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Abstract: Heart rate is an essential vital sign to evaluate human health. Remote heart monitoring
using cheaply available devices has become a necessity in the twenty-first century to prevent any
unfortunate situation caused by the hectic pace of life. In this paper, we propose a new method based
on the transformer architecture with a multi-skip connection biLSTM decoder to estimate heart rate
remotely from videos. Our method is based on the skin color variation caused by the change in blood
volume in its surface. The presented heart rate estimation framework consists of three main steps:
(1) the segmentation of the facial region of interest (ROI) based on the landmarks obtained by 3DDFA;
(2) the extraction of the spatial and global features; and (3) the estimation of the heart rate value
from the obtained features based on the proposed method. This paper investigates which feature
extractor performs better by captioning the change in skin color related to the heart rate as well as the
optimal number of frames needed to achieve better accuracy. Experiments were conducted using
two publicly available datasets (LGI-PPGI and Vision for Vitals) and our own in-the-wild dataset
(12 videos collected by four drivers). The experiments showed that our approach achieved better
results than the previously published methods, making it the new state of the art on these datasets.

Keywords: remote heart rate estimation; vital signs; machine learning; video analysis

1. Introduction

In recent years, there has been a noticeable surge in stress levels in our daily lives,
underscoring the crucial need to proactively monitor overall human health. The assessment
of vital signs, such as respiratory rate, heart rate, blood pressure, and oxygen saturation
levels, has garnered increasing attention among researchers. These vital signs serve as
pivotal indicators in evaluating the holistic well-being of the human body and play crucial
roles in various applications, including the detection of fatigue and stress levels [1,2],
disease diagnosis [3], and assessments related to meditation and fitness.

Various systems have been devised to measure these vital signs, encompassing devices
like blood pressure monitors, oximeters, and electrocardiogram machines. While these
systems deliver precise measurements, their requirement for direct contact with the subject
makes them more suited for clinical settings. However, this feature becomes a drawback,
causing discomfort, when the subject is engaged in physical exercises or driving.

An alternative approach involves leveraging cameras to remotely estimate vital
signs [4–6]. This is achieved by capturing variations in light reflected from the skin, induced
by physiological processes such as the heartbeat and breathing. This non-contact method-
ology not only offers convenience but also opens up possibilities for unobtrusive health
monitoring, proving especially valuable in situations where direct contact is impractical or
uncomfortable.
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However, research on the topic of remote heart rate detection is usually conducted
in good lighting and shaking conditions that do not reflect settings like vehicle cabins
and streets. In this paper, we propose a new method for remote heart rate detection and
evaluate it using our own dataset of drivers in vehicle cabins recorded in the wild. The
contributions of this paper can be summarized as follows:

1. We investigate the best feature extractor to capture heart rate spatial information from
the face.

2. We investigate the optimal number of frames to achieve better accuracy in captioning
the global features.

3. We propose a new method based on the vision transformer architecture to estimate
the heart rate with a novel pre-processing technique.

4. We propose a novel approach of treating a single regression value problem by extract-
ing intervals, which optimizes the performance and opens the way for using new
techniques like the intersection over union of the intervals and complex loss functions
to optimize interval values.

5. We evaluated the proposed approach on three different datasets (including our own
dataset recorded in the wild). In comparison with the previously published methods,
our approach achieved the highest accuracy.

The rest of the paper is organized as follows. Section 2 summarizes the state-of-the-art
methods used to estimate the heart rate. Section 3 introduces the proposed method in detail.
The experiments conducted are presented in Section 4. Finally, the conclusion is provided in
Section 5.

2. Related Work

Remote heart rate estimation has recently drawn the attention of researchers due to
its importance in health monitoring without causing discomfort to the subject. Several
methods have been used to extract heart rate information from facial videos using mathe-
matical approaches and signal processing techniques [7–10]. In [7], the authors extracted
heart rate information by highlighting the green channel only, since it contained the high-
est photoplethysmography (PPG) signal-to-noise ratio. Refs. [8,11] introduced different
mathematical reflection models of the skin that were used to build models for extracting
remote PPG signals. Ref. [10] applied the method proposed in [8] to five sub-regions (the
face, forehead, right and left cheek, and nose) to extract remote PPG signals, followed
by fast Fourier transform and bandpass filtering to obtain a power spectrum density for
each sub-region. A sorting function was applied to each region to determine which ROI
would be used to extract the heart rate. With the advances in computer vision and machine
learning techniques, more accurate methods have been proposed. Some researchers have
used deep convolutional neural networks to estimate the heart rate from videos [12–17].
Ref. [12] improved the robustness of the heart rate estimation model under different motion
and illuminance conditions by using a skin reflection model and an appearance informa-
tion attention mechanism. Refs. [13,14] proposed a two-branch model: appearance and
movement. The input to the former branch was the current frame, while the input to the
latter was the normalized difference between the current and the next frames. The output
of these branches was then combined to estimate the heart rate. Ref. [17] introduced a
hybrid-CAN-RNN framework by adding a bidirectional GRU on top of the hyprid-CAN
model proposed in [13]. Ref. [16] proposed aggregating the remote PPG signals from multi-
ple skin areas to improve reliability. Other researchers proposed using the long short-term
memory (LSTM) layer to capture the features between frames [18,19]. Ref. [18] proposed
two branches of neural networks: the first one used 3D pooled convolutional layers with
several consecutive frames as an input, while the second branch used a 2D convolutional
layer with LSTM layers, and the input to this branch was one frame at a time. The outputs
of the branches were then combined to estimate the heart rate. Ref. [19] proposed a model
consisting of two LSTM networks: one to estimate the heart rate sampling point, and the
other to predict the signal quality. These two values were then fed into an attention-based
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model to estimate the average heart rate. A video transformer was proposed in [20]. The
authors’ main contribution was calculating the loss in the frequency domain instead of
the time domain. Ref. [21] introduced a self-supervised framework. A face extractor was
first used to detect the face, and then a remote PPG estimator based on a 3D-CNN was
used to extract the PPG signal. The authors proposed a new way to augment the dataset
by stretching and squeezing the video. When the video is squeezed, the heart rate should
increase, and vice versa. Ref. [22] proposed an end-to-end architecture using 3D depth-
wise separable convolution layers with residual connections for heart rate estimation from
videos.

The existing heart rate estimation models based on deep learning methods use LSTM-
based models, convolutional models, attention mechanisms, or a combination of the above
to predict the heart rate value. In our paper, we present an architecture based on a vision
transformer with a multi-skip connection decoder. Unlike previously published methods,
our model takes the spatial features from five different layers of the feature extractor,
allowing the model to capture diverse features. These features are then fed into BiLSTM
layers, followed by 1D Conv and linear layers outputting five different arrays. Each array
contains the predicted minimum, maximum, and average HR in the selected window.
These values are then combined together using the weighted average method to predict
the final heart rate value.

3. Proposed Approach
3.1. General Approach

In this section, we describe the developed approach for predicting heart rate. Figure 1
shows the approach based on the transformer architecture with a multi-skip connection
decoder.

Figure 1. The developed approach based on multi-skip connection decoder.

To predict the heart rate, we used a sliding window with a length of 15 frames and a
stride of 15 frames. The length of the sliding window was chosen based on our experiments
(more details are described in Section 4.3), while the stride was chosen to reduce the
correlation between the training data to the minimum. We propose processing the input
frames using 3DDFA_V2 [23,24] to extract 68 facial landmarks: 17 for the face, 10 for the
eyebrow, 9 for the nose, 10 for the eyes, and 22 for the mouth. 3DDFA_V2 is the SOTA
on the Florence dataset for 3D face reconstruction (in our case, the person could move
their head, and 3DDFA_V2 could keep providing the facial landmarks even when the face
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was completely turned to the left or right due to the fact that it provided 3D coordinates).
Figure 2 shows a 3D face reconstruction of a person from our dataset turning his head to
the side produced using 3DDFA_V2. In addition, according to [25], 3DDFA_V2 achieved
more robust and accurate performance in different movement conditions compared with
OpenFace 2.0 [26] and MediaPipe [27].

Figure 2. 3DDFA_V2 face reconstruction result of a person turning his head to the side.

To detect the forehead area, we added two more landmarks based on the left-most
and right-most eyebrow points. The obtained landmarks were used to segment the face
by keeping only the pixels inside the landmarks and filling all other pixels with zeros.
The obtained images were then cropped and resized into 224 by 224 pixels. We applied
normalization to the images before feeding them into the model.

In this paper, we propose two architectures for heart rate estimation. The first one
consists of a feature extractor based on the vision transformer (VIT) [28] with BiLSTM and
a linear layer with one output that represents the predicted HR. The second one takes the
outputs’ connections from five different blocks of the feature extractor and feeds them into
several BiLSTM layers followed by 1D convolution and linear layers with three outputs
each. The three outputs represent the minimum, maximum, and average HR in the sliding
frame. We trained the first model with the mean absolute error (MAE) as the loss function.
The MAE was calculated between the predicted and the real heart rate values. During the
training phase of the second model, the five outputs were averaged together, and the loss
function was calculated as the MAE of the three values. In the testing phase, the weighted
average was used to calculate the predicted heart rate from the three obtained values. More
details of the proposed architectures are provided in Section 3.2.

3.2. Proposed Architectures

In this section, we introduce the architectures used to predict the heart rate. Our first
model architecture is shown in Figure 3.

The model consisted of a VIT feature extractor to extract the spatial features followed
by a BiLSTM layer to extract the global features and three linear layers used as an estimator
to estimate the heart rate value. The BiLSTM layer was used to handle the features of
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multiple frames (we chose 15) since LSTM can selectively remember or forget information
according to its importance, though an attention mechanism could be used here instead.
LSTM maintains the order of embeddings, with the output at time t depending on the
output at t − 1; thus, because of its sequential property, it is more effective for video
analysis. The feature extractor was chosen based on experiments (more details are provided
in Section 4.2). The MAE (see Equation (1)) was used as the loss function.

MAE =
∑i |HRi − ĤRi|

N
, (1)

where HRi is the heart rate ground truth of sample i in the dataset, ĤRi is the predicted
heart rate of sample i, and N is the total number of samples in the dataset. To evaluate the
model’s performance, in addition to the MAE metric, the root mean square error (RMSE)
given in Equation (2) was used.

RMSE =

√√√√ 1
N

N

∑
i=1

(HRi − ĤRi)2 (2)

The model showed good results, with an MAE equal to 2.67 beats per minute (BPM)
on the LGI-PPGI dataset and 9.996 BPM on the Vision for Vitals (V4V) dataset.

Figure 3. The first proposed model architecture.

In order for the model to be able to capture different features, we modified the archi-
tecture as shown in Figure 4.

The modifications included taking multi-skip connections from five different blocks
of the VIT feature extractor. As we know, each block attends to different features. This
allows the model to obtain diverse spatial feature maps from the image. In other words,
the spatial features taken from the five different blocks differ from each other. Since the
Vit_small_patch16_224 feature extractor used in our model consists of 12 blocks, we chose
to take the connections from five blocks that were of different depths. From Figure 4, we
can see that the connections were taken from blocks 0, 3, 6, 9, and 11. We included a
distance of three blocks to avoid redundancy, as feature maps from blocks that are relatively
close in depth are similar to each other. Each connection was fed into a block consisting
of a BiLSTM layer to capture the global features, followed by batch normalization, a 1D
convolution layer, and a linear layer to estimate three values: the minimum, maximum,
and average heart rate. During the training phase, the outputs from the five blocks were
averaged, and the MAE loss function was used as the criterion. In the prediction phase, the
three values were combined as shown in Equation (3) to estimate the final heart rate value.

ĤRi = 0.25 ∗ M̂inHRi + M̂axHRi
2

+ 0.75 ∗ ÂvgHRi, (3)
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where M̂inHRi, M̂axHRi, and ÂvgHRi are the outputs of the model (the predicted min-
imum, maximum, and average values of sample i, respectively), and ĤRi is the final
estimation of the heart rate of sample i. The weights were chosen empirically. We used
multi-skip connection since the vision transformer split the face image into patches and
then transformed it into a sequence. The self-attention mechanism considered the main
feature, which in our case was the skin color affected by illumination, camera type, and
other parameters. Moreover, the multiple outputs of the model (max and min heart rate
values) depended on the embedding of two different patches; therefore, using multi-skip
connection helped the model to converge better and to consider the high score attention at
multiple levels.

Figure 4. The proposed architecture based on VIT transformer with multi-skip connection decoder.
The connections were taken from the output of blocks 0, 3, 6, 9, and 11 and were then fed into a block
consisting of a BiLSTM layer followed by batch normalization, 1D convolution, and a linear layer.
The output of each block was 3 numbers representing the predicted mean, max, and min heart rate.
These values were then averaged to produce the final predicted value.

4. Experiments

The Pytorch 1.10.2+cu113 framework was used to implement our models. We used
an Nvidia RTX 3090 GPU (Nvidia, China) to train and validate the models. We trained
and validated both models on two public datasets: LGI-PPGI and V4V. We also tested the
trained models on our own dataset to study their generalization in different environments
and with different cameras. The hyper-parameters were tuned using Ray Tune [29]. We ran
24 experiments on 40% of the LGI-PPGI dataset to find the optimal learning rate/batch size
combination within the ranges [1 × 10−6, 1 × 10−1] and [2,4,8] for the learning rate and
batch size, respectively. Figure 5 shows the results of the experiments.
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(a) (b)

(c) (d)

Figure 5. The results of the experiments for tuning the hyper-parameters, (a) Batch size = 2, (b) Batch
size = 4, (c) Batch size = 8, and (d) shows the best combinations

4.1. Datasets

We used three facial datasets with heart rate annotation: two publicly available ones
recorded in an indoor environment and one collected from four drivers in real driving
scenarios. The first dataset was Vision for Vitals (V4V) [30,31]. It consists of frame-aligned
annotated facial videos of 179 subjects from diverse racial groups aged between 18 and
66. The videos were recorded with a frame rate of 25 frames per second (FPS) and a
resolution of 1040 × 1392 pixels. The dataset was split into training, validation, and testing
sets consisting of 724, 276, and 358 videos, respectively, representing 53.31%, 20.23%, and
26.36% of the dataset.

In this paper, we conducted the experiments only on the validation dataset, as the
ground truth for the testing dataset was not provided by the dataset owners.

The second dataset was LGI-PPGI [32], collected using a Logitech HD C270 webcam
with subjects aged between 25 and 42 years in four different scenarios: talking, rotation,
resting, and gym. The videos were recorded with a frame rate of 25 FPS, while the PPG
signal was recorded with a sampling rate of 60 HZ.

The final dataset was our dataset [33], which consisted of 12 videos with an average
video length of 20 min (907,437 frames in total). The videos were taken using smartphone
cameras in different illumination and movement conditions with a frame rate of 60 FPS
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and depicted 4 drivers in real driving scenarios. We measured the heart rate using a Xiaomi
MI Smart Band 3, China.

We used this dataset for testing the generalization capability of the developed models.
Figure 6 shows the distribution of heart rate in our dataset.

Figure 6. The heart rate distribution in our dataset.

4.2. Choosing the Feature Extractor

Choosing the best feature extractor that can capture spatial information is mandatory
for the heart rate estimation problem. We ran several experiments on different feature
extractors in order to choose the best one to use in our models. Experiments were conducted
using the architecture shown in Figure 3 with the replacement of vit_small_patch16_224
in each experiment. The dataset used was LGI-PPGI, with 25 frames per sample. Table 1
shows a comparison between different feature extractors.

Table 1. The results of different feature extractors on LGI-PPGI dataset. The best score is highlighted
in boldface.

Method MAE

Efficientnet_b1_ns [34] 7.26
Efficientnet_b3_ns [34] (frozen 80%) 5.57

Swin_base [35] 20.38
Swin_transformer_large_224 [35] 5.83

Swin_transformer_large_224 (frozen 50%) 3.75
Resnet18 [36] 12.3
Resnet50 [36] 20.35

vit_small_patch16_224 [28] 3.34

Large models (e.g., vit_base_patch16_224) were tested, but they showed worse results
as they tended to overfit quickly on the dataset. For this reason, we excluded them from the
table. One can see (Table 1) that the vit_small_patch16_224 model showed the best result,
so we used it in our models.

4.3. Determining the Optimal Number of Frames

Determining the number of frames per sample needed to capture the global features is
very important for estimating the heart rate. We performed several experiments to choose
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the optimal number of frames. The experiments were conducted using the model shown
in Figure 3 with vit_small_patch16_224 as the feature extractor. For each experiment, the
model was trained on 20% of the V4V training dataset and tested on 20% of the V4V testing
dataset. Table 2 shows the MAE on the validation dataset. The optimal number of frames
per sample was 15 frames.

Table 2. The MAE of 20% of the V4V validation dataset using the model trained on 20% of the training
dataset with different numbers of frames per sample. The lowest MAE is highlighted in boldface.

Number of frames MAE

5 frames 11.21
15 frames 10.34
25 frames 11.13
40 frames 10.95
75 frames 10.81
90 frames 10.74

4.4. Results on Our Dataset

As we mentioned earlier, we further tested our trained models on a completely new
dataset, which was recorded using different cameras in real driving scenarios to evaluate
the model generalization. Since our dataset was collected with a frame rate of 60 FPS and
the models were trained with a frame rate of 25 FPS, we first down-sampled all the videos
to 25 FPS before feeding them into the models. Table 3 shows the results of our models,
which were trained on the V4V dataset and tested on our dataset.

Table 3. MAE of heart rate estimation by our models trained on V4V dataset and tested on our dataset
(unit: BPM)

Model MAE

First proposed model 14.33
Second proposed model with multi-skip

connection 14.09

We show in Table 3 that both models had an MAE less than 14.4 BPM, which is a good
result, taking into consideration that our dataset was recorded in varying circumstances of
illumination and inside a moving vehicle.

4.5. Comparison with Previous Works for HR Estimation

Since our models were applied to estimate the heart rate from RGB videos and we
used the LGI-PPGI and V4V datasets, we compared our models with previous models
trained on these two datasets.

Table 4 shows a comparison between our models and the previously published work on
the LGI-PPGI dataset. As shown in the table our models achieved better results on this dataset.

Similarly, Table 5 shows the comparison on the V4V dataset. The comparison showed
that our results were better. Here, we would like to mention that the authors of [17,21,22]
also applied the V4V dataset, but we could not compare our results with theirs as they only
published their results for the testing dataset and not for the validation dataset, and they
did not provide an open-source code for their methods.

The model with the multi-skip connections showed better results when the heart rate
range in the sample was wide. For example, in the case of the V4V dataset, the range be-
tween the minimum and maximum heart rate values in one sample (15 frames) could exceed
20 BPM. Furthermore, we calculated the number of parameters and the number of FLOPS
during inference for our models. For the first architecture, #FLOPS = 8.156T and #parame-
ters = 21.799M; for the second architecture, #FLOPS = 14.8T and #parameters = 22.419M.
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Unfortunately, none of the previously published works provided these numbers in their
papers for comparison.

Table 4. The comparison results for the LGI-PPGI dataset. The best score is highlighted in boldface.

Method MAE RMSE

Green [7] 5.53 -
ICA [9] 5.81 -

CHROM [11] 5.05 -
POS [8] 7.87 21

1D-CNN [15] 8.44 -
LSTM-rPPG [19] 7.12 -
SQA-rPPG [19] 7.05 -

Our model 2.68 5.69
Our model with designed

encoder 4.06 6.75

Table 5. The comparison results for the V4V dataset. The best score is highlighted in boldface.

Method MAE (Validation Dataset) RMSE (Validation Dataset)

Green [7] 16.5 21.4
POS [8] 17.3 21.2
ICA [9] 13.9 21.2

DeepPhys [12] 13.6 18.1
TS-CAN [13] 11.7 17.8

Kossack et al. [10] 10.5 13.648
Video Transformer model [20] 10.3 16.1

Our model 9.996 13.4
Our model with designed

decoder 9.8 12.8

5. Conclusions

In this paper, we proposed two models to estimate the heart rate from RGB videos.
Both models achieved a more accurate estimation of the heart rate than the previously
published methods on the two tested datasets: LGI-PPGI and V4V. Furthermore, we tested
the trained models on our own dataset recorded in the wild using different cameras and
different lightning and driver movement conditions in a moving vehicle. This dataset
allowed us to evaluate the proposed models’ generalization. The proposed models also
showed good results on this dataset, with an MAE less than 14.4 BPM. In addition, we
investigated the best number of frames per sample to capture the global features and the
best feature extractor to extract the spatial features.
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