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Abstract: Thin-walled aluminum alloy parts are widely used in the aerospace field because of their
favorable characteristics that cater to various applications. However, they are easily deformed during
milling, leading to a low pass rate of workpieces. On the basis of on-machine measurement (OMM)
and surrogate stiffness models (SSMs), we developed an iterative optimization compensation method
in this study to overcome the machining deformation of thin-walled parts. In the error compensation
process, the time-varying factors of workpiece stiffness and the impact of prediction model errors
were considered. First, we performed machining deformation simulation and information extraction
on the key nodes of the machined surface, and an SSM containing the stiffness information of discrete
nodes of each cutting layer was established. Subsequently, the machining errors were monitored
through intermittent OMM to suppress the adverse impact of prediction model errors. Further, an
interlayer correction coefficient was introduced in the compensation process to iteratively correct the
prediction model error of each node in the SSM along the depth direction, and a correction coefficient
between parts was introduced to realize the iterative correction of the prediction model for the same
node position between different parts. Finally, the feasibility of the proposed method was verified
through multiple sets of actual machining experiments on thin-walled parts with added pads.

Keywords: thin-walled parts; deformation prediction; surrogate stiffness model; on-machine
measurement; compensation

1. Introduction

Thin-walled aluminum alloy parts are widely used in the aerospace field because
of their high specific strength, lightweight, and good machinability. However, the local
stiffness in the thin-wall areas of the parts is relatively low, and thus, they are prone to
severe machining deformation. This effect further affects the machining accuracy. These
issues are primarily addressed using two approaches, namely, error suppression and
error compensation [1]. Error suppression reduces the machining error by improving the
machine tool accuracy, increasing auxiliary support, or reducing the cutting parameters.
Although these error suppression methods are favorable, the machining cost is relatively
high. Error compensation primarily compensates the deviations generated in the milling
process in advance on the tool path according to the predicted machining deformation. The
compensation method does not require machine tools or auxiliary support equipment and
has strong versatility. However, compensation strategies have a significant impact on the
performance of machining results. The primary objective of this study was to investigate
the compensation method for the machining deformation of thin-walled parts.

Existing compensation strategies for machining deformation of thin-walled parts
are primarily divided into two categories, namely, simulation-based compensation and
on-machine measurement (OMM)-based compensation.
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2. Literature Review
2.1. Simulation-Based Prediction and Compensation of Machining Deformation

Recent advances in finite element simulation technology have led to significant im-
provements in the accuracy of machining deformation prediction models established by
industrial finite element modeling (FEM) software. Hence, simulation-based machining de-
formation prediction and compensation techniques have been widely used in recent years.

Machining Deformation Prediction Method: Xi et al. [2] established the stiffness matrix
of an in-process workpiece (IPW) according to the super-element method. They considered
the impact of material removal on the overall stiffness matrix and proposed a thin-walled
part machining deformation prediction model based on the aforementioned method. On
the basis of the reciprocity theorem, Tang et al. [3] established a theoretical deformation
equation model of thin-walled plates under linear loads and predicted the machining
deformation of parts. Agarwal et al. [4] presented a flatness error estimation model for end
milling of thin-walled planar parts, which estimated the flatness-related parameters on the
basis of a combination of a mechanical force model, workpiece deformation model based
on finite element analysis (FEA), and an algorithm based on particle swarm optimization.

Compensation Based on FEM Prediction: Ma et al. [5] predicted the clamping de-
formation of thin-walled parts through FEM and established the mapping relationship
of the tool contact points on the tool path before and after deformation. On the basis
of this relationship, the tool path of the parts was modified to avoid machining errors
caused by the clamping deformation and springback of the thin-walled parts. Li et al. [6]
integrated a tool deformation calculation model and error-flexible iterative compensation
to analyze the impact of tool deformation on the precision of blade finishing milling. They
compensated the tool deformation errors on the tool path using mirror compensation.
Li et al. [7] proposed a deformation prediction model and error compensation strategy for
side milling of thin-walled parts. When calculating the force-induced deformations, the
compensation value of the previous machining position was used as the initial iteration
value to calculate the machining errors at the position, improving computation efficiency.
Si et al. [8] proposed an iterative compensation strategy for side milling of thin-walled
parts, wherein they calculated the deformations of the tool and the workpiece using the
cantilever beam theory and FEM, respectively. Their approach helped in reducing surface
errors caused by tool/workpiece deformation during milling by modifying tool tip position
and tool axis orientation.

Deformation Prediction and Compensation Based on Surrogate Models: Although the
accuracy of the prediction model has increased with improvements in FEM, the computa-
tional complexity is also increasing significantly with the improvement of accuracy, causing
low computational efficiency. Sun et al. [9] proposed a method for quick estimation of ma-
chining deformation of thin-walled parts using a hybrid surrogate model. They combined
the response surface regression and Gaussian regression models to establish a three-level
gradient hybrid surrogate model and calibrated and quantified the uncertain factors of
the model. Li et al. [10] designed a thin-wall micro-milling deformation compensation
device, which, combined with a mathematical model based on the Rayleigh–Ritz theory to
calculate thin-wall deformation, can compensate for micro-straight thin-wall machining
errors. Yang et al. [11] proposed a flexible grinding control method for low-stiffness parts
to achieve uniform thickness of the removed material. The model considers the case of dual
flexibility of the workpiece and the tool and is capable of compensating both thin-walled
workpiece deformation and tool deformation at nominal tool offsets.

For the aforementioned simulation-based compensation methods, it is necessary to
reconduct machining deformation simulation analysis when changing the tool or machin-
ing parameters used in the machining process, which makes FEM time consuming and
inflexible in application. Moreover, the simulation-based machining deformation compen-
sation methods cannot make feedback adjustments based on the machining results. It is an
open-loop system. As a result, optimizing the simulation prediction model of subsequent
machining according to the known machining error data is difficult.
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2.2. Measurement-Based Compensation Methods

Compared to the deformation prediction based on simulation, it is favorable to obtain
the error information of the workpieces by OMM. With the emergence of measuring heads
and software that can be directly applied to computer numerical control (CNC) machine
tools, OMM-based compensation methods have been extensively studied in recent years
and are now widely used, although measurement-based compensation methods require
additional measuring equipment.

Compensation Regardless of Time-Varying Factors: Zhang et al. [12] proposed an
OMM-based comprehensive error compensation method for the contour and thickness
of curved surface parts. A comprehensive constraint that considers both contour and
thickness was established using OMM, wherein a new target outer surface was constructed.
The comprehensive method compensates for both shape and thickness errors, and it
subsequently improves the overall pass rate of workpieces. Fan et al. [13] proposed a
data-driven method for the separation and compensation of machining errors wherein
the spatial statistical analysis method is integrated to categorize the machining errors into
systematic and process errors. Their method compensates for the corresponding errors
by integrating tool path adjustment and cutting parameter optimization. Xiong et al. [14]
presented a closed-loop error compensation method for robot side milling on complex
curved surfaces based on in situ measurement, wherein the spatial statistical analysis is
carried out through Moran’s I to separate systematic and random errors and the processing
path is compensated through mirror compensation. Ge et al. [15] proposed an OMM-based
comprehensive error compensation method for thin-walled parts. First, the machining
errors were reconstructed using OMM, and a compensation model was established using
triangulation-based cubic interpolation and machine learning algorithms. Finally, real-
time error compensation was realized by constructing an external zero-drift compensation
system for the machine tool.

Compensation with Regard to Time-Varying Factors: For thin-walled parts, as the ma-
terial is removed, the stiffness of the part gradually decreases. Simple mirror compensation
based on the errors in the previous layer often cannot satisfy the accuracy requirements.
Thus, Guiassa et al. [16] established a part compliance prediction model with intermit-
tent OMM data, and they applied the model to compensate for the multi-pass milling
of thin-walled parts. This method considers the impact of a corresponding reduction in
the stiffness of the parts as the material is removed, thus yielding a better compensation
effect than mirror compensation. Zhao and Zheng et al. [17] considered the time-varying
characteristics of cutting conditions for thin-walled parts during the material removal
process, and they established an online first-order machining error compensation model
for thin-walled parts, which is corrected using the OMM results of the current machining
layer for the compensation processing of the subsequent layer. Ge et al. [18] considered
not only the influence of the material removal effect but also the coupling effect between
compensation value and workpiece deformation and proposed a compensation algorithm
without iterative processing.

The commonly used mirror compensation approach in existing measurement-based
compensation methods does not consider the stiffness variation during material removal;
this shortcoming may have an adverse impact on the compensation accuracy. However,
measurement-based compensation according to stiffness change requires multi-layer ma-
chining (for at least three processing layers), which is low in machining efficiency, insuffi-
cient in historical data utilization, and low in the optimization efficiency for workpieces
machined in batches.

Considering the aforementioned problems, a fast prediction and iterative optimiza-
tion compensation method of machining deformation that integrates OMM and surrogate
stiffness models (SSMs) is proposed in this paper. The proposed method can combine the
advantages of FEM and OMM methods and subsequently improve machining accuracy and
efficiency. Figure 1 shows the compensation method, which includes five main modules:
(1) SSM establishment (Sections 3.1 and 3.2), (2) determination of the empirical formula of
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cutting force (Section 3.3), (3) prediction of machining deformation based on SSM (Section 3.4),
(4) iterative correction of the prediction model with OMM and SSM (Section 4.1), and (5) com-
pensation processing based on the revised prediction model (Section 4.2).
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OMM and SSM.

3. Efficient Machining Deformation Prediction Based on SSM

Many types of commercial finite element software can predict the machining deforma-
tion of parts before engineers carry out the machining of expensive large-scale thin-walled
parts to avoid unnecessary machining deviations. These packages are, for example, Ansys,
ABAQUS, Advantage, and SolidWorks [19]. But FEM model is generally inefficient in
predicting the deformation of thin-walled parts, which is difficult to meet the demand
for timely response and analysis in the machining process. In this chapter, we propose a
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fast machining deformation prediction method based on SSM, which can realize efficient
machining deformation prediction of thin-walled parts.

3.1. Principle of SSM Establishment

For the end milling of thin-walled parts, the finite element software ABAQUS was
adopted to simulate the end milling process of the upper surface of the workpiece. Figure 2a
shows a cross-sectional view of the workpiece. For the nodes on the upper surface, the
same cutting force F, which is perpendicular to the surface, was applied from left to right in
a specific sequence, and the deformation δ of each node caused by the force was recorded.
The curve of workpiece deformation δ along the x direction was then established, as shown
in Figure 2b, where the red and green curves represent the deformations under different
cutting forces.
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Figure 2. Process of machining deformation prediction based on discrete node information. (a) cross-
sectional view of the workpiece, (b) the deformations under different cutting forces, (c) the local
stiffness variation curve of the part, (d) the process of establishing stiffness model.

For the end milling of thin-walled parts, the finite element software ABAQUS 6.12-1
was adopted to simulate the end milling process of the upper surface of the workpiece.
Figure 2a shows a cross-sectional view of the workpiece. For the nodes on the upper surface,
the same cutting force F, which is perpendicular to the surface, was applied from left to
right in a specific sequence, and the deformation δ of each node caused by the force was
recorded. The curve of workpiece deformation δ along the x direction was then established,
as shown in Figure 2b, where the red and green curves represent the deformations under
different cutting forces.

Based on these simulation results, the local stiffness at each node position can be
calculated using Hooke’s law, as follows:

Ri = F/δi, (1)

where Ri and δi are the local stiffness (N/mm) and deformation (mm), respectively, at the
i-th node position.

The local stiffness of each position in the thin-walled part varies with the material and
local structure of the workpiece in proximity. Within the elastic range of the workpiece,
the local stiffness of a specific position on the part is relatively stable. For a smooth
and continuous processing area, the local stiffness often varies continuously, wherein
the local stiffness variation curve of the part can be established, as shown in Figure 2c.
Therefore, the variation of machining errors caused by local stiffness changes is usually
continuous. The surface after machining deformation can be represented by the smooth
surface reconstructed by the predicted deformed nodes.

The specific establishment of the stiffness model is shown in Figure 2d. Here, the
machining area was simplified into multiple spring components with different stiffness
values. Among these, the local stiffness Ri at the node position is represented by the
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node colors, and the solid black line represents the target molding surface. The nodes
P0(i) = (x0(i), y0(i), z0(i)) that contain stiffness information are present on the target-
forming surface. The black arrow represents the normal direction ni at the node position.
When the local stiffness Ri and cutting force F of the node position are known, the machining
deformation δi of each node can be easily calculated using Equation (1).

In Figure 2d, the predicted node coordinates Pd(i) after machining deformation are
represented by light blue dots. It is obtained by moving the stiffness node along the normal
direction for a deformation distance, and its calculation process is as follows:

Pd(i) = P0(i) + δi · ni. (2)

The smooth red dashed line reconstructed with Pd(i) represents the predicted machined
deformed surface. Thus, the local stiffness lattice carrying the local stiffness and position
information of the parts can be used to represent the machining area and predict its
deformation. In addition, it is important to note that node density affects the prediction
accuracy of SSM, which we will discuss in the next section.

3.2. Structure and Composition of SSM

The stiffness information of the discrete nodes shown in Figure 2d can be fully ex-
pressed in a table. An SSM was built according to the format shown in Figure 3. The second
column represents the node number that is used to store the node number information in
the FEM software; columns 3–5 store the node coordinate values (x, y, z); columns 6–8 store
the node surface vector (nx, ny, nz); columns 9–11 store the node deformation (dx, dy, dz)
under the normal force calculated by the simulation software; and column 12 represents
the local stiffness of the node positions along the normal direction that is calculated by the
deformation and the normal force in simulation.
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The content of columns 1–12 of the aforementioned SSM model can be automatically
calculated and produced through further development of ABAQUS 6.12-1 software in
Python. The specific process is shown in Figure 4. First, the machining layers should
be determined. For workpieces that require multi-layer machining, an FEM model with
multiple machining layers should be established, because it is more convenient to establish
the process model of removing material layer by layer in a computer-aided design (CAD)
model. Therefore, a FEM model representing the machining process of parts with different
residual machining thicknesses was established using several CAD models. Notably, to
ensure good SSM accuracy when reconstructing the machined surface, it is necessary to
determine whether the deviation es between the surface reconstructed by the node set set(Pi)
and the CAD model surface exceeds the maximum deviation limit ε when determining the
density of the discrete nodes in SSM. If es > ε, the node density in SSM should be increased
until es ≦ ε. After the node set of the machining surface set(Pi) is determined, the node
information is sequentially written into the first 5 columns of the SSM file in the format
shown in Figure 3. The non-uniform rational B-spline (NURBS) surface was reconstructed
using node sets set(Pi), and the surface normal vector ni of each node was calculated from
the reconstructed NURBS surfaces and written into columns 6–8 of the SSM. Using the
script shown in Figure 5, the same force Fc is applied one by one to the SSM nodes along
the normal direction on the part model in ABAQUS. Then, the simulation analysis job is
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submitted in a cycle, and the force-induced deformation values of each node are extracted
and recorded in columns 9–11 of the SSM. Finally, the local stiffness of the node is calculated
using Equation (1) and written into column 12 of the SSM.
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3.3. Cutting Force Estimation

An accurate estimation of the value of cutting force according to machining conditions
is a prerequisite for predicting and compensating machining deformation for thin-walled
parts. Significant research has been carried out on the prediction of cutting force in recent
years. Chief among the methods are the mechanical method and the empirical method.
The empirical method [20] considers that cutting force is related to cutting parameters and
regards milling force as an exponential function of cutting parameters. The mechanical
method [21] considers that cutting force is not only related to the cutting parameters but
also to the tool geometry and other factors and regards cutting force as a function of chip
area. In addition, in the actual machining of thin-walled parts, the dynamic characteristics
of the tool and the workpiece affect the prediction and measurement of the milling force.
Kiran et al. [22] proposed a modeling and accurate measurement method for cutting forces
in flexible workpiece milling.

The mechanical force model is complicated, and the process of re-establishing the
cutting force model after replacing the cutting tool places higher requirements on the
theory and technology of the operator, which is not conducive to its application in industrial
environments. The empirical approach is more direct and convenient. Therefore, the empirical
method was used in this study to estimate the cutting force. According to the method
mentioned in the literature [20], the empirical formula of cutting force is established as

F = N·CF·kF·aa
p·ab

e · f c
i ·Ωd, (3)

where ap, ae, f, and Ω are cutting depth, cutting width, feed per tooth, and rotational speed,
respectively; N is the number of tool teeth; CF is the cutting force coefficient; and a, b, c, and
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d are the exponential coefficients of the machining parameters, which can be calculated
during cutting tests.

Notably, to ensure the accuracy of the empirical formula of the cutting force during
machining, the center of the tool axis must be perpendicular to the workpiece surface when
customizing the surface machining scheme.

3.4. Machining Deformation Prediction Considering Coupling between Force and Deformation

Once the empirical formula is established in the form of Equation (4) through cutting
experiments, a predicted cutting force value can be obtained on the basis of a given set
of machining parameters. However, the workpiece may be elastically deformed by the
cutting force during machining, thereby reducing the actual cutting depth in end milling.
This phenomenon, in turn, affects the cutting force. Therefore, force and deformation are
in a coupling relationship [23]. In addition, the residual workpiece material (es)j−1,i of the
previous step also affects the actual cutting force and depth.

Figure 6 shows a schematic of the actual cutting depth under the coupled iteration.
In the figure, (ap)j,i is the target cutting depth of the i-th stiffness node position in the
j-th layer, with the subscript j in the parameter indicating the machining layer and i
representing the node number; (es)j−1,i, which can be calculated from OMM results, is
the actual machining error of the i-th node position in the (j − 1)-th layer, and it also
represents the residual thickness of the previous layer at the i-th node of the j-th layer.
Further, δv

j,i is the deformation caused by the cutting force at the i-th node in the j-th layer,
which is calculated in the v-th iteration. Figure 6 shows that the actual cutting depth under
the influence of machining residual thickness (es)j−1,i and machining deformation can be

expressed as
[(

ap
)

j,i + (es)j−1,i − δv−1
j,i

]
.
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The relationship between cutting force and workpiece deformation can be expressed
in the subsequent iterative calculation formula:

δv
j,i =

F
[(

ap
)

j,i + (es)j−1,i − δv−1
j,i

]
Rj,i

, (4)

where F
[(

ap
)

j,i + (es)j−1,i − δv−1
j,i

]
is the cutting force that changes with cutting depth.

Because the cutting parameters are known, cutting depth is the only variable that should
be considered, and the cutting force can be regarded as a function of cutting depth. With
δ0

j,i = 0 as the initial value, the final stable cutting force and predicted deformation can be
determined by the iterative calculations presented in Equation (4). The iteration termination
condition can be expressed as

δv
j,i − δv−1

j,i

δv−1
j,i

≤ ε, (5)

where ε is a minimal value that can be determined according to the actual situation.
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Figure 3 shows that the coordinates of each node position in SSM, the surface normal
vector, and the local stiffness value along the normal direction are known, and the empirical
formula for cutting forces is also obtained. Further, the (es)j−1,i value of each node position
can also be easily calculated from the OMM results. The predicted value of machining
deformation of each node can be obtained using Equations (4) and (5) on the basis of the
SSM calculation.

It should be noted that the initial predicted deformation δv
j,i is calculated from the SSM

stiffness information, and this parameter should be corrected further to acquire the actual
compensation δa

j,i. The specific machining deformation prediction process is shown in box 3
in Figure 1. The model correction process is discussed in Section 3.1.

4. Iterative Optimization Compensation Method Based on OMM and SSM

In view of the problem that the existing compensation methods based on prediction
models cannot be adjusted according to the measured results, in this paper, we propose a
compensation method that combines OMM and SSM. The established prediction model
can be iteratively optimized according to the measured results.

4.1. SSM Iterative Optimization Based on OMM

An SSM that is capable of flexible and efficient machining deformation prediction
was established as described in the previous section. However, a machining deformation
prediction and compensation system that depends solely on SSM is still an open-loop
system, and it cannot optimize the subsequent compensation process based on the error
information generated during machining. To realize closed-loop control of the deformation
compensation system and subsequently improve the precision of end milling of thin-walled
parts, this paper proposes an iterative optimization compensation method by incorporating
OMM and SSM.

It should be noted that improper OMM schemes can introduce significant errors,
especially in the arrangement of sampling points, because the accuracy of the substitute
geometric model reconstructed using the measurement results is positively related to the
final compensation accuracy. Therefore, it is necessary to optimize the sampling scheme
and evaluate its reconstruction accuracy before conducting compensation machining based
on OMM [24]. Sampling optimization methods have already been discussed in our prior
works [24]; therefore, this article does not discuss them in depth. This paper focuses on the
compensation method of machining deformation.

According to the definition of detection technology in the machining process in the
literature [25], the detection method used in this study belongs to the category of contact
OMM after processing. The iterative optimization compensation machining combined
with OMM and SSM is an intermittent on-machine compensation method based on the
measured results after processing.

The process of establishing SSM is to simplify the FEM model into a certain number of
particle spring models including the normal information of the node surface and the local
stiffness information. As shown in Figure 7, after the SSM is established, it contains the
stiffness information of each node on the machined surface. It can predict and compensate
for the machining deformation directly without FEM software. This approach can improve
the efficiency of error analysis and reduce downtime during workpiece machining. In
addition, combined with OMM technology, the prediction deviation data of discrete nodes
of SSM can be obtained intermittently. From these data, the local stiffness model of
each node of SSM can be modified specifically to improve the accuracy of subsequent
deformation prediction.

As described in Section 2.1, the machining area is discretized into a set of mutually
independent node arrays, wherein each node is considered a spring component, and their
local stiffness, i.e., the elastic force of the spring, is fixed. Therefore, as shown in Figure 8,
for the same type of workpieces, from part 1 to part n, the model error at the same node
position in the SSM of the workpiece is approximately the same. Therefore, the prediction
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model error of the i-th node position in the j-th layer of the previous part in the SSM can be
used to calculate the inter-part correction coefficient αj,i at the node in the SSM to correct
the prediction model for the same nodes in the SSM of the current part.
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For the same workpiece, the thickness of the removed material is relatively small
compared to that of the remaining part because of the layer-by-layer machining. Therefore,
we can consider that the local stiffness values of nodes at the same position on different
cutting layers change continuously along the depth direction of the machined surface of
the part. This phenomenon can be expressed as follows: from layer-1 to layer-m, as the
material is removed layer by layer, the local stiffness value of the i-th node position in
the SSM gradually decreases. Further, the prediction model error of the i-th node in the
previous layer ((j − 1)-th layer) of the SSM can be used to calculate the interlayer correction
coefficient βj−1,i, which is used to correct the prediction model of the i-th node of the current
layer (j-th layer). Differences in machining deformation tendency may exist between parts
of the same batch because of the influence of local structural differences and local material
distribution uniformity. The interlayer correction coefficient βj−1,i introduced in this study
can promptly correct the differences between parts.

To implement the aforementioned iterative optimization process in SSM, six columns
of parameters were added in the SSM. As shown in Figure 3, the added parameters were
(es)j−1,i, (es)j,i, αj,i, β j,i, δv

j,i, and δa
j,i.
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To conveniently show the change of parameters in the update process, the correction
coefficient of the previous part before iteration correction is represented by αold

j,i and βold
j,i

with superscript; here, αnew
j,i and βnew

j,i denote the correction coefficients that are updated
according to the OMM results during the current part machining process. The specific
iterative optimization process is shown in box 4 in Figure 1. Notably, all βold

j,i = 1 initial
values in SSM are 1. The calculation method of each layer’s βnew

j,i value is shown in
Equation (6). It must be calculated by the machining error of the i-th node of the current
layer measured by OMM after the compensation machining of the current layer (the j-th
layer) is completed.

Each layer should be calculated from the machining error of the i-th node in the current
layer measured by the OMM after the compensation of the current layer (j-th layer).

βnew
j,i =

Actual Machining Deformation
Modified Predicted Deformation

=
δa

j,i + (es)j,i

δa
j,i

, (6)

where (es)j,i is the machining error measured by OMM after the compensation machining
of the current layer (layer j) is completed. δa

j,i is the actual compensation in the process that,
as shown in box 3 in Figure 1, was obtained from the correction of the initial machining de-
formation amount δv

j,i predicted in SSM. This value was calculated before the compensation
machining, and its correction process can be expressed as

δa
j,i = δv

j,i × αold
j,i × β j,i, (7)

where αold
j,i is the inter-part correction coefficient of the previous part at the current node

position (the i-th node in the j-th layer), and β j,i is the interlayer correction coefficient that is
updated in a layer-by-layer manner with the deepening of the cutting layer. The updating
process of β j,i in SSM is shown in box 4 in Figure 1. After the calculation of β j,i at the current
node is completed, the interlayer correction coefficient of the node at the same position in
the subsequent unprocessed layer in SSM is also updated. The calculation process is shown
in Equation (8), where m is the total number of machining layers.

β j+1,i = β j+1,i × βnew
j,i

β j+2,i = β j+2,i × βnew
j,i

. . .
βm,i = βm,i × βnew

j,i

, (8)

From the first to the j-th layer, the interlayer correction coefficient β j,i can be expressed
as the product of the interlayer correction coefficient of the processed cutting layers after
the iterative update. For consistency in the structure of the formula, it is assumed that βnew

0,i
is present, and βnew

0,i = 1. Hence, β1,i = βnew
0,i = 1 and β j,i can be expressed as

β j,i = βold
j,i × βnew

j−1,i × βnew
j−2,i × · · · × βnew

0,i . (9)

As shown in Equation (7), αold
j,i × β j,i was applied to correct the current node prediction

model, where βnew
j,i is the interlayer correction coefficient of the current layer calculated

from the compensated machining error (es)j,i. Therefore, we can use βnew
j,i to re-correct the

correction factor αold
j,i × β j,i in the compensation process and assign the values to αj,i for

the prediction model correction at the same position of the next part. This process can be
expressed as

αnew
j,i = αold

j,i × β j,i × βnew
j,i . (10)

After αj,i is updated, β j,i at the current node is reinitialized to 1 for updating the
next part. On the basis of the aforementioned iterative update method of the correction
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coefficient, we can conveniently and efficiently complete the iterative correction of the
prediction model from the OMM results.

4.2. Machining Deformation Compensation Based on the Optimized Stiffness Model

In the previous section, we explained the OMM-based iterative correction method for
SSM. In this section, we introduce the method for compensation machining according to
the corrected deformation prediction results. In this study, the compensation of machining
deformation was achieved through the identification and modification of the cutter location
source file (CLSF). As shown in Figure 9, the CLSF contains information such as cutter
location coordinates, tool centerline direction, and tool path function parameters. During
end milling, the tool centerline is always perpendicular to the part surface. Therefore,
according to the principle of mirror compensation, for the deformation compensation of
the end milling process, we need only translate the cutter location coordinates along the
direction of the tool centerline by a distance that is equal to the predicted deformation.
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However, in the specific error compensation process, the following two points merit
special attention: (1) if there is a long straight-line segment trajectory on the tool path,
cutter locations should be added according to their corresponding distance; and (2) when
calculating cutter location error, error calculation should be performed on the basis of
the reconstructed model if the cutter locations do not overlap the measurement points or
stiffness nodes.

4.2.1. Machining of Long Straight Segment Trajectories

For the longer straight segment trajectories on the tool path, generally, only the start
and end points of the straight segment trajectories are marked in the CLSF. However, for
thin-walled parts, the machining deformation on the straight trajectory may not be uniform,
and it may vary significantly according to local stiffness on the trajectory. As shown in
the cross-section curve in Figure 10, the predicted machining deformation cross-section
line was a bow curve, although the ideal tool path is a straight line. With regard to the
deformation shown in Figure 10, if compensation is performed according to the original
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machining scheme, and error calculation and compensation are realized only on both ends
of the straight line segment, the requirements of machining accuracy would not be satisfied.
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To address the aforementioned issue that the long straight line segment trajectory
cannot be compensated, the distance between the cutter locations is restricted in the CLSF
file and the maximum distance between the tool points is 3 mm. Before the compensation
of the tool path, the CLSF file was preprocessed, the cutter locations on the tool path were
identified, and the distance between the cutter locations was evaluated. For straight-line
segments that are larger than the set spacing requirements, cutter locations were added
evenly until the requirements were met.

4.2.2. Error Calculation and Compensation Process of the Stiffness Model

For the iterative correction process of the prediction model, the machining error (es)j,i
of each node position in the SSM must be calculated. For the compensation process of
the tool path, an accurate calculation of the predicted machining deformation error et of
each cutter location is necessary. However, as shown in the vertical view of the machining
area on the right in Figure 10, the cutter locations, stiffness nodes, and measurement
points did not coincide. Therefore, these two kinds of errors cannot be obtained directly
through measurement. While calculating the errors, the nodes in each layer of the SSM
and the measurement points were reconstructed into parametric surfaces, respectively,
and the deviations at the corresponding positions were calculated accordingly. For the
reconstruction of parametric surfaces, we resort to the NURBS method.

A NURBS surface of degree k × l can be expressed in the form of the following rational
fraction [26]:

S(u, v) =

m
∑

i=0

n
∑

j=0
ωijdijNi,k(u), Nj,l(v)

m
∑

i=0

n
∑

j=0
ωijNi,k(u), Nj,l(v)

, 0 ≤ u, v ≤ 1, (11)

where dij is the control vertex, which is distributed in a rectangular array; m and n are
the numbers of control points in the u and v directions, respectively; and ωij is the weight
factor corresponding to dij, Ni,k(u) is a basis function of degree k in the u direction, and
Nj,l(v) is a basis function of degree l in the v direction. The basis functions of these two
directions were calculated from the sum of node vectors U = [u0, u1, · · · , um+k+1] and
V = [v0, v1, · · · , vn+l+1] in the u and the v directions, respectively, according to the de Boer
recursive formula.

(es)j,i is the machining error of the position of the i-th node in the j-th layer in the SSM.
It is the distance from the node along the surface normal direction to the intersection point
of the NURBS surface reconstructed from the measured points. Here, the node coordinates
and the surface normal vector of the node position were known from SSM. Similarly, et is
the distance from the cutter location along the vector direction of the tool centerline to the
intersection point of the reconstructed predicted deformation surface, when calculating
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the predicted deformation of the tool position point et, and the tool position coordinates
and tool centerline vector were known through CLSF. The calculation process of these two
errors is the same and both are aimed at evaluating the distance from the starting point
of the ray to the intersection point of the ray and the parametrical surface according to
the known starting point and direction of the ray. The numerical method mentioned in
our previous research [22] was applied to perform the calculation process. This process is
explained as follows. The ray was spatially transformed together with the NURBS surface
so that the ray coincides with the Z-axis. At this time, the projection of the intersection
point on the XOY plane was zero. The projection plane XOY can be divided into four parts
using the bisection method along the parameters u and v directions. Then, according to
the zero point on the projection plane XOY, the parameter interval [(ua, ub), (va, vb)] where
the intersection point is located can be quickly found. Repeating this dichotomy narrows
the parameter interval where the intersection point lies. The intersection coordinates could
be represented as (ua, ub) when the parameter-l interval is sufficiently small. Finally, the
desired intersection coordinates and corresponding distance could be obtained by inputting
the corresponding parameter values (ua, ub) into the NURBS curve equation before the
space transformation.

As shown in Figure 10, because of the restriction associated with the size of the probe,
the measurement points could not cover all the machining areas, contrary to the nodes
in SSM. When calculating the prediction deviation of the nodes in SSM, some nodes in
the boundary area would exceed the range of the measurement area; in this case, we
found the nearest point to the SSM node on the four outer curves of the surface that is
reconstructed from the measurement points. We used the machining error of this point as
the prediction error of the SSM node. A similar situation occurred in the calculation of the
tool position point error where some tool position points were not within the machining
surface. However, because it overlapped with the coverage area of the tool machining,
we ignored the tool position points that were not present in the machining area, without
performing compensation.

5. Case Study

This section describes the experiment we conducted to verify the effectiveness of the
proposed iterative optimization compensation method combining OMM and SSM. We
considered thin aluminum alloy plates as an example for the verification test of end milling.

5.1. Experimental and Simulation Environment

The equipment adopted for the experimental process is shown in Figure 11. The
Makino S56 vertical machining center was used for the machining in the experiment. The
machining center was also equipped with an MP600 touch probe manufactured by Ren-
ishaw for on-machine inspection after machining. The cutting force measuring equipment
was a Kistler 9272. The cutting force tests and the subsequent parts machining experiments
were carried out on the same machine tool. The machining tool was a φ12 carbide end mill
with four teeth.

According to the empirical method for cutting force estimation mentioned in the
literature [20], the cutting force orthogonal tests were carried out according to different
cutting parameters, and the parameters to be determined in the cutting force empirical
formula (Equation (3)) were determined accordingly. In end milling, the deformation of
thin-walled parts is mainly caused by the normal force Fz. Therefore, only normal force
was used in the deformation prediction analysis. The forces in the other direction are
ignored. Equation (12) shows the empirical formula of normal force whose undetermined
parameters were determined:

Fz = 4283.24a0.4213
p a0.3355

e n−0.6048 f 0.3905. (12)



Sensors 2024, 24, 613 16 of 24

Sensors 2024, 24, x FOR PEER REVIEW 17 of 26 
 

 

the parameter interval where the intersection point lies. The intersection coordinates could 
be represented as (ua, ub) when the parameter-l interval is sufficiently small. Finally, the 
desired intersection coordinates and corresponding distance could be obtained by input-
ting the corresponding parameter values (ua, ub) into the NURBS curve equation before 
the space transformation. 

As shown in Figure 10, because of the restriction associated with the size of the probe, 
the measurement points could not cover all the machining areas, contrary to the nodes in 
SSM. When calculating the prediction deviation of the nodes in SSM, some nodes in the 
boundary area would exceed the range of the measurement area; in this case, we found 
the nearest point to the SSM node on the four outer curves of the surface that is recon-
structed from the measurement points. We used the machining error of this point as the 
prediction error of the SSM node. A similar situation occurred in the calculation of the tool 
position point error where some tool position points were not within the machining sur-
face. However, because it overlapped with the coverage area of the tool machining, we 
ignored the tool position points that were not present in the machining area, without per-
forming compensation. 

5. Case Study 
This section describes the experiment we conducted to verify the effectiveness of the 

proposed iterative optimization compensation method combining OMM and SSM. We 
considered thin aluminum alloy plates as an example for the verification test of end mill-
ing. 

5.1. Experimental and Simulation Environment 
The equipment adopted for the experimental process is shown in Figure 11. The 

Makino S56 vertical machining center was used for the machining in the experiment. The 
machining center was also equipped with an MP600 touch probe manufactured by Ren-
ishaw for on-machine inspection after machining. The cutting force measuring equipment 
was a Kistler 9272. The cutting force tests and the subsequent parts machining experi-
ments were carried out on the same machine tool. The machining tool was a φ12 carbide 
end mill with four teeth. 

 
Figure 11. Machining environment and cutting force test. 

According to the empirical method for cutting force estimation mentioned in the lit-
erature [20], the cutting force orthogonal tests were carried out according to different cut-
ting parameters, and the parameters to be determined in the cutting force empirical for-
mula (Equation (3)) were determined accordingly. In end milling, the deformation of thin-
walled parts is mainly caused by the normal force Fz. Therefore, only normal force was 

Figure 11. Machining environment and cutting force test.

In the subsequent experiments related to compensation machining, the machining
parameters were ap = 1 mm, ae = 5 mm, n = 3000 r/min, and f = 0.2 mm (feed per tooth).

The thin plate part used in our experiments is shown in Figure 12. The dimension of
the thin plate part was 400 × 40 × 6 mm, and it was clamped on both ends. The middle
suspended area of size 300 × 40 mm was the machining area. The depth of each machining
was 1 mm, and it comprised three layers. After the machining of every layer, the touch
probe mounted on the machine tool conducted OMM. The sampling points, a uniformly
distributed point array of 13 columns and 5 rows, are indicated by the red dots in the figure.
The material used for the parts was AL6061; the material parameters are shown in Table 1.
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Table 1. Material parameters of thin plate parts.

Material Young’s Modulus (GPa) Poisson’s Ratio Density (kg/m3)

AL6061 70 0.33 2.75 × 103

The SSM for the machining area of thin plate parts was established in the method
introduced in Section 2.2. Figure 13 shows the distribution of the nodes selected in the
finite element software ABAQUS 6.12-1 to construct the SSM. Because it was a plate part, a
uniformly distributed 9 × 61 node array was chosen as the node set of one layer in SSM.
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After determining the cutting force empirical formula of the part and establishing the SSM,
the machining deformation in each machining layer of the part could be quickly predicted.

5.2. Comparison of Calculation Effects between SSM and Conventional FEM

This section provides a detailed comparison between the effects of the proposed SSM-
based machining deformation prediction method and those of the traditional FEM. As
shown in Figure 13, a group of nodes at the center of the thin plate was selected as the
object to compare the computational efficiency and accuracy of the two methods.

The comparison was conducted on the same computer (CPU: Intel i5-1035G1; RAM:
16 GB). The finite element software adopted in the traditional FEM-based deformation
prediction process was ABAQUS2016, which was further modified with Python to realize
the automatic iterative calculation of the coupling between force and deformation. The
proposed SSM-based method used a program that was independently developed with
Python. Both methods consider the impact of the coupling between force and deformation,
and the iteration termination condition in both cases was ε ≤ 0.01 mm.

Figure 14 shows a comparison of the prediction results of the two methods. The
prediction results of the two methods were consistent, which indicates that the prediction
accuracy of the SSM is not affected and that it is capable of achieving the same accuracy as
the prediction model based on traditional FEM.
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To compare the computational efficiency of the two methods, a comparison graph of
the time taken by the two methods for deformation prediction was plotted as shown in
Figure 15. The time spent on the SSM model construction is also shown, and it is different
from the calculation process of deformation prediction because it does not require the
iterative calculation of the coupling between force and deformation.

As shown in Figure 15, the deformation prediction process based on SSM only re-
quired 0.12 s, despite the 103 s that were required for its establishment. The deformation
prediction process based on traditional FEM took approximately 476 s, indicating that
the computational efficiency of the traditional FEM is significantly less than that of the
proposed SSM-based prediction method. Even if the establishment of SSM is included as
part of the SSM-based deformation prediction process, the time consumed by FEM-based
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deformation prediction is still approximately 4.6 times that of the SSM-based method. This
result shows that the proposed SSM method is significantly better than the FEM-based
method in terms of computational efficiency.
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Moreover, when the machining parameters must be changed, the traditional FEM
prediction model must be re-simulated, which is a time-consuming task. However, for the
SSM-based method, changing the machining parameters would not affect the prediction
process of the established SSM model. The SSM can continue to be used and need not be
re-established. Thus, compared to FEM-based methods, the SSM-based method is more
flexible and efficient.

5.3. Verification of SSM Deformation Prediction Effect

To analyze the impact of the prediction model, uncompensated machining tests were
conducted, and the predicted deformation results were compared with those of the actual
machining effect. However, this part produced severe chatter during actual machining,
resulting in the failure of normal machining. This result may be attributed to the fact that
the thin plate part was too long, and the local stiffness in the middle of the part was too
low. This effect may be also caused by the resonance due to the proximity of the cutting
vibration frequency to the natural frequency of the part. As shown in Figure 16, to solve
this problem, we added two pads on both sides of the thin plate part to improve the local
stiffness of the part and suppress the impact of the flutter.
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The addition of pads may decrease the computational accuracy of the prediction
model. However, the models for complex parts are often simplified in actual simulation
modeling, and thus, local simulation prediction deviations are unavoidable. Moreover,
the adaptive correction of the local deviation of the simulation prediction model is also
an important issue that should be considered in the iterative optimization compensation
method proposed herein. In this experiment, the pads were introduced to verify the
application effect of the proposed method. Therefore, the SSM is not rebuilt according to
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the parameter information of the pads. In the subsequent compensation machining process,
the SSM without consideration of the pads was followed.

Figure 17a shows the deformation prediction result of the first layer of the part based
on SSM, and Figure 17b shows the measured machining error distribution of the first layer
after uncompensated machining. From Figure 17a, it can be observed that the predicted
part machining deformation errors are symmetrically distributed along the center line,
the maximum error occurs at the upper and lower ends of the vertical centerline, and the
maximum error is 0.24 mm. Comparing Figure 17b with Figure 17a shows that the overall
deformation trend along the length of the part is consistent between the actual measurement
and predicted results. They all have small machining errors near the clamping positions on
both sides, with the largest machining errors near the middle position. However, comparing
specific local details shows that there are several differences between the actual machining
and the predicted results. First, the actual machining errors shown in Figure 17b are not
symmetrically distributed along the center line. Moreover, on the upper edge of the part,
the area where the tool gradually moves away from the workpiece, the actual machining
error is significantly smaller, and this area possesses the smallest machining error along the
width direction. The maximum machining error along the width direction does not appear
at the upper or lower edges of the part but at two positions that are located 10 mm from
the edges on both sides.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 26 
 

 

comparing specific local details shows that there are several differences between the actual 
machining and the predicted results. First, the actual machining errors shown in Figure 
17b are not symmetrically distributed along the center line. Moreover, on the upper edge 
of the part, the area where the tool gradually moves away from the workpiece, the actual 
machining error is significantly smaller, and this area possesses the smallest machining 
error along the width direction. The maximum machining error along the width direction 
does not appear at the upper or lower edges of the part but at two positions that are lo-
cated 10 mm from the edges on both sides. 

 
Figure 17. Machining result of the first layer of the part: (a) prediction results based on simulation, 
and (b) actual uncompensated machining results. 

The comparison results shown in Figure 17 reveal that despite the impact of the pads, 
the prediction results solely based on SSM are consistent with the actual machining results 
in the overall trend. However, several differences exist between the two results in terms 
of specific error distribution. The distribution of the errors in actual machining is more 
complicated, and the errors increase further with the machining depth. These deviations 
cannot be ignored because compensation machining directly based on prediction results 
may lead to excessive error. 

5.4. Validation of the Proposed Iterative Optimization Compensation Strategy 
To verify the effectiveness of our proposed iterative optimization compensation 

method combining OMM and SSM, we designed three sets of experiments. Among them, 
group 1 was the uncompensated machining experiment mentioned in Section 5.3 as the 
control group. The other two groups were the experimental groups applying our pro-
posed method and were slightly different. In group 2, the iterative optimization compen-
sation machining based on the SSM was used for the first time; in group 3, the iterative 
optimization compensation machining based on the optimized SSM of group 2 was used. 

For a detailed comparison of the iterative optimization and compensation effects of 
each cutting layer in the machining process, cross-sectional curves were adopted to show 
the error distribution of the prediction model. As shown in Figure 17b, the two sections 
with the largest actual machining errors along the length and width directions, the m-
section line, 10 mm from the upper edge, and the n-section line, where the vertical center-
line is located, were chosen as the comparison sections for the machining results. 

After machining, the actual measurement data of the m section were used to establish 
the measured machining error distribution diagram shown in Figure 18. 

As shown in Figure 18, with the uncompensated machining method, the machining 
error of the part increased gradually as the cutting layer deepened, and the machining 
error of the third layer reached close to 0.5 mm. This value is outside the tolerance of the 
part. The iterative optimization compensation machining method based on the initial SSM 
had a large error in the machining of the first layer; the maximum error was 0.052 mm. 
With increasing cutting layer depth, the machining error decreased gradually, and the 
final error was less than 0.05 mm, which meets the machining accuracy requirements of 

Figure 17. Machining result of the first layer of the part: (a) prediction results based on simulation,
and (b) actual uncompensated machining results.

The comparison results shown in Figure 17 reveal that despite the impact of the pads,
the prediction results solely based on SSM are consistent with the actual machining results
in the overall trend. However, several differences exist between the two results in terms
of specific error distribution. The distribution of the errors in actual machining is more
complicated, and the errors increase further with the machining depth. These deviations
cannot be ignored because compensation machining directly based on prediction results
may lead to excessive error.

5.4. Validation of the Proposed Iterative Optimization Compensation Strategy

To verify the effectiveness of our proposed iterative optimization compensation
method combining OMM and SSM, we designed three sets of experiments. Among them,
group 1 was the uncompensated machining experiment mentioned in Section 5.3 as the
control group. The other two groups were the experimental groups applying our proposed
method and were slightly different. In group 2, the iterative optimization compensation ma-
chining based on the SSM was used for the first time; in group 3, the iterative optimization
compensation machining based on the optimized SSM of group 2 was used.

For a detailed comparison of the iterative optimization and compensation effects of
each cutting layer in the machining process, cross-sectional curves were adopted to show
the error distribution of the prediction model. As shown in Figure 17b, the two sections with
the largest actual machining errors along the length and width directions, the m-section
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line, 10 mm from the upper edge, and the n-section line, where the vertical centerline is
located, were chosen as the comparison sections for the machining results.

After machining, the actual measurement data of the m section were used to establish
the measured machining error distribution diagram shown in Figure 18.
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Figure 18. Measured machining error distribution of experimental parts in the m section.

As shown in Figure 18, with the uncompensated machining method, the machining
error of the part increased gradually as the cutting layer deepened, and the machining
error of the third layer reached close to 0.5 mm. This value is outside the tolerance of the
part. The iterative optimization compensation machining method based on the initial SSM
had a large error in the machining of the first layer; the maximum error was 0.052 mm.
With increasing cutting layer depth, the machining error decreased gradually, and the final
error was less than 0.05 mm, which meets the machining accuracy requirements of parts.
By using the SSM iterative optimization compensation machining method, the machining
error from the first layer to the third layer was maintained within 0.02 mm.

To analyze the iterative optimization process of the SSM model based on OMM
results, the deviation analysis diagram of the prediction model as shown in Figure 19 was
established. In the figure, the left area is the section parameter curve of the m section, and
the right area is the section parameter curve of the n section. The red asterisk points on the
blue curve indicate the actual deformation amount of the part at the measurement points,
obtained by adding the compensation amount of the measurement points’ position to the
errors measured after machining. The black dots on the red curve represent deformed nodes
predicted by SSM. The colored straight line is the distribution diagram of the deviations of
the above two curves, i.e., the deviation distribution diagram of the prediction model.
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Figure 19. Analysis of prediction results based on SSM. (a) Machining without compensation; (b) iter-
ative optimal compensation machining based on the initial SSM; (c) iterative optimal compensation
machining based on the used SSM.
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Figure 19a shows an analysis diagram of the uncompensated machining process. The
compensation amount during machining was zero, and the actual measurement result
was the deformation amount during the machining of the part. It is evident from the
figure that with increasing cutting layer depth, the machining error increased gradually,
and the maximum error in the last layer was approximately 0.5 mm. The uncompensated
machining can no longer meet the requirements of machining accuracy. The colored line
plot in the figure represents the deviation of the predicted deformation from the actual
machining deformation of the part. Similarly, with increasing cutting layer depth, the
deviation of the prediction model gradually increased, reaching 0.2449 mm in the last layer.
This result indicates that simply performing compensation machining according to the
simulation prediction results still cannot meet the machining accuracy requirements.

Figure 19b shows the results of the iterative optimization compensation machining
experiment based on the initially used SSM. Because the SSM was applied for the first time,
the initial values of the correction coefficients αj,i and βj,i were both 1. Moreover, because
of the existence of the pads, compensation machining according to the prediction model
resulted in local overcut in the areas of the pads, resulting in poor compensation for the
first layer, as shown in Figure 19b. However, through iterative correction of the prediction
model along the depth direction based on βj,i, the errors of the second and third layers
of the part were significantly reduced. After iterative correction, the maximum error of
the prediction model after the compensation machining of the third layer was reduced
to −0.0591 mm, which sufficiently met the accuracy requirements of the part. Compared
with the prediction results based solely on SSM, the error of the prediction model was
reduced by 75.9%, which shows that the proposed method can be potentially used in the
compensation of machining of single parts.

Figure 19c also shows the result of compensation machining based on the proposed
method. The main difference is that the machining was based on the optimized SSM of the
experimental results of group 2. Compared with the results of compensation machining
based on the initially used SSM in the first layer as shown in Figure 19b, the error of the
prediction model was significantly reduced, exhibiting a drop of 56.4%, with the maximum
error reduced from −0.0569 mm to −0.0248 mm. Compared with the results shown in
Figure 19b, the prediction model errors in the second and third layers were lower and
less fluctuating. which indicates that the prediction accuracy of SSM can be significantly
improved by iterative correction based on the correction coefficient between parts αj,i.

6. Conclusions

In this study, an SSM containing discrete node stiffness information, which can be
used for fast machining deformation prediction, was established. The model exhibited
higher flexibility and faster iterative calculation speed. An iterative optimization and
compensation method for machining deformation of thin-walled parts based on OMM and
SSM was proposed and was validated through end milling experiments of thin-walled
plates with pads added. From the experimental results, the following conclusions can
be drawn:

(1) Compared to the pure FEM-based machining deformation prediction model, the
proposed SSM model exhibits higher computational efficiency and flexibility while
ensuring essentially the same prediction accuracy.

(2) For the initially used SSM, iterative correction based on the interlayer correction
coefficient βj,i can gradually improve the accuracy of compensation machining, The
deviation of the prediction model that was iteratively optimized by OMM was reduced
by 75.9%. Thus, the workpieces can finally meet the accuracy requirements, indicating
that the proposed method can be used for the compensation of single parts.

(3) For parts that are machined in batches, the iterative correction based on the inter-part
correction coefficient αj,i can further improve the accuracy of compensation machining,
which is 56.4% higher than that of SSM used for the first time. The utilization rate of
machining error information is improved through the use of αj,i and βj,i.
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