: the first plot was where all samples were individually normalized and
their optimal weights used to obtain the PCs; the second plot was when all samples used
the average and standard deviation from sample 1 to normalize themselves, but then their
weights were calculated individually; the third plot was the reverse from the second, as
each sample was normalized individually, but the weights from sample 1 were used; and
finally, the last plot contained all samples and used the normalization and weights from
sample 1.

The last plot where all samples used the normalization and weights from sample 1
was the most relevant, as it was used to test how the sensor would react to new data
since a single new line of data cannot be normalized or used for PCA. To calculate the
normalization parameters for the samples aside from sample 1, the three loops from
sample 1 were normalized individually along the concentrations, and their means and
standard deviations were averaged. To calculate the weights to use on the samples other
than sample 1, PCA was used for each concentration of each loop in the first sample, and
the three sets of weights calculated were averaged.

The best results from this analysis for the films (PEI/mwcnt) and (PAH/PAZO) was
the real part of the impedance, and for the (PEI/GO) film, it was the loss tangent. The plots
are illustrated in Figure 8.
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Figure 8. PC1 values over concentrations achieved with the best feature from the data measured with
the sensor device covered with (a) (PEI/GO)5, (b) (PEI/mwcnt)5, and (c) (PAH⁄PAZO)5 thin films at
different estrogen concentrations.

With these results, it can be concluded that all films were on average sensitive to a
variation in the concentration of estrogen. For the film (PEI/GO), sample 1 had a negative
correlation contrary to the other samples; however, this could be attributed to the high
margins of error. The film (PEI/mwcnt) had the best results without sample 2, but even
with it, both the amplitude and the phase were sensitive, although the amplitude had
relatively large margins of error. The (PAH/PAZO) film generally had the worst results,
but in this analysis of the real part of the impedance, it had some sensitivity, although it
still had the largest margins of error. However, because in this analysis, only the data from
sample 1 were used to calculate the normalization and weights, the margins of error can
either increase or decrease.

To obtain a better understanding of how the samples interact together, another PCA
was used. The only difference made to the data structure was that the control samples
were used in the columns. As there was one control sample in this case, the number of
columns doubled. In this analysis, the focus was not on the correlation between PC1 and
concentrations but on understanding the normalized dataset to be fed into the final PCA. As
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such, the plots show the normalized values along the columns as well as the weights given
to them. For better readability, the control and the film are separated, and the columns
are represented by their values in the frequency. The concentrations are differentiated by
color, as indicated in the legend. Figure 9 illustrates the loss tangent for the three films.
Within these plots, the best results come from the control of the nanotubes, as the different
concentrations are separated and organized in a coherent order.
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Figure 9. Normalized values and weights over frequency for the loss tangent with the sensor device
covered with (a) (PEI/GO)5, (b) (PEI/mwcnt)5, and (c) (PAH⁄PAZO)5 thin films at different estrogen
concentrations. The red and blue lines represent the weights for PC1 and PC2, respectively. The
concentrations are differentiated by color, according to the legend.

3.4. Training with PCA

To test the system’s capacity to discriminate between different concentrations of
estrogen, PCA was used with the data from the fin films that were tested. PCA was
used to condense the relevant features into a two-dimensional plane that allowed the
visualization of the dataset. When reducing the dimensionality of a dataset, information
is inevitably lost, but PCA minimizes this loss. The result from the PCA with the three
films is illustrated in Figure 10a; however, as the (PAH/PAZO) film did not show aptitude
to discriminate the different concentrations with the phase, Figure 10b illustrates a PCA
without this film. Without the (PAH/PAZO) film, the PC1 no longer overlaps the points
between concentrations of 10−16 mol/L and 10−13 mol/L.

The heatmap shows the predicted decadic logarithm for the concentration and rep-
resents the calibration plain. The equation to determine the concentration for any point
is C = 10PC_1×s_1+PC_2×s_2+constant, where s_1 and s_2 are the sensitivities for PC1 and
PC2, respectively.
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Figure 10. Plot with results achieved with sensor devices covered with (a) (PEI⁄mwcnt)5, (PEI⁄GO)5,
and (PAH⁄PAZO)5; (b) (PEI⁄mwcnt)5 and (PEI⁄GO)5 thin films, using the loss tangent spectra. The x
points are the mean values of each sample.

The table used for PCA consists of 36 lines (3 loops × 4 concentrations × 3 samples)
and 125 columns (name + 2 environments × 1 domain × 31 frequencies × 2(film + no film)).
The lines correspond to the points, and each point is a loop of the impedance spectra from
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a concentration in one of the samples with the film. The first column has the names of
all points, and the rest have the relevant features from each film; in this case, they use all
31 frequency values from the loss tangent as well as the values from the control sample. This
means that the different loops and samples generate more points, while their PC values are
determined by the loss tangent from the two films, i.e., (PAH⁄mwcnt) and (PEI⁄GO), as well
as the two respective control samples. For the lines, only three samples, considered as the
control samples, are used in the columns to serve as a reference parameter; this implies that
the information from the control sample is repeated between the lines of non-control samples.
The names used to represent the concentrations 10−10, 10−13, 10−16, and 0 (mol/L) are M10,
M13, M16, and M0, respectively, and M0 was considered 10−19 for calibration purposes.

To understand how the PCA reached its results in Figure 10b, the weights attributed
throughout its columns need to be illustrated. For better readability, the columns were
separated and organized by experiment, feature, and either film or respective control.
Figure 11 illustrates these results.
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Figure 11. PCA data and weights: (a) PEI/mwcnt control; (b) PEI/mwcnt film; (c) PEI/GO control;
(d) PEI/GO film. The red and blue lines represent the weights for PC1 and PC2, respectively.
Blue, green, yellow, and red points represent the concentrations 0, 10−16, 10−13, and 10−10 mol/L,
respectively. The color code of the samples is the same of the previous figures.

In Figure 11, the left data axis is used for the points that represent the normalized
dataset used in the PCA, and the right axis is used for the weights attributed by the PCA.
The different colors represent the same concentrations they did for Figure 10a,b; different
symbols in the data represent different samples; and the transparency increases with the
number of loops. The weights are scaled to fit between –1 and 1, and the blue and red
weights are used to calculate PC1 and PC2, respectively.

The weights have higher absolute values in regions where the different concentrations
are well differentiated. The graphs related to the control appear to have fewer points,
but they simply overlap due to the repetition mentioned above. For the films, PEI/GO
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shows more consistent variances for each concentration compared to PEI/mwcnt, but
unexpectedly, the biggest contribution was the values from the control sample associated
with the nanotubes.

Overall, the heatmap illustrated in Figure 10b suggests that the system can separate
the different concentrations with precision, as was intended. This is further supported by
the patterns illustrated in Figure 11.

However, in this training, each film was only sampled once in tap water, and different
samples of tap water contained different compositions. The effect caused by the difference
in compositions was not tested, and as such, there is no certainty that this calibration is
valid. Additionally, each film was tested only once, meaning this training also has no
statistical relevance. As there is only one test from each film, it is impossible to test the
trained data and predict the system’s performance.

Further testing of the effects from different samples of tap water would allow discern-
ing whether the sensors of the e-tongue should be sampled in either the same or different
samples of tap water. By collecting more samples for training and testing, it could also be
concluded if more sensors need to be added to the e-tongue.

4. Conclusions

In this work, an e-tongue was developed to detect low concentrations of estrogen in
aqueous complex solutions. Estrogen is a dangerous EP in the EDC group, and it needs to
be detected in small concentrations. To produce an accessible sensor that can detect these
molecules in real time, this work approaches the problem by using interdigitated electrodes
covered or not with thin films. Interdigitated electrodes deposited on a solid support are
capable of real-time analysis and are inexpensive. Additionally, when arranged as an array
of sensorial devices in an e-tongue system, they can detect low concentrations of molecules
in complex solutions, and thus, the devised e-tongue system was presented.

As such, the electric tongue system can accurately predict the value of estrogen
present in any given solution. To achieve this, impedance spectroscopy was used, and
the information through the frequencies was compiled. Determining the weights of each
frequency for each parameter for each electrode was carried out with PCA. The calibration
was completed with DLS.

The results based on a sensorial device with a film of (PEI/mwcnt)5 showed that the
phase and loss tangent present the best reproducibility. Additionally, no use was found for
the Nyquist plot in the detections of estrogen.

After collecting the samples, the PCA was used to calculate the weights for PC1 and
PC2. Then, PC1, PC2, and −log10(concentration) were plotted, and the calibration concen-
tration equal to 10PC1×0.492−PC2×0.14–14.5 was reached using (PEI/mwcnt)5 and (PEI/GO)5
thin-films data.

For future prospects, at least four more samples should be collected using the thin
films to prepare a significant dataset. Using these new samples, three could be used for
calibration and one for testing. As such, four combinations could be tested this way, and
either the calibration with the best result or an overall average could be used. Additionally,
by collecting more samples regarding degradation, drift compensation algorithms could be
used to extend the sensors’ life cycle past single use [44,45].
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