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Abstract: In this study, we propose a practical and efficient scheme for ship detection in remote
sensing imagery. Our method is developed using both ship body detection and ship wake detection
and combines deep learning and feature-based image processing. A deep convolutional neural
network is used to achieve ship body detection, and a feature-based processing method is proposed
to detect ship wakes. For better analysis, we model the sea region and evaluate the quality of the
image. Generally, the wake detection result is used to assist ship detection and obtain the sailing
direction. Conventional methods cannot detect ships that are covered by clouds or outside the image
boundary. The method proposed in this paper uses the wake to detect such ships, with a certain level
of confidence and low false alarm probability in detection. Practical aspects such as the method’s
applicability and time efficiency are considered in our method for real applications. We demonstrate
the effectiveness of our method in a real remote sensing dataset. The results show that over 93.5% of
ships and over 70% of targets with no visible ship body can be successfully detected. This illustrates
that the proposed detection framework can fill the gap regarding the detection of sailing ships in a

remote sensing image.

Keywords: maritime surveillance; vessel detection and tracking; wake detection; marine engineering;
remote sensing processing

1. Introduction

The capability to automatically detect sailing ships has a wide range of applications in
the marine and commercial fields, such as ensuring the safety of sailing routes, performing
maritime supervision, and combating pirates [1]. Remote sensing has a wide view with a
high resolution, and it plays an irreplaceable role in ocean surveillance [2], especially when
the target’s automatic identification system (AIS) is disabled. An AIS is a system that can
track and report the sailing status of ships; it is influenced by the equipment quality and
protocol standards and can be turned off artificially.

According to the type of sensor, remote sensing imagery can be divided into two
categories: synthetic aperture radar (SAR) images and visible images. Different from
passive sensors, such as optical and infrared sensors, SAR actively emits microwaves for
observation, and it is not subject to climatic factors such as light, temperature, and clouds.
These advantages mean that SAR can carry out Earth exploration operations during the
day and night with long-term stability, and it has a wide range of applications in the field
of ocean exploration. Researchers have proposed many ship detection methods based on
SAR images [3-5]. Generally, ship detection methods using SAR images can be divided
into direct detection methods and indirect detection methods. A direct detection method
uses the pixel difference between ships and the sea background to detect ships; these
methods are mainly based on the statistical features of SAR images [6], and the constant
false alarm rate (CFAR) method is the most representative direct detection method [7]. The
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CFAR method analyzes the statistical characteristics of the sea background and creates
a distribution model to judge whether the current pixel is the target pixel according to
the threshold obtained from the given false alarm rate. The distribution model of the sea
background [8-10] and the detector design method [11-13] are the most important aspects
in CFAR; the image segmentation method is also used to improve the detection performance
in SAR images [14]. Indirect detection methods aim to detect ships by detecting auxiliary
features (such as ship wakes). When the features of the ship body in an image are not
obvious, the detection of auxiliary features is particularly important. The wakes caused by
ship sailing can last for a considerable period of time over a large area on the sea surface [15].
Therefore, the observation probability of ship wakes is larger than that of the ship body, and
the detection characteristics are more obvious than those of the target itself. In addition, by
combining the wake with the position of the target in the image, the speed, the course, and
the actual position of the target can be predicted more accurately. Ship wakes usually have
linear features in SAR images [16], and traditional methods use line detection methods
to achieve wake detection. The Hough transform [17] and Radon transform [18] are the
most common line detection algorithms and are widely used in wake detection [19-25]. In
recent years, learning-based methods have also been proposed to achieve this and show
great potential in ship detection in SAR images [26-28]. These methods require training
and labeled datasets, and there is no presented ship wake dataset for training, which makes
wake detection difficult to perform.

Compared with SAR, visible imagery has the advantages of visualization and a low
cost; moreover, visible remote sensing imagery has a high resolution and can obtain more
local detail features. Thus, the results are more convenient for understanding and further
analysis. Conventional detection methods are usually based on visual saliency and visual
perception principles, and the Itti model [29], Ft model [30], SR model [31], AC model [32],
and GBVS model [33] are widely used in extracting ship regions from the sea background.
Moreover, the Histogram of Oriented Gradients (HOG) descriptor is a commonly used
feature descriptor in ship detection [34]. In general, the above traditional algorithms
have unsatisfactory detection performance under complex background environments. The
convolutional neural network (CNN)-based method is especially effective in ship detection
in visible remote sensing images. Deep learning methods can effectively overcome the
shortcomings of human design, and, due to the large capacity of the model, the target can
be described in detail, which greatly improves the accuracy of detection. According to
their processing steps, deep learning networks can be divided into two-stage detection
methods and single-stage detection methods. A two-stage detection method is carried
out with the structure of traditional methods. The whole image is traversed to generate
several candidate boxes, and then the candidate boxes are classified to determine whether
there is a target in the area; then, the network is used to finely locate and classify the
target. R-CNN [35], Fast R-CNN [36], and Mask R-CNN [37] are the most commonly used
frameworks. The single-stage detection method was proposed to predict multiple bounding
boxes and obtain class probabilities for these boxes simultaneously in one evaluation. You
only look once (YOLO) [38,39] is one of the most representative methods that can perform
real-time detection with fewer false positive detections on the background.

These proposed methods focus on the detection of the ship body, and there are few
reports on the study of ship wakes in visible remote sensing images. As mentioned, visible
remote sensing imagery is influenced by climatic factors, and wakes can be used to assist
ship detection. However, in high-resolution visible remote sensing images, the ship wakes
have obvious local details and are not visually represented as a fine line segment but as a
region with a certain shape. This means that the traditional methods used for SAR images
are difficult to apply to visible remote sensing images. The spatial resolution is the key to
detecting objects using optical satellite images; however, the spatial resolution of an image is
sometimes unavailable, and image preprocessing is often a necessary step. Hence, it is helpful
to evaluate the image quality, which is independent of the spatial resolution, to guide the
algorithm design. Moreover, the proposed method is suitable for a target vessel occupying
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a certain region; the width of the target vessel should be over five pixels. This method is
influenced by the size of the target vessel and the spatial resolution of the satellite image.

This study addresses the ship detection task for visible remote sensing images. We
present a general detection scheme combining deep learning and feature-based image
processing. We fuse the detection results of the ship body and ship wakes to achieve robust
ship detection. A YOLOvV5 [40] network is used to achieve the effective detection of the
ship body, and a feature-based image processing method is proposed for wake detection.
The sea region is modeled and the quality of the image is evaluated. The wake detection
result is used to assist ship detection and obtain the sailing direction. Using wake detection,
invisible ships that are covered by clouds or are outside the image boundary can also be
detected with a certain level of confidence. We demonstrate the effectiveness of our method
in a real dataset, which shows that the proposed detection framework can fill the gap in the
detection of sailing ships in a remote sensing image. Moreover, the method’s performance,
varying with the proposed criterion, is also discussed.

As far as the authors are concerned, this is the first attempt to fuse ship body detection
and ship wake detection to solve the problem of invisible vessel detection in real applications.

In brief, the contributions of this study can be summarized as follows.

1. We propose an effective and practical ship detection method for visible remote sensing
images, which takes full advantage of deep learning and feature-based image processing.

2. We propose a useful assessment method to analyze the quality of visible remote
sensing images, which can calculate the confidence of the detection results.

3. The proposed method can achieve detection even when the targets are invisible in a
certain image, which is difficult to realize with the current methods.

The remainder of this paper is organized as follows. Section 2 presents the problem
definition and statement. Section 3 describes our ship detection method based on YOLO
and ship wakes. The detection results are presented and discussed in Section 4. Finally,
conclusions are drawn and future work is discussed in Section 5.

2. Problem Statement

In this study, we focus on ships sailing on the ocean; the ship wakes are the most
significant characteristic for researchers seeking to analyze the ship state. The wakes can
remain for a long time at the sea surface and can be used to estimate the sailing direction.
Sailing ships produce four categories of wake structures; these are the Kelvin wake, the
turbulent wake, the narrow V wake, and the internal wave wake [41]. These classic wake
structures are shown in Figure 1.

Near-field region Far-field region

Sailing
direction .
C— B T ) e e e el T e

Kelvin
envelope L
Iransverse Solitary wave

wave packets

Divergent
wave

Figure 1. Illustraction of ship wake patterns.
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The ship wakes in a remote sensing image are shown in Figure 2. We can observe
that the ship wakes in a visible image are not as pronounced as those in an SAR image,
and the ship body has more contrast with the sea background. This indicates that wake
detection is more difficult than ship detection in a remote sensing image. However, direct
ship detection also suffers from problems due to cloud coverage and detection around the
image boundary, and, in these cases, the long-term remaining wakes can be used for direct
ship detection.

Kelvin
wake

Figure 2. Ship wakes in remote sensing image.

Currently, the average revisit time of satellites is large (about 20 min) and the sensing
cost is high. Using more information from remote sensing images can significantly increase
the efficiency of marine observation. This is the core idea of this paper, using indirect wake
detection to fill the detection gap regarding sailing ships in a remote sensing image, as
shown in Figure 3.
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Figure 3. Detection gaps in remote sensing image: (a) cloud coverage; (b) detection around im-
age boundary.
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3. Proposed Ship Detection Method

The general ship detection process is depicted in Figure 4. Sea region analysis extracts
the sea area in a remote sensing image and evaluates the image quality, which limits
the detection results. Then, we sequentially perform ship body detection and ship wake
detection and evaluate the detection result. We develop our method based on the necessary
requirements, the limited computing resources, and the current research status. The general
flowchart of our method is shown in Figure 5. As mentioned, we combine ship body
detection and the information of ship wakes to achieve ship detection. The used YOLO
network presents efficient detection for the ship body; the fusion framework and the usage
of wakes are the main focus in this paper. We note that our method can be regarded as an
additional step after the conventional detection network.

Sea region analysis |C—>| Detectshipbody |C—>| Detectshipwakes |—>|Detection assessment

Figure 4. General ship detection process in this paper.

Input:

Image

!

Extract the sea
region

}

YOLO network to Mark the cloud
detect ship body region

!

Evaluate image
quality

. b

Information fusion

Wakes detection

Evaluate YOLO detection result

Output:
Ship detection result

Figure 5. General flowchart of our method.

3.1. Sea Region Analysis

When we obtain a new image, we first use a Gauss filter with small variance to denoise
the original remote sensing image. The sea region analysis consists of the following steps.

Step 1: Extract the sea region.

In a visible image, the sea region Cs.; usually has a color close to blue, so we first
convert the image from the RGB color space to the LAB color space in order to have a more
effective color comparison. We use several manually segmented images to compute the
mean value of the sea region, which is represented by the A value and B value.
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When given an image, we perform k-means++ clustering [42] in the AB subspace,
using the mean value of the sea region as the initial cluster centroid. To improve the
efficiency, we only choose two cluster centroids to represent whether the pixel belongs to
the ocean region or not.

After clustering, we perform morphological opening and closing on the extracted
ocean region to remove snowflakes and fill the holes. We mark the region of interest
according to the result of the connected component analysis.

Step 2: Mark the cloud region in the sea region.

Cloud coverage causes the invisibility of the target in a remote sensing image. We
mark the cloud region C,j,,s based on the dark channel prior (DCP) [43]. The dark channel
of an image can be given by

Uk (x) = min ( min J(y)) (1)

ce{r,gb} yeQ(x)

Here, J¢ is a color channel of the remote sensing image and Q(x) is a local patch
centered at x. Excluding the cloud region, the dark channel of the image has a value close
to zero.

We mark the first 0.1% of the pixels from the dark channel image in order of brightness
as the cloud pixels and then successively perform morphological opening, morphological
closing, and connected component analysis to obtain the cloud region. The DCP method
does not rely on significant variance in transmission or surface shading; however, the
calculation is performed using global and local statistical information, and illumination
correction is needed to provide relatively uniform correction.

Step 3: Evaluate the quality of the image.

We note that the quality of the image has a significant influence on the analysis of the
image features. In Figure 6, we can observe the waves and wakes caused by the vessel
in Figure 6a; however, these features are extremely faint in Figure 6b. Due to the aim of
this paper, we only focus on the ocean part in the image. The ocean background Cp, is the
difference set of the ocean region Cs,,; and cloud region Cjy;,4:

Cbg = Csea — Celoud 2)

For the quantitative analysis, we propose the following quality criterion to describe
the quality of an image:
wi

QI =T[1L",Ql €01 3)
i=1

Generally, a larger QI reflects a higher spatial resolution. A larger value of QI indicates
better image quality. Here, I; € [0, 1] represents the normalized indicator generated by a
characteristic of the image, and w; is the weight of the corresponding indicator. Four char-
acteristics are used to calculate the image quality in this paper; they are the image entropy
H, [44], Tenengrad gradient Hr [45], Gabor feature Hg, and reblur performance Hg.

The image entropy H, is computed as

He = —) (p xloga(p)) (4)

where p contains the normalized histogram count of the image, and a larger value of H,
indicates better image quality.
The Tenengrad gradient Ht is computed as

Hr =} (G (x,y) + Gy(x,y)) ()

where G, (x,y), Gy(x, y) represent the directional gradient in the x and y directions, respec-
tively, and a larger value of Ht indicates better image quality.
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(b)

Figure 6. Observability caused by image quality (a,b).

The Gabor filter is a is a linear bandpass filter that is widely used in image processing
for edge detection, texture classification, feature extraction, and disparity estimation [46].
The Gabor feature H is the maximum image entropy of the response matrix {Rg } obtained
by convolving the original image I, with the Gabor filters {g(x,y|A, 0, ¢,0,7)}:

2,2 . ~
g5 yIN0,9,0,7) = exp(— 55 expli(27F +¢) |, ©
X =xcos0+ysinb,j = —xsinb + ycos O

and
Re = g(x,y|A,0,,0,7) * Imo @
HG = max(He({RG}))

Here, we choose orientations 6 = [0, %, %, 7, %”, 57”] and wavelength A = [2,4, 8], and

a larger value of Hg indicates better image quality.
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The reblur operation is based on the idea that the blurred image loses less information
after smoothing [47]. The reblur performance Hy reflects the similarity between the original
image I'm( and the blurred image I'm’:

Hg = SSIM(Im’, Img) (8)

Here, Im’ = G (o)  Imy is the blurred image using a Gaussian filter G; with variance
of o; SSIM() is the Structure Similarity Index Measure (SSIM), used to measure the similar-
ity between two images from the same capture, which is based on the idea that the human
visual system is sensitive to structural information in a scene [48]:

SSIM(Im!, Img) = [I(Im', Img))* - [c(In, Img)]P - [s(Im’, Img)]”

2 +C 200y +C
/ — Zhxiytar / = SXyT2
1(Im', Img) = y%+;¢§;+Cl’C(1m ,Img) = ol Gy’

ny+c3 (9)
ox0y+C3

s(Im’, Img) =

where piy, pty, 0x, 0y, 0xy are the local means, standard deviations, and cross-covariance
for images Img and Im’; C;,Cy, C5 are the small regularization constants; a, 8,y are the
weighting coefficients. A value of Hy closer to 0 indicates better image quality.

These indicators I; are calculated as

L =(1+exp(a;(He— b)), b = (1+exp(az(Hr — b)) "

I = (1+exp(as(Hg — b3))) ', Is = 1 — (1 + exp(as(Hg — by))) " (10

where a1, a3, a3, a4 and by, by, b3, by are the parameters.

The performance of these indicators can be seen in the performance of image quality
indicators in Section 4.3. According to the QI, we can determine the subsequent operation
procedure and the general confidence of detection.

These indicators are relatively robust in practical scenarios. Under extreme weather
conditions (e.g., strong winds, high waves), QI may not be greatly influenced. However,
in this case, the false alarms during detection may increase, since wakes can be greatly
influenced by extreme weather conditions. For a sea state below moderate (usually 4-8 ft
(1.25-2.50 m)), the proposed QI can have good robustness. If these challenging environ-
ments occur in an application, QI can be adapted in the following form:

wi

. i
QI =SIx[[L"™,QI€0,1]
i=1

where S is the sea state coefficient; for a sea state below moderate, SI = 1, and, for a sea
state above moderate, SI = 0.

Step 4: Model the ocean background.

Here, we convert the ocean background to standardized grayscale and use the Burr
type XII distribution [49] to model the ocean background, since we find that the background
distribution has a unimodal form and is skewed to the right (as seen in the performance of
cloud detection in Section 4.2). The cumulative distribution function (cdf) and probability
density function (pdf) of the Burr distribution are

F(x|a,c,k)=1— ———
(1+_(if/rx)c) i (11)
flxlaye k) =5 (3 (1+3)
where «, c, k > 0 are the distribution parameters.

3.2. Detection of Ship Body

The ship body detection task aims to detect instances of ships with a certain charac-
teristic. It includes a localization operation and a classification operation. Generally, the
ship region Argy;, occupies a small space in a remote sensing image. For example, the used
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images usually have a size of 1920 x 1080, and the ship usually occupies a small space with
a size of less than 200 x 200. These small objects mean that the traditional methods yield
less satisfactory results. In recent years, deep learning has shown great potential in image
processing and is widely used in object detection. YOLO is a one-stage real-time object
detection approach that uses a single network to realize the entire detection pipeline. We
use the dataset from [50] with image enhancement to train a YOLOV5 network [22] with
one category to achieve the detection of the ship body. We find that the YOLOv5, YOLOVS,
and YOLOX networks have similar performance in detecting sailing ships (all with over
90% detection accuracy, and the accuracy improvement less than 3%). Since we need to
deploy our system in a certain equipment setup with limit computing resources, we finally
choose the YOLOV5 network. We note that the used network is not the main concern of
this paper; we simply use it as a tool to present regular ship body detection.

We further check the YOLO detection region, and we relax the detection region to
two times the side length and keep only the relaxed regions in which over 50% of the area
belongs to the ocean background Cp,g. The accuracy of ship body detection can be over 90%.

3.3. Detection of Ship Wakes

We now describe our wake detection method, as well as its scope of application.
Generally, the wake detection method consists of the following steps. We note that only
images with a quality value QI larger than the distinct threshold Thy are considered
meaningful to extract the wakes.

Step 1: Determine the wake searching region.

According to the purpose of usage, the wake searching region S, consists of three
types: the ship body neighborhood 51, the cloud neighborhood S, and the boundary
region S3.

The ship body neighborhood S; lies along the axis of the vessel detection window;
since the ship a large length-width ratio, we use principal component analysis (PCA) to
obtain the ship axis:

1 ¢ T

Scov = mZ (xi - H) (xi - l—l)
i=1 (12)
Scov = ) /\iViViT

M=
=
=
<
=
12
It~

Here, we binarize the vessel area and Sy is the covariance matrix of the position
matrix of the vessel area; A;, v; are the eigenvalues arranged from large to small and the
corresponding eigenvectors; for a two-dimensional image, k = d = 2; and vy, v, are the
long-axis direction and short-axis direction of the vessel, respectively.

S is generated according to the minimum bounding rectangle of the binarized vessel
area with a length of four times. The cloud neighborhood S, is generated according to the
minimum bounding rectangle of the cloud region C,,,; with a spacing distance of about
50~100 m. The boundary region S3 also has margins of about 50~100 m.

Step 2: Search the turbulent wake in S,.

Among the presented wake patterns in Figure 1, the Kelvin wake and the turbulent
wake are the most likely wake patterns that will be observed in a remote sensing image.
Compared with the Kelvin wake, the turbulent wake usually has a larger region and its
grayscale has a more concentrated distribution. These make the detection of turbulent
wakes more robust; hence, we detect the turbulent wake to aid ship detection in this paper.

For each wake searching region obtained in Step 1, we first convert the image from the
RGB space to the LAB space. Since the L component directly reflects the brightness, which
is a significant feature in distinguishing turbulent wakes, we also use the Burr type XII
distribution to model the L component of the searching region. The log-likelihood function
of the Burr type XII distribution is

log(Lp) = —(k+ 1)& log<(%)c + 1) +(c— 1)i log(x;) — cnlog(a) + nlog(c) +nlog(k) (13)
i=1 i=1
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We use the maximum likelihood estimation (MLE) method to obtain the parameters.
However, finite maximum likelihood estimates for the Burr type XII distribution do not
always exist due to the possibility of having non-degenerated limiting distributions [51].
Here, we use the Gamma distribution as the alternative distribution form when the Burr
type XII distribution cannot be solved. The pdf and cdf of the Gamma distribution are

L LXL 1efo/]4 1 Lx/u L1
fe(x|Lp) = (P‘) T,FG(ML,M = m/o t- et dt (14)

where x, L, 4 > 0, and the Gamma function I'(a) is T'(a) = f0+°° trletdt.
The MLE of the Gamma distribution parameters is

g — Ly, d0n(@(@)) (LY 1gny o
V—E;XU dL ln<ﬁ>+7’l;1nJCl (15)

Before we fit the distribution, we first standardize the L component x to obtain bet-
ter fitting:
X = x — min(x) + ¢ (16)

where ¢ is a small regularization constant.
Then, the bright turbulent wake and dark turbulent wake can be extracted based on
the idea of CFAR:

For Burr type XII distribution:

1
pr=1-

- /P2 = ¢
(L (Ty/w)) " (14 (Ta/w) ) a7
For Gamma distribution

P1 :]_< > f tL 1 7Lt/ydt Py = ( > de tL 1,—Lt/ngs

where p; and p; are the given region probabilities of bright and dark turbulent wakes,
respectively; T, and T are the calculated detection thresholds.
The bright turbulent wake region W, and dark turbulent wake region W; can be
obtained by
Wy = {xp:xp = Tp}, Wy = {xp 1 xp < Ty} (18)

Since noise waves may also be extracted as ship wakes, we use the density-based
spatial clustering of application with noise (DBSCAN) method [52] to cluster the wakes.
The DBSCAN algorithm constructs the e-neighborhood of the data point as

Ne(p) = {q € X |dist(p,q) < e} (19)

where dist is the distance function; we choose the L; norm as the distance function in our
method.

The DBSCAN method uses the neighborhood density threshold M, to discover the
clusters of the dataset that contain at least M, central points. These parameters can be
chosen according to the image resolution, and, in our case, they can be chosen as

e=15 M, =5 (20)

The performance of the DBSCAN method can be affected by these parameters. In
our case, the spatial resolution of these images is from 0.91 m to 1.27 m, and the chosen
parameters are robust in this case. Generally, when the spatial resolution increases, the
parameter M, increases while parameter ¢ decreases. Since the wakes have a larger region
in images with high quality and a high spatial resolution, a more adaptive approach can be
used via a data-driven method. The NN-based method can be used when we have a large
number of data and the RBF-based method can be used when we have fewer data.
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Since the wake has a banded spatial distribution, we use the bivariate normal distribu-
tion N(u, X) to model the wake region. The covariance matrix Z reflects the shape of the
extracted region; we use the ellipticity of the equiprobability curve as the criterion Jyy to
check the wake region obtained by DBSCAN:

=1 7o el

)\max

where

r 1 =vuAUT, A = [)‘max (22)

)\min]

Only the region with an area larger than Ay and where Jiy > Jj is considered as the
wake region. Next, we use a quadratic curve to fit each wake region and merge these
regions with a similar fitting curve.

We note that the proposed method of wake extraction relies on the image quality and
spatial resolution. Only for images with a high QI (QI > 0.7) can the wakes be extracted
using the proposed method, and it shows a good improvement when QI > 0.85. Since the
wakes are faint in low-spatial-resolution or low-quality images, no additional information
can be acquired using the proposed method. The detailed information can be seen in the
analysis in Section 4.4.

3.4. Detection Assessment

After the above process, we use the following principle to guide ship detection.

1. For wakes detected in boundary region S3 and cloud neighborhood S;, we calculate
the length of the wake fitting curve belonging to the boundary region and cloud region,
and the confidence of ship detection is given as

Py =QI- <1 - II a- Pi)) (23)

itlizlo

where p; is the goodness of fit according to the degree-of-freedom adjusted coefficient of
determination; [j is the given length threshold.

2. For ship body neighborhood S;, we first take the ship region in the detection box,
and we use PCA to obtain the axis of the ship body, as described in Equation (12). We search
for ship wakes in the front and back regions along the ship axis, respectively. Choosing the
wake region with greater confidence, let Cy denote the center of the wake region, and C;

H
represents the center of the ship body. Then, the sailing direction ! ; is obtained by

— -
lo=C1—Co, l4=1yov2
7 (24)

Yova-lo

Yo = argmin
yoe{1,~1} \ lIv2]

=
Lo

Due to the influence of the quality of the image, it may not be possible to extract the
correct recognition region in some cases. Therefore, we propose the following heuristic
search algorithm to extract the ship body and wake regions for images with a large range
of quality levels.

Step 1: Initialize the recognition threshold b = by.

Step 2: According to the output of extraction, the recognition region is divided and
morphological calculation is performed.

Step 3: The threshold value is updated with the morphological calculation results.

Step 4: Repeat the calculation with the new threshold until the morphological calcula-
tion results meet the requirements for region extraction.
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The initial search value of the threshold in the algorithm uses the following fuzzy
algorithm based on a membership function:

na(wix;)

by =07 -
17 pa(wix))

(25)
where © € R" is the fuzzy set composed of reference thresholds under different im-
age quality levels; m is the number of reference sample images used; and py(w'x;) =
M, (WIx;), ..., ™u, (WTx;)] is the corresponding membership function vector. The mem-
bership function adopts the following form of a Gaussian and exponential function:

g (W) = 1/ (14 e %00 iy (wTR;) = 1/(1 4 e am(WSimbu)

- (26
i, (wix;) = e’”k(wT"i’bk)Z,k =2,....m—1 )
where a;, b; are the shape parameters of the corresponding membership function.
The threshold update process is as follows:
— 4 sen(Ai—A)
Ab = :i:l+e_ﬂ|A1—Ag\ 27)

b =0b—kAb

where b, b’ are the thresholds before and after one update; A1, Ag are the areas extracted in
the morphological analysis and the area of the mean ship body and wake regions calculated
according to the image resolution; sgn() is a sign function. The selection of the initial
symbol is determined by the relationship between the threshold value under the criterion
and the area change of the region. The principle is that a positive Ab will lead to a positive
area change AA. a € R" is a constant coefficient, and k is the basic search step, which, in
this case, is 0.1.

4. Results and Discussion
4.1. Implementation Details

We evaluate the method described in the above section and demonstrate it on the
AIR-MOT dataset [53]. This dataset is a large-scale and high-resolution Jilin1 satellite
video dataset for multi-object tracking. We filter over 1000 images with sailing ships and
200 negative images with no ships in the ocean. The spatial resolution of these images is
from 0.91 m to 1.27 m, the size of images is 1920 x 1080, and the sensor is an MSS. We use
these data to evaluate our method. The AIR-MOT dataset is proposed for object tracking,
and successive observations can help to obtain the true ship position even when the targets
are invisible in a certain image. In the training process, the dataset is split into training and
validation sets with an 80/20 split, the YOLOv5 network is used as the model backbone,
and other hyperparameters, such as the DBSCAN parameters, are empirical constants. We
use the detection accuracy and false alarm rate to evaluate the performance.

4.2. Sea Region Separation

We demonstrate the original remote sensing images in Figure 7. The corresponding sea
region separation result are as shown in Figure 8, where the white pixels are the extracted
sea region. Although these images have differences in resolution, hue, and definition, the
presented method can effectively extract the sea region, with an Intersection of Union
(IoU) of over 95%, within 1.1 s in the MATLAB environment. This result indicates that this
method can achieve effective, adaptive, and fast sea region separation, which can be used
to limit the detection region.
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(b)

(d)

Figure 7. The original remote sensing images (a—d).

(b)

(©) (d)
Figure 8. The performance of sea region separation (a—d).

The performance of cloud detection is shown in Figure 9: the original remote sens-
ing image is shown in Figure 9a, and the cloud detection result is shown in Figure 9b,
where the white pixels are the extracted cloud area. The average computing time is about
2.90 s. We can see that the detection operation can provide appropriate segmentation for
further processing.

After sea area separation and cloud detection, we can obtain the sea background, the
cloud neighborhood S;, and the boundary region Ss.
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Figure 9. The performance of cloud detection (a,b).

4.3. Sea Background Analysis

The performance of a normal distribution, the lognormal distribution [54], the Gamma
distribution [55], and the Burr type XII distribution is compared. As shown in Figure 10,
we first demonstrate the modeling performance in the original grayscale (Figure 10a)
and standardized grayscale (Figure 10b). We can see that standardization is necessary in
modeling the sea background.

140

Density

0.1

01 0.15 0.2

Gray scale Gray scale

(a) (b)
Figure 10. The modeling performance in the original grayscale (a) and standardized grayscale (b).

We model the sea background of the images shown in Figure 7, and the fitting distri-
bution curves of the four models and the corresponding L-value histograms are shown
in Figure 11. Visually, the Burr type XII distribution has the best performance in these
four methods. For further evaluation, we calculate the Kullback-Leibler divergence (KLD)
between the true distribution and modeling distribution (shown in Table 1). As we can see,
the Burr type XII distribution has the lowest average and variance KLD regarding the true
distribution, which indicates the Burr type XII distribution has the best modeling perfor-
mance. Moreover, we find that the Gamma distribution tends to have lower KLD when the
image has better quality, and this is the reason that we choose the Gamma distribution as
the alternative distribution.

We present the image entropy H,, the Tenengrad gradient Ht, the Gabor feature H,
the reblur performance Hg, and the proposed criterion QI to evaluate the image quality
in Figures 7 and 12. Among these images, those in Figure 7c,d and Figure 12a,b are more
conducive to the extraction of the ship wakes, and the image in Figure 7d provides the
worst conditions. By comparing the quantitative results between the different methods
in Table 2, we find that the proposed quality criterion can effectively evaluate the image
quality, and it the has the best conformity in terms of intuition and practical operation.
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Figure 11. The performance of sea background modeling (a—d).
Table 1. KLD of different methods.
Normal Gamma Lognormal Burr Type XII
Image (a) 2.2350 0.9067 0.4849 0.2664
Image (b) 1.2977 0.1998 0.1340 0.2028
Image (c) 0.0437 0.0250 0.0753 0.0157
Image (d) 0.0697 0.0439 0.0513 0.0561

Figure 12. Challenging remote sensing images (a,b).

(b)
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Table 2. Performance of image quality indicators.

H, Hr Hg Hg QI Intuition
Figure 7a 2.3050 21.5425 4.7419 0.9841 0.8836 common
Figure 7b 2.5348 12.9861 5.6017 0.9679 0.9296 common
Figure 7c 3.8685 50.5564 7.3810 0.9660 0.9870 good
Figure 7d 2.1113 2.9499 5.4744 0.9971 0.1669 bad
Figure 11a 5.4253 90.8874 7.2396 0.9701 0.9890 good
Figure 11b 3.7863 79.6189 7.3615 0.9607 0.9865 good

4.4. Wake Analysis

Our ship body detection has similar performance to that presented in [56]. In this
paper, we only show the wake analysis results and the improvement. Figure 12 shows
representative remote sensing images. The ship detection task is challenging in these images
since the cloud coverage and the detection around the image boundary render certain ship
targets almost invisible. Figure 13 shows the detection results for the YOLO network; the
orange and red bounding boxes represent the YOLO detection result and missed detection
target, respectively. This demonstrates that direct ship detection is infeasible in these cases.

YOLO Detection

[] Miss Detection

YOLO Detection
[ Miss Detection

(b)
Figure 13. The YOLO detection results (a,b).

We demonstrate the wake detection result of in Figures 12a and 14. Figure 14a shows
the searching region of the cloud neighborhood; here, the black pixels are the marked cloud
pixels. Figure 14b shows the wake extracted using the method presented in Equation (17).
We can see that many noise waves are also extracted. Figure 14c shows the ship wakes
after clustering and checking; we find that the proposed method can effectively detect the
wakes from the noisy environment. Figure 14d shows the wake fitting result. The goodness
of fit is 0.6016 and 0.9320, respectively, and the calculated confidence of the ships in the
analyzed cloud region is 0.9622. These results indicate that our method can help to detect
ships covered by clouds in a remote sensing image.

Next, we demonstrate the performance of our wake detection method around the
image boundary in Figure 15. Figure 15a shows the boundary regions of Figure 12b;
according to the sea region analysis, only three boundary regions are needed to detect
ship wakes. Figure 15b shows the detection results in the regions in Figure 15a, where we
successively present the original boundary region, the binary boundary region, and the
extracted wake regions. From these results, we observe that our method can effectively
detect the ship wakes around the image boundary, and the calculated confidence of the
ships in the analyzed boundary region is 0.9516 and 0.9438. Since no ship body detections
are matched with the detected ship wakes, we can draw the conclusion that there are
possible ships around boundary regions (II) and (III).
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(c) (d)

Figure 14. Wake detection for cloud neighborhood (a-d), where different colors represent different
wake regions and their fitting curves.

I_| ||
Region (I) Region (III)

(b)

Figure 15. Wake detection around the image boundary (a,b).

()]
Boundary ———— "

region

Search boundary region

The statistical results in terms of the accuracy, false alarm rate, and GFLOPs of the
detection network are shown in Table 3. Here, Acc is the detection accuracy in the cloud
cover region, Accy is the detection accuracy in the image boundary region, Accgy is the
general accuracy of ship detection based on wakes in the cloud cover region and image
boundary region, FA is the false alarm rate in these cases, and GFLOPs is the number of
floating-point operations of the detection network in billions.
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Table 3. Performance of detection.
Method Accy Accy Accyy FA GFLOPs
YOLOvV5 0% 0% 0% - 135.0
YOLOvVS 2% 0% 1% - 165.2
YOLOX 2.5% 0% 1.25% - 185.3
Our method 75% 72% 73% 22% 135.0

(YOLOvVb5-based)

The general accuracy of ship detection based on wakes in the cloud cover region and
image boundary region is about 73%, with a false alarm rate of about 22%. In contrast,
none of these ships can be detected by direct ship body detection, which means that the
accuracy of ship detection is 0%. This result indicates that the proposed method is practical
in ship detection.

For ship body neighborhood S;, the wake detection result is as shown in Figure 16.
Figure 16a shows the YOLO detection results; for each detected ship, the wake searching
progress is shown in Figure 16b,c. We can observe that, using the wake detection result, the
accurate sailing direction is obtained and the confidence of ship detection is also improved.
The direction error is about 1.3 deg and 1.6 deg for ship 1 and ship 2, respectively. This
result shows that our method is effective for ship detection and in acquiring the ship state,
which is helpful in analyzing and predicting the ship trace.

g« Ship 1

/ Ship 2

Ship body Search wakes Detection result

(c)
Figure 16. Wake detection for ship body neighborhood (a-c).

The spatial resolution of these images ranges from 0.91 m to 1.27 m, but we do not
have the specific spatial resolutions of these images. We present the method’s performance
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varying with the proposed criterion QI in Figure 17. Generally, a larger QI reflects a higher
spatial resolution.

Proposed method

— — . YOLOV5

0.8

0.6

0.4

Detection accuracy
T

0.2

0.2 0.4 0.6 0.8 1

QI criterion

Figure 17. The change in the accuracy of detection when the the quality of the image QI changes.

We can observe that the accuracy of detection increases when the QI increases, which
indicates that the proposed method performs better in high-spatial-resolution and high-
quality images. We can also observe that our method is only effective when QI > 0.7,
and it has a good improvement when QI > 0.85. Since the wakes are faint in low-spatial-
resolution or low-quality images, no additional information can be acquired using the
proposed method.

An overview of the pipeline used in this method is shown in Figure 18. We can observe
the advantages and improvements of our method.

The total process can be completed in 25 s. As shown in Figure 18, there are three
visible vessels, one vessel covered by clouds, and one vessel outside the image. The
YOLO detects all three visible vessels with one false alarm, and the general accuracy for
visible vessels and invisible vessels is 75% and 0%. Using our framework, false alarms are
eliminated and invisible vessels are also detected; the general accuracy for visible vessels
and invisible vessels is 100% and 100%, and 80% of the vessel course can be acquired. From
these results, we can conclude that our method has the following advantages:

1. The YOLO detection results can be checked, and some possible errors can be effectively
eliminated,;

2. The detection gaps caused by the cloud coverage and out-of-boundary objects can be
filled with no additional sensors required;

3. The course of the sailing vessel can be acquired when checking the ship body detection
at the same time;

4. No additional dataset is required for the presented wake detection method;

5. The boundary of the proposed method is also presented by briefly evaluating the
image quality.
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(a) Original image (b) Region analysis

(¢) YOLO detection results (d) Results of our method

Figure 18. Detection results of our method.

5. Conclusions

This paper presents a practical and effective scheme for ship detection in visible
remote sensing images. The method combines the advantages of deep convolutional neural
networks and feature-based image processing. We fuse ship body detection and ship wake
detection in a real application, and the detection gaps caused by the cloud coverage and
out-of-boundary targets can be filled with no additional sensors required. Our method uses
the YOLOV5 network to achieve the fast and effective detection of the ship body; the wake
detection method is used according to different types of regions. A sea region analysis
method is proposed to judge the state of the sea region and the quality of the sea region.
We propose a robust ship detection method using wakes for challenging cloud cover and
image boundary regions, where ships are usually invisible in a remote sensing image. The
extracted sea region is modeled using the Burr type XII distribution, and the ship wakes are
detected using the distribution of the modeled sea region. Practical engineering problems
such as measurement limits, result examination, and time efficiency are also considered
in our method for real applications. The results show that our method can achieve over
70% accuracy even when the ship body is invisible in a remote sensing image, and accurate
sailing detection can also be obtained.

The presented study also has certain limitations. First, the proposed method is based
on the YOLOVS5 network, and only the false detections due to cloud cover and the image
boundary region can be corrected. Second, the accuracy of wake detection can be further
improved. Moreover, the detection performance is partly influenced by the quality of the
images, and the noise resistance capability can also be further improved.

In the future, we will attempt to use more effective ship detection methods to improve
the detection accuracy and robustness. We will also study the wake detection method on
lower-quality imagery.
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