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Abstract: In order to combat greenhouse gas emissions, the sources of these emissions must be
understood. Environmental monitoring using low-cost wireless devices is one method of measuring
emissions in crucial but remote settings, such as peatlands. The Figaro NGM2611-E13 is a low-
cost methane detection module based around the TGS2611-E00 sensor. The manufacturer provides
sensitivity characteristics for methane concentrations above 300 ppm, but lower concentrations are
typical in outdoor settings. This study investigates the potential to calibrate these sensors for lower
methane concentrations using machine learning. Models of varying complexity, accounting for
temperature and humidity variations, were trained on over 50,000 calibration datapoints, spanning
0–200 ppm methane, 5–30 °C and 40–80% relative humidity. Interaction terms were shown to improve
model performance. The final selected model achieved a root-mean-square error of 5.1 ppm and an R2

of 0.997, demonstrating the potential for the NGM2611-E13 sensor to measure methane concentrations
below 200 ppm.
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1. Introduction

Atmospheric methane (CH4) plays a significant role in global warming. Methane is
released into the atmosphere through a combination of natural sources (e.g., peatlands),
human activities (e.g., agriculture, pipeline leaks) and the release of trapped stores due to
rising global temperatures (e.g., permafrost melt) [1].

A variety of approaches exist for monitoring methane emissions. Beginning with the
greatest coverage, satellites can provide global methane concentration data but are limited
in either temporal or spatial resolution [2]. Existing satellites are also limited in the terrains
over which methane concentration measurements can be taken; data cannot be provided
for sea, snow or marshland. Higher-resolution surveys may be carried out by aircraft or
ground teams but these methods require additional labour for each new dataset collected.

Autonomous local sensors, such as weather stations, address these issues, continuously
collecting data at high frequencies, in some cases every few seconds. However, many
weather stations are permanent standalone installations, based in cities, and, as such, have
limited spatial coverage. To compensate for this, wireless sensor networks and “Internet of
Things” (IoT) devices are increasingly used to augment datasets, especially in the field of air
pollution monitoring, adding additional data collection sites [3–8]. IoT devices are typically
powered by batteries or small solar panels; therefore, minimising power consumption
is crucial [9]. Much of the value of wireless sensor networks lies in their coverage and
scalability, so enabling large fleet sizes by minimising the individual device cost is also a
key consideration [5]. As such, the sensors included in these devices should accommodate
these requirements.

Many categories of methane sensors have been developed: optical, capacitance-based,
calorimetric, resonant, acoustic-based, pyroelectric, metal oxide semiconductor (MOS),
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and electrochemical [1,10,11]. Of these types, MOS sensors show particular potential for
compact, low-power and low-cost applications, but additional steps must be taken to
improve their performance in outdoor settings [10,12–16].

Machine learning techniques are often employed to improve the usability of gas sensor
data, by addressing either the selectivity of the sensor or the calibration accuracy [11,13,17].
Classification algorithms, such as support vector machines and neural networks, have been
shown to improve the ability of both individual sensors and sensor arrays to identify specific
target gases or gas mixtures [18–23]. This approach holds promise for a variety of emerging
applications, ranging from disease diagnosis from the gas composition of human breath [22]
to identifying specific sources of air pollution in urban environments. Regression machine
learning can be used to calibrate the output of gas sensors in varying environmental
conditions—i.e., target gas concentration, temperature and air humidity—and to offset
long-term sensor drift [24].

The Figaro NGM2611-E13 (Figaro, Rolling Meadows, IL, USA) is a low-cost methane
detection module based around the TGS2611-E00 MOS sensor [25]. The manufacturer
provides sensitivity characteristics for methane concentrations above 300 ppm [26], but
lower concentrations are typical in outdoor settings.

Several authors have investigated methods for calibrating this sensor at lower methane
concentrations [14–16]. Results are consistently encouraging, with strong correlation between
calibrated sensor output and true methane concentration achieved in all of these studies.

Van den Bossche et al. [14] calibrated a TGS2611-E00 methane sensor across 15–30 °C,
40–80% relative humidity and 2–9 ppm methane. Methane concentration was recorded
using a Picarro G2301 Cavity Ringdown Gas Analyzer (Picarro, Santa Clara, CA, USA).
For this limited methane concentration range, a linear fit was assumed for the sensor
calibration, with temperature and humidity compensation applied separately. Within
this range, a systematic error of −1.0 ppm and a variable error of ±1.7 ppm in estimated
methane concentration were achieved. It should be noted that a linear fit cannot be assumed
for wider ranges of methane concentration; an exponential relationship is visible in the
300–10,000 ppm range published by the manufacturer [26].

Bastviken et al. [16] investigated a calibration approach for the NGM2611-E13 using
estimated background methane concentration in a chamber, followed by the injection of
methane up to 719 ppm. They tested 15 model equations with the collected chamber data,
achieving strong correlation between the model output and true methane concentration
(R2 = 0.99–1.00) and low error (RMSE = 9.8–20) over the full tested concentration range up
to 719 ppm.

These existing studies share two main limitations: (1) expensive reference instruments
are used to measure methane concentration during sensor calibration, and (2) potential
interactions between temperature, humidity and methane concentration are not addressed.

Collier-Oxandale et al. [15] calibrated the Figaro TGS 2600 by co-deploying sensors
with reference-grade instruments in field deployments, during which methane concentra-
tions remained below 6 ppm. Variable correlations were achieved between the sensors
and reference measurements (R2 = 0.625–0.812) for the best-performing model. Terms
representing the interaction between temperature and methane concentration were consid-
ered, but all of the models which contained such a term also included a time-based term.
As recurring diurnal emission cycles are not universal and will vary by site, time-based
predictor variables are not applicable to pre-deployment sensor calibration.

This study presents an alternative calibration approach using 200 ppm methane-in-air
calibration gas and machine learning models. The calibration conditions span 5–35 °C and
40–85% relative humidity. A range of nonlinear models derived from the sensor response
to varying methane concentration, temperature and humidity were formulated and tested,
including models with interaction terms. A calibration validation method using 200 ppm
methane in air is also presented.
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2. Materials and Methods
2.1. Methodology Overview

An overview of the methodology approach is depicted in Figure 1. These stages are
explained in more detail in the following subsections.

Figure 1. Methodology flowchart.

2.2. Methane Sensor Characteristics

The NGM2611-E13 is a module designed for use in natural gas leak detectors. This
sensor module was selected for investigation in this study as it meets the requirements
of sensors for typical IoT devices; the sensor is affordable (<GBP 30 per unit), compact
(27 × 12.5 × 14.1 mm), and has an operating voltage of 5 V.

The sensing element in the module is a TGS 2611-E00. The NGM2611-E13 and TGS
2611-E00 datasheets provided by Figaro include characterisation data for the methane
sensor across a range of temperature (−10–40 °C), relative humidity (35–95%) and methane
concentration (300–10,000 ppm) conditions [25,26]. The sensor response is described by the
ratio RS/R0, where RS is the measured sensor resistance and R0 is the sensor resistance in
5000 ppm of methane at 20 °C, 65% relative humidity (RH).

The NGM2611-E13 sensor module comprises a methane sensing element (RS), a
current limiting resistor (RL) and a heating element (RH). The sensing element is arranged
in a potential divider circuit (Figure 2), such that the sensor output voltage, Vout, can be
calculated as:

Vout = (VC · RL)/(RL + RS) (1)

where VC is the supply voltage for the sensor circuit (i.e., 5V), RS is the measured sensor
resistance and RL is the value of a fixed resistor (given as 10.0 kΩ ± 1% for standard test
conditions in the sensor datasheet).

Using this equation and data extracted from the Figaro datasheets, Figures 3–5 were
constructed to visualise the influence of methane concentration, temperature and relative
humidity on the sensor output voltage.
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Figure 2. TGS 2611-E00 methane sensor circuit, adapted from [25].

Figure 3. Sensor output vs. methane concentration (extracted from Figaro datasheets and converted
from sensor resistance ratio to Vout).

Figure 4. Sensor output vs. temperature at 5000 ppm methane concentration (extracted from Figaro
datasheets [26] and converted from sensor resistance ratio to Vout).
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Figure 5. Sensor output vs. humidity at 5000 ppm methane concentration (extracted from Figaro
datasheets [26] and converted from sensor resistance ratio to Vout).

In early chamber experiments, an initial warm-up period was identified for the
NGM2611-E13 (Figure 6). In normal operation, a linear relationship is observed between
the sensor output voltage and the air temperature. For up to 4 h after being powered,
the sensor output does not follow this trend, presumably because the heating element in
the sensor takes time to reach thermal equilibrium with the surrounding air. To avoid
disrupting the calibration data, this warm-up period was excluded from the calibration
data for the experiments detailed later.

Figure 6. Example of the NGM2611-E13 sensor warm-up behaviour, showing stabilisation after
around 4 h.

2.3. Model Form

In this study, we consider a nonlinear regression machine learning approach. Com-
pared with more complex approaches, such as neural network models, nonlinear regression
models are easier to interpret in terms of how the output is affected by each predictor.
Nonlinear regression models also require less training time and smaller training datasets
once the model form has been selected.
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In order to determine a suitable form for the methane sensor calibration model, we
first consider the influence of methane concentration, temperature and humidity on the
sensor output voltage.

From Figure 3, we can derive a relationship between Vout and methane concentration
of the form:

M = C1 · eC2·Vout (2)

where M is the methane concentration in ppm, C1 and C2 are temperature- and humidity-
dependent constants and Vout is the sensor output voltage in V. This forms the starting
point for our model.

Figures 4 and 5 show a logarithmic relationship between the sensor output voltage
and temperature or humidity. For the same methane concentration, a higher temperature
or higher humidity will increase the sensor output voltage. Note that a linear fit may be a
sufficient approximation for small temperature variations, as shown by the dashed line in
Figure 4, but a logarithmic fit provides a higher coefficient of determination and smaller
residuals, so it was selected for use in this study.

Incorporating additional terms for the effect of temperature, humidity and interactions
between the variables, a general model form is proposed:

M = C1 + C2 · eC3·Vout−C4 ln(T+α)−C5 ln(H+β)−C6 ln((T+α)(H+β))−C7 ln((T+α)Vout)−C8 ln((H+β)Vout) (3)

where M is the methane concentration in ppm, C1–C8 are constants to be optimised by the
fitting algorithm, α and β are offsets to be applied to the temperature and humidity terms,
respectively, T is temperature (°C), H is relative humidity (%) and Vout is the methane
sensor output voltage (V).

2.4. Initial Model Testing and Shortlisting

The data shown in Figures 3–5 were compiled into a training dataset (Figure 7) to
determine an appropriate non-linear model form. This dataset was used to test a series
of sensor calibration models of increasing complexity, starting with a calibration based
only on the sensor output voltage and gradually adding compensation for temperature
and humidity. “Complexity” is defined as the number of constant terms + the number of
variable terms used in the model. These models are listed in Table 1.

Figure 7. Training data extracted from the Figaro datasheets [26] and converted from sensor resistance
ratio to Vout where required.



Sensors 2024, 24, 1066 7 of 24

Nonlinear regression models are trained by taking an equation that relates a contin-
uous response variable to one or more predictor variables and adjusting the coefficients
of the equation to optimise its fit to the provided training data. In this case, the response
variable is methane concentration and the predictor variables are sensor output voltage,
temperature and relative humidity. Each model was optimised using the MATLAB “fitnlm”
function [27]. Initial estimates were set to 0 for all coefficients. A termination tolerance of
1×10 −8 and a limit of 200 iterations were used.

Table 1. The model equations tested, where T is temperature (°C), H is relative humidity (%), Vout is
the sensor output voltage (V) and C1–C8 are constants to be optimised by the fitting algorithm.

No. Predicted CH4 Equation

1 C2 · exp(C3 · Vout)

2 C1 + C2 · exp(C3 · Vout)

3 C2 · exp(C3 · Vout − C4 · ln(T + 273.15))

4 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 273.15))

5 C2 · exp(C3 · Vout − C4 · ln(T + 65))

6 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65))

7 C2 · exp(C3 · Vout − C5 · ln(H))

8 C1 + C2 · exp(C3 · Vout − C5 · ln(H))

9 C2 · exp(C3 · Vout − C4 · ln(T + 273.15)− C5 · ln(H))

10 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 273.15)− C5 · ln(H))

11 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))

12 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))

13 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C6 · ln((T + 65) · H)

14 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C6 · ln((T + 65) · H)

15 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout)

16 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout)

17 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C8 · ln((H · Vout))

18 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C8 · ln((H · Vout))

19 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout)− C8 · ln((H · Vout))

20 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout)− C8 · ln((H · Vout))

2.5. Collection of Calibration Data

Four NGM2611-E13 methane sensors were placed inside a vacuum chamber set up as
shown in Figure 8. The output voltage and internal reference voltage of the sensors were
measured using a pair of Velleman 4-channel ADS1115 16-bit Analog-to-digital converter
I²C modules (Velleman, Gavere, Belgium) [28]. An ICP-10125 high-accuracy pressure sensor
(InvenSense, San Jose, CA, USA) [29] measured air pressure and temperature inside the
chamber. An Arduino datalogger provided power to the sensors inside the chamber and
recorded the sensor readings to a micro SD card every 2–3 s (Arduino, Somerville, MA, USA).

A vacuum pump connected to the inlet hose was used to evacuate the air from
inside the chamber whilst the sensors were powered off. Then, 200 ppm methane in air
calibration gas [30] was used to refill the chamber to atmospheric pressure. Over the course
of up to 24 h for each methane concentration level, sensor readings were recorded by the
external Arduino datalogger. The experiment was repeated using calibration air (20.9%
oxygen balanced in nitrogen) and at low, moderate and high temperatures and relative
humidity. The vacuum chamber was placed in an ice bath to gather sensor readings at low
temperatures. A higher humidity was created in the vacuum chamber by placing a small
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dish of ice cubes in the base of the chamber. An overview of the calibration data collected
is shown in Figure 9.

Figure 8. A diagram showing the vacuum chamber setup.

Figure 9. A summary of the data used to calibrate the methane sensors: (a) methane concentration,
(b) air temperature, and (c) relative humidity inside the chamber, and (d) the recorded voltage output
of the NGM2611-E13 sensors in the chamber.
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2.6. Model Testing on New Calibration Data

Using the calibration data, the model equations carried over from the tests on the data
from the sensor datasheets were optimised using the same process as before. As the four
methane sensors showed very similar responses (Figure 9), the models were trained on
only one of the sensors.

To investigate if improved model performance could be achieved, manually adjusted
variations of Equation (20) with different temperature and humidity offsets were also tested.
Table 2 lists two variations: Equation (21) is the model which yielded the lowest RMSE and
highest coefficient of determination (R2), and Equation (22) is a variation of the same form
without a humidity offset applied.

Table 2. Additional manually adjusted model equations.

No. Predicted CH4 Equation

21
C1 + C2 · exp(C3 · Vout − C4 · ln(T + 273.15)− C5 · ln(H + 50))− C6 · ln(H + 50)) · ln(Vout)
−C7 · ln((T + 273.15) · Vout)− C8 · ln(T + 273.15) · ln(H + 50))

22
C1 + C2 · exp(C3 · Vout − C4 · ln(T + 273.15)− C5 · ln(H + 0))− C6 · ln(H + 0)) · ln(Vout)
−C7 · ln((T + 273.15) · Vout)− C8 · ln(T + 273.15) · ln(H + 0))

2.7. Methane Decay Experiments

To check the validity of the calibrated models and identify any model overfitting, two
experiments with a decaying methane concentration were performed. The sensors were
placed inside a sealed vacuum chamber. Then, 200 ppm methane in air calibration gas
was injected into the chamber to raise the methane concentration, and the second inlet
valve was opened to equalise the pressure inside the chamber. This process was repeated
until the sensor readings no longer rose when additional calibration gas was injected—i.e.,
when the methane concentration within the chamber had reached approximately 200 ppm.
The chamber inlets were then opened, allowing the methane concentration inside the
chamber to steadily decay towards the external ambient concentration. This experiment
was repeated twice: the first experiment was run in ambient conditions (19–25 °C) over
4 days; the second utilised an external ice bath to vary the chamber temperature over a
wider range (8–30 °C) and a shorter period of 2 days (Figure 10).

A valid model would be expected to show the following features when applied to
each decay experiment:

• A steady initial methane concentration below 50 ppm before the calibration gas
was injected.

• A peak concentration of around 200 ppm methane.
• A steady decline in methane concentration following the peak.
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Figure 10. Recorded methane sensor output voltage, chamber temperature and relative humidity
throughout the methane decay experiments.
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3. Results
3.1. Initial Model Testing and Shortlisting

Table 3 summarises the performance of each of the model equations fitted on the
training data shown in Figure 7. This table was used to determine which equations to
pursue in the following calibration experiments.

Table 3. A summary of the performance of the optimised model equations listed in Table 1, tested
using the training data extracted from the Figaro datasheets [26].

Model No. RMSE (PPM) R2 Complexity

1 1.35 × 103 0.724 3

2 1.27 × 103 0.758 4

3 1.08 × 103 0.823 6

4 912 0.876 7

5 735 0.918 6

6 725 0.922 7

7 1.21 × 103 0.783 5

8 1.16 × 103 0.801 6

9 935 0.870 8

10 849 0.894 9

11 238 0.992 8

12 231 0.992 9

13 238 0.992 12

14 263 0.990 13

15 196 0.994 12

16 224 0.993 13

17 196 0.994 11

18 197 0.994 12

19 198 0.994 15

20 224 0.993 16

Model Equations (1)–(4) and (7)–(10) were rejected, having R2 < 0.9. Equations (13) and (14)
were more complex than Equation (12) but had a higher root-mean-square error (RMSE) and
were therefore also rejected. Equation (19) performed similarly to Equations (15) and (17)
(RMSE = 198, vs. RMSE = 196), warranting further investigation. Models which included
the C1 term generally presented slightly a higher RMSE than the corresponding equation
of the same form without the C1 term, but showed better performance at lower methane
concentrations; as such, Equations (16), (18) and (20) were retained for further testing.

3.2. Methane Sensor Calibration

Model Equations (5) and (6) performed far worse on the calibration data than on the
data extracted from the NGM2611-E13 datasheets, with lower R2 values (Table 4) than
before (Table 3). Equation (5) overestimated the methane concentration for all 0 ppm
methane datapoints and overcompensated for high temperatures at 200 ppm methane.

Equations (11), (15), (17) and (19) showed similar fits (Figure 11). All four of these
models overestimate the methane concentration at 0 ppm and show inadequate temperature
compensation at 200 ppm.
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Table 4. A summary of the performance of the optimised model equations tested using experimental
data from 0–200 ppm methane concentrations.

Eq. Predicted CH4 Equation RMSE (ppm) R2 Complexity

5 C2 · exp(C3 · Vout − C4 · ln(T + 65)) 55 0.684 6

6 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)) 35.6 0.868 7

11 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H)) 19.2 0.962 8

12 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H)) 14.2 0.979 9

15 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout) 16 0.973 12

16 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout) 5.09 0.997 13

17 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C8 · ln((H · Vout)) 14.7 0.977 11

18 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C8 · ln((H · Vout)) 5.1 0.997 12

19 C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout)
−C8 · ln((H · Vout))

14.8 0.977 15

20 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 65)− C5 · ln(H))− C7 · ln((T + 65) · Vout)
−C8 · ln((H · Vout))

5.09 0.997 16

21 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 273.15)− C5 · ln(H + 50))− C6 · ln(H + 50)) · ln(Vout)
−C7 · ln((T + 273.15) · Vout)− C8 · ln(T + 273.15) · ln(H + 50))

4.5 0.998 23

22 C1 + C2 · exp(C3 · Vout − C4 · ln(T + 273.15)− C5 · ln(H + 0))− C6 · ln(H + 0)) · ln(Vout)
−C7 · ln((T + 273.15) · Vout)− C8 · ln(T + 273.15) · ln(H + 0))

4.79 0.998 20

Figure 11. A subselection of the trained models (Equations (15), (16), (21) and (22)). Plots showing all
of the trained models are included in Appendix A.
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Equation (12) fitted similarly to Equations (11), (15), (17) and (19), with the main
difference being that Equation (12) predicts negative values for the 0 ppm datapoints at
moderate temperatures (around 15 °C) and high humidity (above 75%).

Of the models tested, model Equations (16), (18) and (20) demonstrated the best
performance, with high R2 (0.997) and low RMSE (≈5.1 ppm) values (Table 4). These
models also show fairly uniform fitting across the whole range of the calibration data
(Figure 11). The coefficients for model Equation (16) are listed in Table 5.

Table 5. Coefficients and related statistical measures for model Equation (16) following calibration
with experimental data.

Estimate Standard Error t-Statistic p-Value

C1 −1370 116.08 −11.80 4.2 × 10−32

C2 4081.4 7.335 556.43 0

C3 0.1109 0.0088 12.59 2.8 × 10−36

C4 0.2152 0.0170 12.64 1.4 × 10−36

C5 0.0808 0.0065 12.50 8.3 × 10−36

C6 −0.0587 0.0047 −12.55 4.6 × 10−36

Equations (21) and (22) showed marginally improved performance over Equations
(16), (18) and (20), with a higher R2 (0.998) and lower RMSE (4.5 ppm and 4.79 ppm,
respectively) but at the cost of much higher model complexity (Table 4).

3.3. Methane Decay Experiments

The rapid temperature change at around 0.7 × 105 seconds in the second decay experi-
ment manifested as a spike around the same time in the estimated methane concentration
for most of the model equations.

Equations (5) and (6) perform reasonably well for the first decay experiment but both
underestimate the peak methane concentration in the second experiment.

Equations (11) and (12) overestimate the peak methane concentration in both decay
experiments and also estimate different ambient methane concentrations at the start of the
two experiments.

Equation (15) poorly compensates for temperature and humidity variations (Figure 12).
Equations (17) and (19) overestimate the peak methane concentration in both decay ex-

periments.
Model Equations (16), (18), (20) and (21) provided the best performance for the decay

experiments (Figure A5). For the first decay experiment, all four models estimate an initial
methane concentration of around 30 ppm, a peak concentration of around 210 ppm and a
smooth decay curve. Similarly, in the second decay experiment, the models estimate an
initial methane concentration below 50 ppm, a peak concentration of around 225 ppm and
an appropriate curve shape.

When applied to the decay experiment data, model Equation (22) displays clear signs
of overfitting (Figure 12). Despite the high R2 (0.998) and low RMSE (4.79 ppm) of the
model trained on the calibration dataset, in both decay experiments, the model fails to
compensate for variations in temperature and humidity. This is most obvious from the
sawtooth-shaped peaks in the first decay experiment, which correspond to peaks in the
chamber temperature. The model also severely overestimates the methane concentration
throughout the second decay experiment.
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Figure 12. Estimated methane concentration from the decay experiment using model Equations (15),
(16), (21) and (22). Plots showing all of the trained models are included in Appendix B.
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4. Discussion

This study aimed to investigate the practicality of using machine learning to cali-
brate low-cost methane sensors at lower methane concentrations than required for their
typical applications.

The greatly improved performance of model Equation (11) (RMSE = 19.2, R2 = 0.962)
compared to Equations (5) and (6) (RMSE = 55 and 35.6, R2 = 0.684 and 0.868, respectively)
shows that both temperature and relative humidity need to be accounted for when cali-
brating the NGM2611-E13 sensor at methane concentrations below 200 ppm. The strong
correlation of Equation (11) with true methane concentration also validates the approach of
using an equation of this form to model the sensor readings.

Additional interactions between temperature, relative humidity and methane con-
centration are expected to affect the output voltage of the methane sensor. More complex
machine learning models containing additional terms can capture these interactions and
reduce the error in the model. However, increased complexity carries a greater risk of
overfitting, which can render a model useless for making predictions from new data. The
risk of overfitting can be reduced by expanding the training data or using more intensive
model validation, both of which increase the computing load when training the model.
Therefore, for any machine learning model, a balance exists between model robustness
and detail.

In this study, increased model complexity broadly correlated with improved model
performance: i.e., lower RMSE and higher R2. However, diminishing returns in increas-
ing model complexity are also clearly shown by the results in Table 4. The best per-
forming models: Equations (16), (18), (20) and (21), showed very similar performance
(RMSE = 4.5–5.1 ppm, R2 = 0.997–0.998). The model with the next lowest RMSE was
Equation (12) with RMSE = 14.2 ppm, which is almost three times that of the top four
models. For model Equations (15)–(20), including an offset term, C1 reduced the RMSE of
each model by around 10 ppm. The additional improvement of Equations (16), (18), (20)
and (21) over Equation (12) can be attributed to the inclusion of a temperature and sensor
output voltage product term or a relative humidity and sensor output voltage product
term. It is unsurprising that the effect of including either one of these terms, or both at
the same time, is similar because relative humidity is roughly inversely proportional to air
temperature in a sealed volume. Therefore, either term will effectively accommodate the
same effect of the environmental conditions in the chamber.

Despite containing almost twice as many terms, model Equation (21) (RMSE = 4.5 ppm,
R2 = 0.998) barely outperforms Equation (16) (RMSE = 5.09 ppm, R2 = 0.997). As shown by
Equation (22), a model of this complexity is also more vulnerable to overfitting (Figure A5).

The methane decay experiments highlight the importance of verifying machine-
learning models beyond simply assessing the nominal model performance. It would not
be possible to identify the overfitting of Equation (22) using the training results alone, and
applying this model to field data would severely misrepresent the true methane concentration.

Of the tested model equations, Equation (16) (RMSE = 5.09 ppm, R2 = 0.997, complexity = 12)
offered the best compromise between performance and complexity.

4.1. Comparison to Related Studies

Compared with a similar study using the Figaro NGM2611-E13 by Bastviken et al. [16],
the study presented here covered lower temperatures (5–30 °C vs. 10–42 °C) and higher
relative humidities (40–85% vs. 18–70%). This study trained models on over 50,000 data
points, whereas Bastviken et al. used an average of 619–930 data points per sensor. The
models tested by Bastviken et al. included temperature and humidity compensation but
did not test interactions between predictor variables. In this study, several models which
included interaction terms outperformed those which did not, highlighting the importance
of considering them in future models.

Bastviken et al. used two approaches to determine the methane concentration: direct
measurement using a reference sensor (a Los Gatos Research ultraportable greenhouse gas
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analyzer), or estimating the background methane concentration. If validated and performed
with care, background methane concentration estimations may simplify sensor calibration,
but they have the potential to introduce systematic errors which may be of a similar order
of magnitude to the methane concentrations that the calibrated sensors are intended to
measure. This issue is more easily circumvented by supplying sensors with a known
concentration of methane during calibration, as was achieved with the use of a reference
gas in this study.

Collier-Oxandale et al. [15] employed co-location of the methane sensors with ref-
erence instruments during field deployment. As stated by Collier-Oxandale et al., this
approach exposes sensors to representative field conditions, rather than constraining them
to more conventional laboratory settings, which typically control environmental conditions
more strictly than real-world settings. However, much longer co-deployments may be
required to obtain a broad range of conditions. If no high-emission or extreme events
occur during the co-deployment phase, sensor models calibrated in this way may be poorly
calibrated for these scenarios, being weighted towards typical field concentrations. As
previously mentioned, this study also used time-based predictor variables in most of the
presented calibration models. As such, calibrations based on these models would not be
transferable to sensors deployed in a different location. Laboratory-based calibration with
a methane concentration range which extends beyond the expected range of field values
can be more readily generalised and is less biased towards “normal” diurnal cycles or
environmental conditions.

Van den Bossche et al. [14] calibrated a TGS2611-E00 methane sensor across 15–30 °C,
40–80% relative humidity and 2–9 ppm methane. Methane concentration was recorded
using a Picarro G2301 Cavity Ringdown Gas Analyzer. The linear fit used for the sensor
calibration is a reasonable simplification for narrow ranges of methane concentrations but
would underestimate higher methane concentrations. As in the study by Bastviken et al.,
van den Bossche et al. applied temperature and humidity compensation but neglected
interactions between environmental conditions and methane concentration. Arguably, this
is less crucial at low concentrations but should be investigated as a potential method for
further improving the performance of low-concentration calibrations.

Due to the different concentration ranges used, it is difficult to make direct comparisons
between the accuracy of different calibration approaches across these studies. However,
a strong correlation between sensor response and true methane concentration below 300
ppm is consistently achieved, and the need to apply both temperature and humidity
compensation is identified by all authors.

In the context of commodifying methane sensors for IoT applications, a shared limita-
tion across all of these studies is the use of expensive reference sensors in the calibration
approach. Such instruments often cost tens of thousands of pounds, placing them beyond
the reach of many citizen scientists or smaller research groups. The calibration air-based
method presented in this study offers an alternative low-cost approach; the estimated total
cost of the calibration setup (vacuum pump, chamber, Arduino datalogger and calibration
gases) is under GBP 500.

4.2. Limitations and Future Work

The TGS2611-E00 sensor incorporates a charcoal filter which improves the sensor
selectivity by reducing the influence of other gases, such as ethanol and iso-butane. How-
ever, the sensor is also sensitive to hydrogen, making it less appropriate for detecting low
methane levels in environments where hydrogen may also be present. This is less likely
to be an issue in outdoor settings where hydrogen levels are typically much lower than
methane levels, but the incorporation of additional sensors to measure the concentration of
interference gases should be considered in relevant applications.

The variable warm-up period for the NGM2611-E13 sensors may pose a barrier to
their usage in low-power applications; future work should investigate the effect of this
warm-up period on intermittently powered NGM2611-E13 sensors.
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5. Conclusions

Overall, the experiments presented show that the NGM2611-E13 methane sensors
show a similar relationship between sensor resistance and methane concentration at
methane concentrations below the response documented by the manufacturer for methane
concentrations in the 300–10,000 ppm range. The presented trained models show promise
for calibrating the NGM2611-E13 methane sensors at low methane concentrations across
a range of temperature and humidity conditions. The relative performance of different
model equations highlights the importance of considering the interaction between predic-
tor variables. For example, the inclusion of a temperature and sensor voltage interaction
term was shown to reduce model error and improve the correlation between the model
prediction and the true methane concentration.

The presented calibration approach offers an efficient method for calibrating NGM2611-
E13 methane sensors using only two pre-balanced calibration gas mixtures and without
depending on a more expensive state-of-the-art reference sensor to measure the methane
concentration. Data collected at additional intermediate methane concentration levels
could be used to further refine these models. Likewise, calibrating the sensors over an even
broader range of temperature and humidity conditions may be valuable for environmental
monitoring settings.

The methane decay validation experiment presents an intuitive method for identifying
inadequacies in calibration models that may not be obvious from the performance of models
on training data. For example, spikes in predicted methane concentration that coincide
with spikes in temperature clearly indicate insufficient temperature compensation.

This approach to calibrating gas sensors below their intended application concentra-
tion ranges may be extended to other low-cost sensors in the future, with the potential to
broaden the range of pollutants that can be monitored by wireless sensor networks.
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Appendix A

Figure A1. Trained models using Equations (5), (6), (11), (12), (15) and (16).
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Figure A2. Trained models using Equations (17)–(22).
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Appendix B

Figure A3. Estimated methane concentration from the decay experiment using model Equations (5),
(6), (11) and (12).
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Figure A4. Estimated methane concentration from the decay experiment using model
Equations (15)–(18).



Sensors 2024, 24, 1066 22 of 24

Figure A5. Estimated methane concentration from the decay experiment using model
Equations (19)–(22).
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