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Abstract: Vehicle exterior inspection is a critical operation for identifying defects and ensuring the
overall safety and integrity of vehicles. Visual-based inspection of moving objects, such as vehicles
within dynamic environments abounding with reflections, presents significant challenges, especially
when time and accuracy are of paramount importance. Conventional exterior inspections of vehicles
require substantial labor, which is both costly and prone to errors. Recent advancements in deep
learning have reduced labor work by enabling the use of segmentation algorithms for defect detection
and description based on simple RGB camera acquisitions. Nonetheless, these processes struggle
with issues of image orientation leading to difficulties in accurately differentiating between detected
defects. This results in numerous false positives and additional labor effort. Estimating image poses
enables precise localization of vehicle damages within a unified 3D reference system, following initial
detections in the 2D imagery. A primary challenge in this field is the extraction of distinctive features
and the establishment of accurate correspondences between them, a task that typical image matching
techniques struggle to address for highly reflective moving objects. In this study, we introduce
an innovative end-to-end pipeline tailored for efficient image matching and stitching, specifically
addressing the challenges posed by moving objects in static uncalibrated camera setups. Extracting
features from moving objects with strong reflections presents significant difficulties, beyond the
capabilities of current image matching algorithms. To tackle this, we introduce a novel filtering
scheme that can be applied to every image matching process, provided that the input features are
sufficient. A critical aspect of this module involves the exclusion of points located in the background,
effectively distinguishing them from points that pertain to the vehicle itself. This is essential for
accurate feature extraction and subsequent analysis. Finally, we generate a high-quality image mosaic
by employing a series of sequential stereo-rectified pairs.

Keywords: image matching; feature extraction; structure from motion; deep learning; car inspection;
moving objects; glossy surfaces; outlier removal; image pose estimation

1. Introduction

Exterior vehicle inspection and defect monitoring have evolved significantly over the
years, driven by advancements in computer vision and deep learning with an increasing
focus on road safety and efficiency [1–6]. These technologies transform the field of vehicle
exterior inspection by automating defect detection, classification and segmentation pro-
cesses. This not only accelerates the inspection process but also enhances the accuracy of
damage and defect assessment, leading to more reliable and cost-effective solutions. Recent
progress in deep learning can reduce manual labor by enabling the use of segmentation
algorithms for defect detection and description utilizing image sequences.

Additionally, deep learning can allow intelligent fault diagnosis and predictive mainte-
nance. This involves identifying, isolating and correcting faults, for instance, by transferring
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knowledge between a source well-studied model to a target model through transfer learn-
ing [7,8]. Moreover, similar approaches are capable of running at the edge [9] for increased
efficiency and cost-effectiveness.

Nonetheless, these processes struggle with image orientation, leading to difficulties in
accurately differentiating between detected defects. This results in numerous false positives
(re-detections) and additional labor and effort. To enable precise defect localization and
distinction, accurate image poses ensuring a clear understanding of the overlap and relative
positions of detected defections or damages should be estimated. This orientation is vital
to minimize false positives and streamline the inspection process.

Image matching is a fundamental process in computer vision, essential for identifying
correspondences between two or multiple images. This process, which encompasses
feature detection, description and matching, has traditionally been addressed through
tools such as SIFT [10], SURF [11] and ORB [12], depending on the particular use case.
While these handcrafted techniques have been widely utilized, the rise of deep learning has
paved the way for more sophisticated approaches, providing solutions resilient to image
matching challenges.

Innovative methods such as SuperPoint [13], LoFTR [14] and Roma [15], which have
recently emerged, demonstrate improved feature detection and matching capabilities
that surpass previous methods, particularly in challenging scenarios like poor texture
or repetitive patterns. Despite these advances, image matching in dynamic scenes with
moving vehicles and reflections remains a formidable challenge. Such conditions in vehicle
exterior monitoring frequently result in redundant detections of defects, thereby increasing
the manual workload for verification and correction.

For robust image matching, outlier removal is essential. Methods such as RANSAC
(RANdom SAmple Consensus) [16], and more recently MAGSAC [17] and BANSAC [18],
are established practices that provide a method to discriminate against erroneous corre-
spondences based on a model fitting process. However, the performance of these estimators
can be compromised in certain cases. In scenarios with highly reflective surfaces, these
algorithms may result in correspondences of high ambiguity; reflections can create false
feature correspondences that mimic true matches, leading these algorithms to potentially er-
roneous conclusions. In addition to this, scenes with repetitive patterns are challenging due
to the inherent difficulty in achieving a reliable geometric consensus. The patterns can cause
propagation of feature matches that are statistically plausible yet geometrically incorrect,
resulting in a consensus that does not accurately reflect the true alignment of images. Fur-
thermore, the RANSAC-based methods’ assumption of uniformly distributed outliers does
not hold in the presence of structured noise, a case common in industrial environments.

To this end, we categorize outliers as either background points or points on the vehicle
surface. Point correspondences located in the background of the vehicle are separated
from foreground features (on the vehicle) and excluded by leveraging two state-of-the-
art learning-based frameworks, Yolo [19] and SAM [20]. Besides the background points,
our approach introduces a novel filtering scheme that discards points extracted from the
vehicle’s glossy surface, as they deviate from the dominant parallax vector (both magnitude
and direction), to eliminate false matches by taking advantage of the constraints related to
the motion of the vehicles. This approach plays a crucial role during image pose estimation
towards creating the image mosaic.

Afterward, our approach stitches consecutive overlapping images to create a single
high-resolution, wide-view image of the vehicle. Image stitching is a fundamental technique
in digital image processing and has gained significant traction in various fields like remote
sensing, virtual reality and medical imaging. A typical issue during the stitching process
is the color differences between the stitched images. While traditional methods like pixel
weighting have been employed for seam removal, more advanced techniques such as
optimal seam methods [21,22] and transformation domain approaches (e.g., Fourier and
wavelet transformations) [23,24] have shown improved results in creating seamless and
visually coherent images. Despite considerable advancements in image stitching, challenges
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remain, particularly in scenarios with complex image content, dynamic scenes and 3D
motion modeling requirements. In our study it is essential to maintain the originality of the
image content; therefore, we utilize a low-level multi-band blending method following [25]
that effectively minimizes the color differences but does not affect the integrity of the image
as it is mandatory to keep the original content for the inspection process.

This work introduces an end-to-end pipeline for image matching and stitching con-
cerning the inspection of moving vehicles that exhibit highly reflective surfaces. This
work contributes to the field of exterior vehicle inspection by providing a comprehensive
approach that leverages a recent image matching algorithm while introducing an effective
outlier removal methodology. The principal outcome of this study is the demonstration of
a viable, more efficient alternative to traditional vehicle inspection methods, which holds
potential for widespread application in various sectors beyond the automotive industry.
The findings of this research are expected to resonate with a broad audience, including
those outside the immediate field of computer vision, due to their implications in enhancing
safety, reliability and operational efficiency in exterior vehicle inspections.

The rest of the paper is organized as follows: In Section 2, we overview the related
work and state our contributions briefly. In Section 3, we present the datasets that were
used for experimentation. In Section 4, we present the proposed methodology for efficient
image stitching. Section 5 presents the experimental setup and results. Section 6 briefly
concludes the paper.

2. Related Work and Background
2.1. Vehicle Exterior Inspection

Vehicle exterior inspection plays a crucial role in maintaining road safety and validat-
ing the integrity of vehicles [26]. Traditional methods of manual inspection often involve
time-intensive processes, high costs and a higher probability of human error. This not
only delays and challenges the process but also raises questions about the precision and
reliability of the inspection performed. As a result, there is an increasing demand for more
efficient, accurate and automated approaches to vehicle inspection, such as in the context of
insurance claims processing where rapid and accurate damage assessment is critical [27].

As an early approach, Ref. [28] delves into the need for effective vehicle undercarriage
inspections through image mosaicking, especially in sensitive and high-security environ-
ments such as border control. In a more recent work [29], the focus shifts to enhancing
security measures in restricted areas such as airports and embassies. This study integrates
several computer vision applications, including license plate recognition, vehicle manufac-
turer/model detection and image mosaicking, to create a multi-faceted security system.
Such systems are crucial for preventing fraudulent activities and ensuring that only autho-
rized vehicles gain access to high-security zones. Other studies focus more on the insurance
claims and road safety sectors. The authors of [30] present an innovative stereo-vision
hardware solution for tire inspection through depth estimation, also utilizing deep learning
models that include convolutional and recurrent network components. Their study high-
lights the importance of maintaining vehicle safety standards, showcasing how advanced
technology can aid in the accurate identification of tire conditions, thus contributing to
overall vehicle safety. Similarly, Ref. [31] copes with challenges in the insurance sector,
particularly in assessing vehicle damage for claims processing, illustrating the potential
for AI and DL in automating and improving the accuracy of damage assessment, thereby
addressing issues like claims leakage and fraud in the insurance industry. The authors
of [32] focus on automating the damage assessment process in the auto finance industry.
Their research study emphasizes the need for precise damage estimation in leased vehicles,
highlighting the challenges in designing robust systems that can accurately localize and
measure damages under various conditions.

However, vehicle inspections introduce unique challenges that existing methods
struggle to address effectively, and this is primarily due to the increased presence of
reflections on the vehicle body. Extracting valuable information from moving objects
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like vehicles, especially in dynamic environments replete with reflections and varying
lighting conditions, remains a formidable challenge. These dynamic conditions often lead
to inaccuracies in defect detection, primarily due to the lack of proper image orientation,
resulting in numerous false positives and necessitating additional manual intervention. In
this context, the importance of advanced image matching techniques becomes paramount.

2.2. Image Matching

Image matching, a cornerstone of computer vision, involves identifying correspon-
dences between two or more images and traditionally encompasses feature detection,
description and matching. Recent review studies [33,34] provide a comprehensive analysis
of the methods and application topics. Image matching has been extensively researched,
and numerous handcrafted methods exist, with the most popular ones being SIFT [10],
SURF [11] and ORB [12]. Recently, deep learning allowed the exploitation of more so-
phisticated approaches leveraging neural network architectures such as convolutional
neural networks (CNNs), transformers, graph neural networks (GNNs) and very recently
diffusion-based ones to build more resilient learnable solutions for image matching [12].

SuperPoint [13], as a pioneering work, introduced a self-supervised method for interest
point detection by employing a fully convolutional neural network trained on a synthetic
dataset and further refined through Homographic Adaptation. Moreover, the integration
of this approach with a descriptor sub-network to attach fixed dimensional descriptor
vectors to each point facilitates high-level semantic tasks such as image matching. This
method significantly enhanced the performance of interest point detectors on real images
as showcased by the authors.

The recently proposed vision transformer [35] is an extension of the original concept
of transformers, used initially for natural language processing. Transformers introduced
cascades of multi-head self-attention to compute representations of the input and output
data without using RNNs or convolutions, currently being very popular for many computer
vision tasks. LoFTR [14] presents a novel approach that increases efficiency compared
to traditional local feature matching, which often fails in conditions like poor texture or
repetitive patterns. LoFTR is a detector-free approach for feature matching that employs a
CNN for early feature extraction and a transformer to identify semi-dense correspondences
between two images. This method provides a substantial receptive field in the feature
extraction network, which is crucial for distinguishing indistinctive regions, and shows
effectiveness in challenging indoor and outdoor environments.

A more recent approach, TopicFM [36], introduced a novel perspective by combining
local context and high-level semantic information into latent features for robust and ac-
curate feature matching. Using a topic modeling strategy, the TopicFM method models
images as a distribution over latent semantic instances, like objects or structural shapes.
This probabilistic feature matching, based on the distribution of latent topics, enhances the
distinctiveness of local visual features and achieves accurate dense correspondences, partic-
ularly in demanding scenes with large scale and viewpoint variations. RoMa [15], on the
other hand, models image matching as a non-stationary diffusion process using a Markov
chain formulation. Within this framework, two distinct stages emerge: the coarse matching
stage, which prioritizes global consistency over precise localization due to the complexities
posed by motion boundaries and repeated structures, and the refinement stage, which
focuses on accurate localization once the initial coarse match is approximately correct.

Additional approaches focus on matching pre-existing features. SuperGlue [37],
instead of focusing on improving local features and then applying standard matching
heuristics, proposes learning the matching process using pre-existing local features (i.e.,
SuperPoint) through a novel neural architecture. It performs context aggregation, matching
and filtering in a single end-to-end GNN architecture with self-attention (intra-image)
and cross-attention (inter-image) inspired by the vision transformer for feature matching.
LightGlue [38] extends this paradigm, addressing the computational intensity of deep
matchers like SuperGlue. LightGlue is designed to be more accurate, more efficient and
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easier to train. Following an adaptive approach, it varies the computational depth based
on the difficulty of each image pair, thus resembling human visual processing. LightGlue
optimizes the trade-off between speed and accuracy, making it particularly suitable for real-
time applications such as SLAM. RoMa outperforms all previous methods, demonstrating
its superiority in the Image Matching Challenge [39]. Although RoMa produces adequate
matches between two images, the extraction of features from moving objects with strong
reflections introduces significant issues that existing image matching algorithms cannot
tackle. Yet, most current methods assume a static environment, a presumption that rarely
holds in real-world scenarios marked by constant motion and illumination changes.

2.3. Outlier Detection

Outlier detection among matched points is a decisive step in image matching and
mosaicking since a single outlier might lead to incorrect adjustments. To tackle this,
robust estimators like RANSAC [16] have become the gold standard. Since then, several
approaches have been proposed to replace or extend the uniform sampling in RANSAC and
increase the probability of finding an all-inlier sample and a good model in fewer iterations.

Robust estimators are categorized into heuristic-based strategies NAPSAC [40],
PROSAC [41], and GroupSAC [42]; probabilistic-based strategies MLESAC [43] and
EVSAC [44]; and learning-based strategies like NG-RANSAC [45] and NeFSAC [46].

MAGSAC++ uses a scoring function and a marginalization procedure. It does not
require a single inlier–outlier threshold and can handle both noise and outliers effectively.
It also introduces a new sampler, the Progressive NAPSAC, that exploits the spatial coher-
ence of the data and transitions from local to global sampling. Graph-Cut RANSAC [47]
utilizes the graph-cut algorithm to separate inliers and outliers in a local optimization step,
which is applied when a so-far-the-best model is found. As a recent improvement in this
area, BANSAC [18] employs a dynamic Bayesian network for adaptive sample consensus
iteratively updating the inlier probabilities of data points during the RANSAC iterations.
This adaptive mechanism augments the accuracy of feature matching while enhancing
computational efficiency. In our approach, we utilize MAGSAC++ to perform geometric
verification of the extracted features. Robust estimators are essential for proper model
fitting and geometric verification; however, the repetitive patterns and reflections still may
lead to inaccurate geometric rectification. To address this, we initially extract the back-
ground of the scene to eliminate points from the vehicle’s background, and additionally,
we introduce a novel filtering module that includes an ensemble of statistical methods to
remove the points on the glossy surface of the vehicle’s body.

Applying statistical-based outlier detection methods such as those in [48,49] is a
common practice that improves model fitting. Additionally, many ensemble strategies
employ combinations of these methods for increased robustness and adaptiveness [50,51].
In-depth studies [52–56] demonstrate the importance of removing statistical outliers for a
variety of tasks. In most cases, it is essential to select and primarily use specific filtering
methods that are appropriately suited to the nature of the data. The authors of [57]
categorize outliers as (a) single-point outliers, (b) collective outliers and (c) contextual
outliers. The single-point outlier is an individual data instance that deviates from the rest
of the dataset, collective outliers are a collection of data instances that appear anomalous
with respect to the rest of the entire dataset and contextual outliers are anomalous data
instances in a specific context or neighborhood.

In image matching, there are many approaches that utilize statistically based outlier
detection methods. The authors of [58] introduce the Guided Local Outlier Factor (GLOF),
an adaptation of the Local Outlier Factor (LOF), a density-based scoring mechanism com-
monly used in anomaly detection within data mining. The GLOF modifies the LOF for
feature matching by embedding feature vectors from x to y into a 2D spatial distribution.
This enables the calculation of a score for each match, indicating its validity as true or false.
Another approach [59] reduces redundant keypoints using principal component analysis
(PCA) to downscale the DBSCAN clustered features. The authors of [60] propose the use of
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an iterative spatial clustering approach assuming that there exists consistent motion among
the potential matches in an image pair.

Feature matches can fall into these three categories as they inherently possess both
spatial properties from the image and can be affected by noise. For example, a particular
sub-group of matches can be considered as collective outliers if they exhibit behavior that
is distinct from the rest of the data due to motion patterns. Moreover, image matches can
be identified as contextual outliers when their appearance is specific to a particular context
within the image, e.g., a glossy surface. Finally, single-point outliers can be distinguishable
points possibly due to noise, detection errors, hot spots and so on. Ultimately, these outliers
can be effectively analyzed using parallax vector analysis, as the motion between the images
is predominately planar and characterized by a dominant motion vector.

The characteristics of the current data have guided the design of our ensemble ap-
proach, which combines three density-based clustering methods and three statistical-based
methods. This effectively removes outliers that are spatially correlated, such as those on
glossy surfaces or deflectometry stripes, as well as isolated single-point outliers.

2.4. Image Stitching

Image stitching plays a critical role in a diverse array of applications ranging from
autonomous vehicle driving and navigation [61,62] to augmented reality [63], medical
imaging [64,65] and vehicle exterior monitoring [29]. Traditionally, image stitching involves
aligning and merging multiple images taken from different perspectives of the same point
into a seamless, high-resolution panorama or mosaic. However, in many cases, the motion
of the camera is not only rotary but also includes a translation.

One of the main challenges in image stitching is ensuring a natural and seamless
blend of images, particularly in the presence of parallax, lens distortions and varying scene
illuminations/reflections. Traditional methods typically rely on global 2D transformations
and thus must cope with misalignments and ghosting effects, where duplicate objects
appear in the mosaic. The complexity of accurately estimating the stitching field, influenced
by the intricate interplay between the 3D scene structure and camera parameters, adds to
these challenges.

Recent advancements in deep learning have significantly improved image stitching
techniques [66] to enhance feature extraction, homography estimation and image blending.
These models are adept at handling changes in noise, lighting and occlusions, making the
stitched images more realistic and robust against common stitching artifacts.

3. Datasets

The datasets explored in this study consist of images captured in a real-life scenario
where driver behavior was not strictly predefined, and image acquisition characteristics
were completely unknown. Occasional blurring of images, along with reflective stripes
on the vehicles, disrupts the feature extraction and matching process. The relatively fea-
tureless large uniform surfaces of vehicles further complicate the matching task. All image
sequences were collected using an industry-ready scanner as shown in Figure 1, which
includes a LIDAR line sensor for triggering purposes, LED illumination and deflectometry
stripes [67].

Image Set: Volkswagen
The Volkswagen dataset consists of 16 images of 3000 by 4096 pixels and presents the

left side of a vehicle. The images were collected in an outdoor environment.
Experiments were conducted on three image sequences: Volkswagen (Figure 2), Mer-

cedes (Figure 3) and Seat (Figure 4). Each dataset presents unique challenges, primarily due
to variations in image overlap, quality and indoor/outdoor environmental conditions. For
instance, the Mercedes dataset maintains less than 65% overlap between consecutive images,
while the other two maintain more than 80%. Another significant difference between the
Mercedes and the Volkswagen and Seat image sets is that the latter two were collected in an



Sensors 2024, 24, 1083 7 of 21

outdoor environment leading to different lighting conditions. For all three datasets, the
cameras were fixed while the vehicle was moving.
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Image Set: Seat
The Seat dataset consists of 16 images of 3000 by 4096 pixels presenting the left side of

a vehicle. The images were collected in an outdoor environment.
As already mentioned, one of the main issues for all image datasets is the poor textural

variation of vehicle surfaces. Another significant characteristic is the absence of camera
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calibration data and control points, typically used for image orientation and scale recovery.
All vehicles were moving along the x-axis while the camera remained fixed. The images
display significant variations in lighting and reflective patterns.

4. Methodology

Given a set of high-resolution images of vehicle exteriors, our aim is to develop an
automated process for image matching and stitching to increase the effectiveness of vehicle
inspection, considering the unique lighting conditions. Our work focuses on seamlessly
stitching images to create a cohesive panoramic view of the vehicle. In the proposed
framework (Figure 5), we integrate three dense feature matching methods in the “Pool of
Image Matching Algorithms”, i.e., RoMa, TopicFM and LoFTR. This can be leveraged in
case RoMa underperforms due to unspecified issues leading to a false geometric verification.
For each consecutive image pair, we extract and refine the vehicle’s masks to eliminate
points located on the background of both images. Subsequently, we filter out matches
based on the dominant parallax vector (based on the calculated relative translation t of the
image pair). The remaining matches are then geometrically verified. The acceptance or
rejection criterion of an oriented image pair is the magnitude of the Euler angles, derived
from the rotation matrix R, and of the translation vector t, extracted by decomposing the
essential matrix E of the particular image pair. The final mosaic is produced by sequentially
stitching consecutive pairs using their median parallax, which is the median translation
distance between the final matches in each image pair.
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Figure 5. This diagram illustrates the workflow of our approach. (a) Image matching is performed
using one algorithm from the pool of image matching algorithms (initially, RoMa). (b) The next phase
involves extracting and refining masks that filter out the points in the background. (c) The remaining
features are subjected to the filtering module, where geometric constraints are applied. (d) Following
the filtering module, a geometric verification is conducted to ensure the geometric accuracy of the
result. (e) The outcome of this process is a final, seamless mosaic.
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4.1. Image Matching

Prior to choosing RoMa as the main dense feature matcher of our framework, we
conducted several experiments between four state-of-the-art image matching algorithms,
i.e., RoMa, LoFTR, TopicFM and SuperPoint + LightGlue.

To evaluate these algorithms, we used their respective GitHub implementations [68–71]
without any fine-tuning.

All methods extract features on the background, which need to be removed for reliable
image pair orientation. Figures 6 and 7 illustrate the results of our method employing
TopicFM against RoMa and SuperPoint + LightGlue against LoFTR, respectively. In our
experiments, dense matchers surpassed SuperPoint + LightGlue as the latter provided
too few matches. It is observed that TopicFM and LoFTR both tend to detect keypoints
following a grid pattern. Dense matchers generally yield a substantial number of features;
however, post-filtering is essential for ensuring a higher accuracy in the matching process.
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After initial keypoint extraction, we eliminate background points from each set using
the extracted masks (see Section 4.2.1). Next, we apply the proposed novel filtering scheme
(see Section 4.2) to discard points that deviate significantly from the dominant parallax
vector (checking both magnitude and direction) to remove false matches, such as points
matched on the opposite sides of the images or points matched diagonally. In this way, we
exploit the vehicle’s motion as a critical geometrical prior. Finally, we utilize MAGSAC++
for robust fitting in estimating the essential matrix, thereby accurately recovering the
relative orientation of each image pair.

4.2. Filtering Module

We propose a novel filtering module for use in image matching. This module is
applicable when the number of features is adequate. Intuitively, if only a few matches are
extracted, e.g., ~30, the filtering scheme may underperform due to the poor distribution
of points in the overlapping area of the image pair (which may well include ambiguous
matches due to glossy surfaces and repetitive patterns). In this step, feature points on
the background of the scene are separated from foreground features (on the vehicle) and
excluded. Besides the background points, the algorithm also discards points extracted from
the vehicle’s glossy surface, as they deviate from the dominant motion.

Additionally, as mentioned, we exploit the dominant parallax vector (both magni-
tude and direction) to eliminate false matches, taking advantage of the constraints re-
lated to the motion of the vehicles. Overall, we introduce the following distinct outlier
removal processes:

• Background points: We apply semantic segmentation and object detection using two
state-of-the-art learning-based frameworks, YOLOv8 and SAM.

• Points on highly reflective areas: We detect points with very small or extreme parallax.
Points with zero or relatively small parallax, apart from those of the static background,
also refer to scene points that have been reflected on the glossy surface of the vehicle.
These points, rather than following the vehicle motion, maintain the same or nearly
the same position across frames, with only minor variations due to the vehicle’s
surface differentiation.

• Points with random parallax: we introduce a filtering scheme that estimates a domi-
nant parallax vector, primarily aligned with the image x-axis. This is a key component
in the outlier removal step and is particularly crucial in contexts where understanding
the orientation of features relative to a reference axis is essential. Our main focus is on
identifying and retaining those features that closely align with a specific motion vector
(i.e., x-axis) and magnitude of the dominant parallax vector. By setting a threshold
(2 degrees) for angular deviation from the dominant parallax vector and applying the
proposed filtering scheme, we filter out points that do not conform to the desired hori-
zontal alignment or the common vehicle motion. Due to our system’s configuration,
vehicles are moving along the x-axis. Nonetheless, our filtering scheme is adaptable to
various camera setups, not limited to those strictly aligned with the x-axis, provided
that a dominant motion vector is present.

4.2.1. Semantically Enriched Features

Our approach enriches the matches with semantic information as it integrates two
segmentation processes using neural networks and post-processing techniques.

YOLO is a popular deep learning model used for object detection, capable of iden-
tifying and classifying various objects within an image in a single forward pass. The
architecture is composed of a series of convolutional layers that extract features from the
image, which are then used to predict bounding boxes and corresponding class probabilities.

Segment Anything Model (SAM) utilizes a prompt-based architecture designed for
customizable segmentation tasks without the need for retraining on new datasets. SAM
excels in generating high-fidelity masks for a variety of objects within images, even when
object categories are provided during inference via textual descriptions. This prompt-
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based method is flexible and efficient, allowing SAM to segment new object classes not
encountered during its training phase. SAM implements a vision transformer (ViT) as
its backbone. Vision transformers have gained prominence in the field due to their self-
attention mechanisms, which enable them to focus on different parts of the image to extract
rich contextual information that improves segmentation performance. Unlike convolutional
networks that process the image in a somewhat local manner, transformers perceive the
image globally through self- and cross-attention, which is particularly advantageous for
segmentation tasks where understanding the entire context of the image is important.

In our integrated pipeline, YOLOv8 identifies objects and their corresponding seg-
mentation masks. Then, these masks are prompted to SAM, with the latter providing a
fine-grained segmentation of the detected objects (Figure 8). SAM operates by produc-
ing embeddings for the regions of interest prompted by the YOLOv8 detections. It then
generates detailed masks by classifying each pixel within the region, resulting in precise
segmentation even in complex visual scenes.
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Figure 8. Extracted masks for the Volkswagen dataset. We first extract masks using Yolov8, and then
we refine these using SAM.

The process involves converting SAM into the ONNX format, which is a cross-platform
model representation that enables efficient execution on various hardware accelerators.
Moreover, the model undergoes dynamic quantization, which improves computational effi-
ciency without a significant loss of accuracy. This optimization is essential for deployment
in resource-constrained environments or real-time applications.

In summary, our methodology combines the real-time detection capabilities of YOLOv8
with the flexible, high-fidelity segmentation provided by SAM. Together, they form a robust
system for analyzing and interpreting visual data.

4.2.2. Outlier Detection

The proposed ensemble for outlier detection (Figure 9) includes six different statistical
methods, i.e., two clustering methods, modified DBSCAN and HDBSCAN; Z-score with
median absolute deviation (MAD), sigma clipping, and adaptive sigma clipping, which are
simple yet effective ways to remove outliers based on the median value; and Local Outlier
Factor (LOF).

The Z-score with MAD is robust against outliers, making it particularly suitable for
datasets with a few extreme values. On the other hand, it assumes a unimodal distribution
centered around the median, which can be a limitation, and thus may fail in multimodal
distributions or when outliers do not significantly deviate from the median, especially in
datasets with multiple clusters where the median is not a meaningful measure.

The Local Outlier Factor (LOF) is effective in datasets where local density varies, and it
is adept at detecting outliers that are anomalous in their local neighborhood. Nonetheless,
the LOF is sensitive to the choice of parameters, like the number of neighbors, and may
struggle in high-dimensional spaces or when datasets preserve a uniform density where
distance metrics become less meaningful.
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Figure 9. Ensemble for outlier detection: Top left: Z-score with median absolute deviation (MAD)
identifies outliers based on standardized deviation from the median. Top right: HDBSCAN (Hi-
erarchical Density-Based Spatial Clustering of Applications with Noise) detects outliers through
hierarchical clustering. Middle left: Local Outlier Factor determines outliers by measuring the local
deviation of a given data point with respect to its neighbors. Middle right: Sigma clipping uses
standard deviation thresholds to identify and remove outliers. Bottom left: Adaptive sigma clipping
dynamically adjusts sigma thresholds based on the distribution of distances. Bottom right: Modified
DBSCAN (Density-Based Spatial Clustering of Applications with Noise) employs a density-based
approach leveraging the median value. The ensemble method (bottom center) combines the results
of individual methods to achieve a consensus-based outlier detection. A match is an outlier if more
than two methods of the ensemble mark it as an outlier.

Sigma clipping is simple yet effective for symmetric, unimodal distributions. It
operates under the assumption that the majority of data points are not outliers, which might
not always hold true. Hence, it is less effective in heavily skewed datasets or in datasets
where a significant proportion of the data are outliers. Similar to sigma clipping but with a
dynamically adjusted threshold, adaptive sigma clipping offers more flexibility compared
to standard sigma clipping, due to its dynamically adjusted threshold that adapts to the
data. Despite its adaptability, it can still face problems with multimodal distributions or
very noisy datasets, and this method may fail in datasets lacking a clear ‘central’ cluster or
where the noise level is too high for meaningful adaptation, leading to many false outliers.

In this work, we propose the modification of DBSCAN to use the median as a baseline
for point clustering, which is particularly good for spatial data and datasets with clusters
of varying density. It is sensitive to parameter settings, and it might fail when applied to
datasets with highly irregular densities.

To address this, we include HDBSCAN, which improves upon DBSCAN by handling
varying density clusters more effectively. The method can be computationally intensive
and might yield varying results with different data scales, and it may not perform well in
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datasets where cluster boundaries are not well defined or in extremely large and complex
datasets where computational resources are a constraint. We utilize all the aforementioned
methods in an ensemble to increase the confidence of our framework for outlier detec-
tion. The chosen methods complement each other in handling different aspects and types
of outliers.

Ensemble Method

Our ensemble method incorporates six distinct methods. For single-point outliers
often resulting from noise, detection errors or unique image features, we employ Z-score
with median absolute deviation (MAD), sigma clipping and adaptive sigma clipping. These
approaches are efficient in detecting deviations from a baseline, which normally is the
median value of the dataset. The LOF extends the ensemble by assessing the local density
deviation of a point with respect to its neighbors, thus enabling the detection of both single
and contextual outliers. Finally, our ensemble includes modified DBSCAN and HDBSCAN
versions that can identify both collective and contextual outliers.

Consider the ensemble E consisting of N outlier detection methods:

E = {M1, M2, . . . , MN} (1)

For a given parallax vector x, let the vote of method Mi be denoted as VMi (x), where
VMi (x) = 1 if Mi classifies x as an inlier and VMi (x) = 0 if Mi classifies x as an outlier.

The ensemble vote E(x) is then defined as

E(x) =
{

1
0

i f ∑N
i=1 VMi(x) ≥ T
otherwise

(2)

where T is the minimum number of methods that must agree on classifying the parallax
vector of each point pair as an inlier.

Our ensemble integrates multiple statistical outlier detection methods to benefit from
their collective strengths, resulting in a robust, aggregated method for identifying outliers
as shown in Figure 10. We note that this method is efficient when a specific dominant
parallax vector is present such as in our case. This filtering process is critical, and skipping
it may lead to erroneous results as shown in Figure 11.

4.2.3. Geometry Verification

After applying the ensemble to the parallax vectors for outlier removal, geometric
verification is mandatory.

The initial step involves applying MAGSAC++ for outlier rejection; to do so, we rely
on OpenCV’s USAC framework [72]. Unlike conventional RANSAC, MAGSAC++ adapts
the inlier–outlier threshold dynamically, making it particularly effective in scenarios with
a significant outlier ratio. MAGSAC++ implements a marginalization procedure over a
range of possible thresholds to determine the most probable inlier set, thus optimizing the
selection process.

Upon obtaining a purified set of inliers from MAGSAC++ as shown in Figure 12, we
proceed to estimate the essential matrix of image pairs using the LMEDS approach. LMEDS
is chosen for its robustness in handling datasets with the presence of remaining outliers
and works by finding the median of the squared residuals. This method is less sensitive to
outliers compared to traditional least squares, making it well suited for scenarios where
outlier contamination, although reduced, is still a concern. Camera calibration is unknown.
In order to estimate a common global focal length, we employ the well-known approach
of Bougnoux [73] and accordingly assume that the principal point coordinates for each
camera and the distortion coefficients are zero.
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The camera pose, i.e., the rotation matrix R and the translation vector t, is recovered
from the essential matrix E. Following [74], we first decompose the essential matrix using
singular value decomposition (SVD) to obtain four solutions (two rotation matrices and
two translation vectors). The combination of R and t that satisfies the cheirality constraint,
i.e., object points should be in front of both cameras, is selected. A pair is accepted or
rejected depending on the Euler angles which are derived from R. If the absolute values of
these three angles are below a threshold (in our experiments, it was set at 4 deg), the image
pair is accepted.

5. Results

An example of our workflow for an image pair of the Mercedes dataset is presented in
Figure 13. Despite the changes in illumination, RoMa locates adequate points for matching;
however, applying our filtering scheme and geometric verification is essential. The extrac-
tion of segmentation masks allows the elimination of the points in the background, thus
reducing the number of outliers. Dense matchers tend to produce a vast number of features,
but in our experiments, we limited the number of extracted matches to 1000. The geometric
verification process discards points on the wheels but does not fully eliminate them. The
ratio between final inliers and outliers is significant, which clearly shows the difficulty
of extracting correct matches under such environments. Finally, the multi-band blending
approach limits the color differences among images. As all datasets include images of
large size (3000 × 4096 pixels), the process is computationally costly. To tackle this, we
re-implemented multi-band blending in pytorch to run entirely on a GPU.

All image sets were matched, filtered and stitched fully automatically. All tasks, i.e.,
image matching, object detection, segmentation and filtering, along with the final image
mosaics for the three datasets shown in Figure 14, were processed on a laptop with an
i7-11800H and an Nvidia RTX 3060 GPU.

The movement of a vehicle’s wheel represents a separate challenge. Unlike the rest
of the vehicle, which undergoes a single motion relative to the camera, the wheels exhibit
a rotational movement. This creates discrepancies and artifacts in the stitched image,
particularly noticeable at the seamlines. This issue is compounded by the fact that wheels
often contain intricate patterns (such as spokes or hubcaps) that are prone to creating
complex and misleading features for matching algorithms. As a result, the wheels might
appear blurred, distorted or misaligned in the final stitched image, which can significantly
impact the accuracy and reliability of the inspection process. Owing to this, all the points
located on the wheel are considered as outliers and must be removed.
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Current tools for image stitching do not integrate recent image matching algorithms,
nor do they employ specific statistical methods for outlier filtering based on motion patterns.
As illustrated in Figure 15, SIFT fails to produce a sufficient number of features for effective
image stitching. Thus, it is not possible to make a specific qualitative or quantitative
comparison between our method and the existing tools.
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6. Conclusions

Computer vision and deep learning have transformed vehicle exterior inspection
processes, providing more reliable, faster and cost-efficient solutions. The automation of
defect identification utilizing a seamless image mosaic could streamline the inspection
process and increase the accuracy of damage assessment. Currently, such solutions grapple
with persistent limitations due to reflective patterns, complex environments and motion
presence, thus requiring manual refinements. The proposed framework could potentially be
used for numerous possible applications in various sectors. For example, it can be applied
within the transportation and logistics industry for fleet vehicle inspections. Additionally,
its application extends to industrial environments for the inspection of shiny objects, e.g.,
metallic components, employing a similar camera setup.

In this work, we have proposed a novel image matching and stitching framework
that builds upon RoMa, Yolo and SAM. A critical component of the framework is the
introduced filtering ensemble. Applying such statistical-based outlier detection methods is
an underexplored topic in image matching. The available image stitching approaches rely
on handcrafted image matching algorithms, thus making the direct quantitative comparison
with the proposed approach not possible. Additionally, to the best of our knowledge, there
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is no suitable dataset with available ground truth that would allow us to effectively evaluate
our approach.

A more thorough evaluation could be based on either a synthetic [75,76] or a real
ground truth dataset. For the latter, the goal would be to capture several synchronized 3D
scans and image frames of a slowly moving vehicle. The geometrical calibration of the two
sensors (laser scanner and camera) would allow the accurate positioning of every camera
frame with respect to the vehicle coordinate system.

A potential future task could also be the combination of statistical and geometric filter
detection methods within a neural network, e.g., a multi-head transformer architecture that
clusters points based on motion patterns to filter out points that differentiate from their
neighbors. Transformer architecture enables the model to weigh the importance of different
features on an image in relation to each other through self-attention. Multi-head attention
extends this by allowing the model to attend to different parts of the input in parallel.
Incorporating a spatially aware filtering scheme to iteratively group matches based on their
distinct motion pattern could potentially provide more robust insights to the network and
might lead to faster convergence and more robust outlier removal as well.

The wheels of the vehicle follow a different rotary motion compared to the vehicle’s
body. Addressing this challenge requires a specialized approach. A potential future task of
our research could involve the development of a ‘detect and remove’ strategy, leveraging
advanced image detection techniques. This approach would involve identifying wheels
and then applying specialized algorithms or transformations to account for their rotational
movement. To efficiently place the wheel on the panorama, a possible solution could be
to initially determine the center of each detected wheel assuming the wheel has a circular
shape. Then, based on the centers of all detected wheels, we could estimate the midpoint
and place the wheel following the specific perspective transformation. By isolating these
areas and treating them differently from the rest of the vehicle during the stitching process,
we could potentially reduce or eliminate the artifacts caused by wheel rotation.

For a more accurate image mosaicking result, the bundle adjustment method can
be applied for global image pose and camera calibration refinement. Bundle adjustment
could optimize pose estimation and reduce the geometric ambiguities often associated with
relative pair geometry. In this case, a current challenge lies in effectively matching keypoints
extracted by dense matchers, as they typically do not involve feature descriptors. By
employing bundle adjustment, we can create a finer, seamless and geometrically consistent
image mosaic that can be particularly beneficial in scenarios where multiple images of a
vehicle are taken from different viewpoints.

Finally, a neural implicit representation method (NeRFs) [77] can be implemented
for a more holistic high-fidelity 3D representation of the vehicle. These methods surpass
traditional 3D reconstruction techniques in realism and have recently become more efficient
with sparse imagery, thus requiring less extensive viewpoint sampling.

Author Contributions: Conceptualization, A.E.S. and L.G.; methodology, L.G. and A.E.S.; software,
A.E.S. and G.S.; validation, E.P., G.K. and G.S.; formal analysis, A.E.S.; investigation, A.E.S. and L.G.;
resources, A.E.S.; data curation, A.E.S.; writing—original draft preparation, A.E.S.; writing—review
and editing, L.G., G.K., E.P. and G.S.; visualization, A.E.S.; supervision, L.G., E.P. and G.K.; project
administration, L.G.; funding acquisition, A.E.S. and L.G. All authors have read and agreed to the
published version of the manuscript.

Funding: This paper was partially supported by the European Union’s Horizon h2020 research and
innovation program under the grant agreement with ID: 957258, namely the ASSIST-IoT project.

Data Availability Statement: The dataset used for this article is strictly for this research material, and
commercial exploitation is prohibited. All datasets are provided by TwoTronic GmbH and consist of
real images collected for an actual vehicle inspection process.

Conflicts of Interest: The authors declare no conflicts of interest.



Sensors 2024, 24, 1083 19 of 21

References
1. Fareh, R.; Payeur, P.; Nakhaeinia, D.; Macknojia, R.; Chavez-Aragon, A.; Cretu, A.-M.; Laferriere, P.; Laganiere, R.; Toledo, R. An

Integrated Vision-Guided Robotic System for Rapid Vehicle Inspection. In Proceedings of the 2014 IEEE International Systems
Conference Proceedings, Ottawa, ON, Canada, 31 March–3 April 2014; pp. 446–451.

2. Zhou, Q.; Chen, R.; Huang, B.; Liu, C.; Yu, J.; Yu, X. An Automatic Surface Defect Inspection System for Automobiles Using
Machine Vision Methods. Sensors 2019, 19, 644. [CrossRef] [PubMed]

3. Park, S.H.; Tjolleng, A.; Chang, J.; Cha, M.; Park, J.; Jung, K. Detecting and Localizing Dents on Vehicle Bodies Using Region-Based
Convolutional Neural Network. Appl. Sci. 2020, 10, 1250. [CrossRef]

4. Xu, J.; Zhang, J.; Zhang, K.; Liu, T.; Wang, D.; Wang, X. An APF-ACO Algorithm for Automatic Defect Detection on Vehicle Paint.
Multimed. Tools Appl. 2020, 79, 25315–25333. [CrossRef]

5. Chang, F.; Dong, M.; Liu, M.; Wang, L.; Duan, Y. A Lightweight Appearance Quality Assessment System Based on Parallel Deep
Learning for Painted Car Body. IEEE Trans. Instrum. Meas. 2020, 69, 5298–5307. [CrossRef]

6. Barari, A.; Abhilash, N.V.S.; Jain, P.; Sati, A.; Datta, K.S.; Jain, C. Accurate Damage Dimension Estimation in AI Driven Vehicle
Inspection System. In Computer Vision, Pattern Recognition, Image Processing, and Graphics; Babu, R.V., Prasanna, M., Namboodiri,
V.P., Eds.; Communications in Computer and Information Science; Springer: Singapore, 2020; Volume 1249, pp. 154–162.
ISBN 9789811586965.

7. Chakrapani, G.; Sugumaran, V. Transfer Learning Based Fault Diagnosis of Automobile Dry Clutch System. Eng. Appl. Artif.
Intell. 2023, 117, 105522. [CrossRef]

8. Yang, B.; Lei, Y.; Li, X.; Li, N. Targeted Transfer Learning through Distribution Barycenter Medium for Intelligent Fault Diagnosis
of Machines with Data Decentralization. Expert Syst. Appl. 2024, 244, 122997. [CrossRef]

9. Asutkar, S.; Chalke, C.; Shivgan, K.; Tallur, S. TinyML-Enabled Edge Implementation of Transfer Learning Framework for Domain
Generalization in Machine Fault Diagnosis. Expert Syst. Appl. 2023, 213, 119016. [CrossRef]

10. Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [CrossRef]
11. Bay, H.; Tuytelaars, T.; Van Gool, L. SURF: Speeded Up Robust Features. In Computer Vision—ECCV 2006; Leonardis, A., Bischof,

H., Pinz, A., Eds.; Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2006; Volume 3951, pp. 404–417.
ISBN 9783540338321.

12. Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571.

13. DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperPoint: Self-Supervised Interest Point Detection and Description. In Proceedings
of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), Salt Lake City, UT, USA,
18–22 June 2018; pp. 337–349.

14. Sun, J.; Shen, Z.; Wang, Y.; Bao, H.; Zhou, X. LoFTR: Detector-Free Local Feature Matching with Transformers. In Proceedings of
the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp.
8918–8927.

15. Edstedt, J.; Sun, Q.; Bökman, G.; Wadenbäck, M.; Felsberg, M. RoMa: Robust Dense Feature Matching. arXiv 2023,
arXiv:2305.15404.

16. Fischler, M.A.; Bolles, R.C. Random Sample Consensus. Commun. ACM 1981, 24, 381–395. [CrossRef]
17. Barath, D.; Noskova, J.; Ivashechkin, M.; Matas, J. MAGSAC++, a Fast, Reliable and Accurate Robust Estimator. In Proceedings

of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19 June 2020;
pp. 1301–1309.

18. Piedade, V.; Miraldo, P. BANSAC: A Dynamic BAyesian Network for Adaptive SAmple Consensus. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021.

19. Ultralytics YOLOv8. A State of-the-Art Model for Real-Time Object Detection and Image Segmentation. Available online:
https://docs.ultralytics.com/ (accessed on 15 January 2024).

20. Kirillov, A.; Mintun, E.; Ravi, N.; Mao, H.; Rolland, C.; Gustafson, L.; Xiao, T.; Whitehead, S.; Berg, A.C.; Lo, W.-Y.; et al. Segment
Anything. arXiv 2023, arXiv:2304.02643.

21. Lin, K.; Jiang, N.; Cheong, L.-F.; Do, M.; Lu, J. SEAGULL: Seam-Guided Local Alignment for Parallax-Tolerant Image Stitching.
In Computer Vision—ECCV 2016; Leibe, B., Matas, J., Sebe, N., Welling, M., Eds.; Lecture Notes in Computer Science; Springer
International Publishing: Cham, Switzerland, 2016; Volume 9907, pp. 370–385. ISBN 9783319464862.

22. Li, J.; Wang, Z.; Lai, S.; Zhai, Y.; Zhang, M. Parallax-Tolerant Image Stitching Based on Robust Elastic Warping. IEEE Trans.
Multimed. 2018, 20, 1672–1687. [CrossRef]

23. Ruan, J.; Xie, L.; Ruan, Y.; Liu, L.; Chen, Q.; Zhang, Q. Image Stitching Algorithm Based on SURF and Wavelet Transform. In
Proceedings of the 2018 7th International Conference on Digital Home (ICDH), Guilin, China, 30 November–1 December 2018;
pp. 9–13.

24. Wang, Z.; Yang, Z. Review on Image-Stitching Techniques. Multimed. Syst. 2020, 26, 413–430. [CrossRef]
25. Brown, M.; Lowe, D.G. Automatic Panoramic Image Stitching Using Invariant Features. Int. J. Comput. Vis. 2007, 74, 59–73.

[CrossRef]
26. Habte, O.A.; Holm, H.J. Competition Makes Inspectors More Lenient: Evidence from the Motor Vehicle Inspection Market. Rev.

Ind. Organ. 2022, 61, 45–72. [CrossRef]

https://doi.org/10.3390/s19030644
https://www.ncbi.nlm.nih.gov/pubmed/30720719
https://doi.org/10.3390/app10041250
https://doi.org/10.1007/s11042-020-09245-2
https://doi.org/10.1109/TIM.2019.2962565
https://doi.org/10.1016/j.engappai.2022.105522
https://doi.org/10.1016/j.eswa.2023.122997
https://doi.org/10.1016/j.eswa.2022.119016
https://doi.org/10.1023/B:VISI.0000029664.99615.94
https://doi.org/10.1145/358669.358692
https://docs.ultralytics.com/
https://doi.org/10.1109/TMM.2017.2777461
https://doi.org/10.1007/s00530-020-00651-y
https://doi.org/10.1007/s11263-006-0002-3
https://doi.org/10.1007/s11151-022-09864-z


Sensors 2024, 24, 1083 20 of 21

27. Fouad, M.M.; Malawany, K.; Osman, A.G.; Amer, H.M.; Abdulkhalek, A.M.; Eldin, A.B. Automated Vehicle Inspection Model
Using a Deep Learning Approach. J. Ambient. Intell. Hum. Comput. 2023, 14, 13971–13979. [CrossRef]

28. Dickson, P.; Li, J.; Zhu, Z.; Hanson, A.R.; Riseman, E.M.; Sabrin, H.; Schultz, H.; Whitten, G. Mosaic Generation for under Vehicle
Inspection. In Proceedings of the Sixth IEEE Workshop on Applications of Computer Vision, (WACV 2002), Orlando, FL, USA,
3–4 December 2002; pp. 251–256.

29. Anagnostopoulos, C.N.; Giannoukos, I.; Alexandropoulos, T.; Psyllos, A.; Loumos, V.; Kayafas, E. Integrated Vehicle Recognition
and Inspection System to Improve Security in Restricted Access Areas. In Proceedings of the 13th International IEEE Conference
on Intelligent Transportation Systems, Funchal, Portugal, 19–22 September 2010; pp. 1893–1898.

30. Bhamare, M.H.; Khachane, A. Quality Inspection of Tire Using Deep Learning Based Computer Vision. Int. J. Eng. Res. 2019, 8, 6.
31. Qaddour, J.; Siddiqa, S.A. Automatic Damaged Vehicle Estimator Using Enhanced Deep Learning Algorithm. Intell. Syst. Appl.

2023, 18, 200192. [CrossRef]
32. Chang, F.; Liu, M.; Dong, M.; Duan, Y. A Mobile Vision Inspection System for Tiny Defect Detection on Smooth Car-Body Surfaces

Based on Deep Ensemble Learning. Meas. Sci. Technol. 2019, 30, 125905. [CrossRef]
33. Ma, J.; Jiang, X.; Fan, A.; Jiang, J.; Yan, J. Image Matching from Handcrafted to Deep Features: A Survey. Int. J. Comput. Vis. 2021,

129, 23–79. [CrossRef]
34. Jiang, X.; Ma, J.; Xiao, G.; Shao, Z.; Guo, X. A Review of Multimodal Image Matching: Methods and Applications. Inf. Fusion 2021,

73, 22–71. [CrossRef]
35. Dosovitskiy, A.; Beyer, L.; Kolesnikov, A.; Weissenborn, D.; Zhai, X.; Unterthiner, T.; Dehghani, M.; Minderer, M.; Heigold, G.;

Gelly, S.; et al. An Image Is Worth 16 × 16 Words: Transformers for Image Recognition at Scale. arXiv 2020, arXiv:2010.11929.
36. Giang, K.T.; Song, S.; Jo, S. TopicFM: Robust and Interpretable Topic-Assisted Feature Matching. AAAI 2023, 37, 2447–2455.

[CrossRef]
37. Sarlin, P.-E.; DeTone, D.; Malisiewicz, T.; Rabinovich, A. SuperGlue: Learning Feature Matching with Graph Neural Networks. In

Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 13–19
June 2020; pp. 4937–4946.

38. Lindenberger, P.; Sarlin, P.-E.; Pollefeys, M. LightGlue: Local Feature Matching at Light Speed. arXiv 2023, arXiv:2306.13643.
39. Howard, A.; Trulls, E.; Yi, K.M.; Old-Ufo; Dane, S.; Jin, Y. Image Matching Challenge. 2022. Available online: https://kaggle.

com/competitions/image-matching-challenge-2022 (accessed on 15 January 2024).
40. Myatt, D.R.; Torr, P.H.S.; Nasuto, S.J.; Bishop, J.M.; Craddock, R. NAPSAC: High Noise, High Dimensional Robust Estimation—It’s

in the Bag. In Proceedings of the British Machine Vision Conference 2002, Cardiff, UK, 2–5 September 2002; pp. 44.1–44.10.
41. Chum, O.; Matas, J. Matching with PROSAC—Progressive Sample Consensus. In Proceedings of the 2005 IEEE Computer

Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1,
pp. 220–226.

42. Ni, K.; Jin, H.; Dellaert, F. GroupSAC: Efficient Consensus in the Presence of Groupings. In Proceedings of the 2009 IEEE 12th
International Conference on Computer Vision, Kyoto, Japan, 27 September–4 October 2009; pp. 2193–2200.

43. Torr, P.H.S.; Zisserman, A. MLESAC: A New Robust Estimator with Application to Estimating Image Geometry. Comput. Vis.
Image Underst. 2000, 78, 138–156. [CrossRef]

44. Fragoso, V.; Sen, P.; Rodriguez, S.; Turk, M. EVSAC: Accelerating Hypotheses Generation by Modeling Matching Scores with
Extreme Value Theory. In Proceedings of the 2013 IEEE International Conference on Computer Vision, Sydney, Australia, 1–8
December 2013; pp. 2472–2479.

45. Brachmann, E.; Rother, C. Neural-Guided RANSAC: Learning Where to Sample Model Hypotheses. In Proceedings of the
2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Republic of Korea, 27 October–2 November 2019;
pp. 4321–4330.

46. Cavalli, L.; Pollefeys, M.; Barath, D. NeFSAC: Neurally Filtered Minimal Samples. In Computer Vision—ECCV 2022; Avidan, S.,
Brostow, G., Cissé, M., Farinella, G.M., Hassner, T., Eds.; Lecture Notes in Computer Science; Springer: Cham, Switzerland, 2022;
Volume 13692, pp. 351–366. ISBN 9783031198236.

47. Barath, D.; Matas, J. Graph-Cut RANSAC 2017. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 4961–4974.
48. Ester, M.; Kriegel, H.-P.; Xu, X. A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise. In

Proceedings of the KDD’96: Proceedings of the Second International Conference on Knowledge Discovery and Data Mining,
Portland, OR, USA, 2–4 August 1996.

49. Campello, R.J.G.B.; Moulavi, D.; Sander, J. Density-Based Clustering Based on Hierarchical Density Estimates. In Advances in
Knowledge Discovery and Data Mining; Pei, J., Tseng, V.S., Cao, L., Motoda, H., Xu, G., Eds.; Lecture Notes in Computer Science;
Springer: Berlin/Heidelberg, 2013; Volume 7819, pp. 160–172. ISBN 9783642374555.

50. Alexandropoulos, S.-A.N.; Kotsiantis, S.B.; Piperigou, V.E.; Vrahatis, M.N. A New Ensemble Method for Outlier Identification. In
Proceedings of the 2020 10th International Conference on Cloud Computing, Data Science & Engineering (Confluence), Noida,
India, 29–31 January 2020; pp. 769–774.

51. Ouyang, B.; Song, Y.; Li, Y.; Sant, G.; Bauchy, M. EBOD: An Ensemble-Based Outlier Detection Algorithm for Noisy Datasets.
Knowl.-Based Syst. 2021, 231, 107400. [CrossRef]

52. Hodge, V.J. A Survey of Outlier Detection Methodologies. Artif. Intell. Rev. 2024, 22, 85–126. [CrossRef]
53. Rousseeuw, P.J.; Hubert, M. Robust Statistics for Outlier Detection. WIREs Data Min. Knowl. 2011, 1, 73–79. [CrossRef]

https://doi.org/10.1007/s12652-022-04105-3
https://doi.org/10.1016/j.iswa.2023.200192
https://doi.org/10.1088/1361-6501/ab1467
https://doi.org/10.1007/s11263-020-01359-2
https://doi.org/10.1016/j.inffus.2021.02.012
https://doi.org/10.1609/aaai.v37i2.25341
https://kaggle.com/competitions/image-matching-challenge-2022
https://kaggle.com/competitions/image-matching-challenge-2022
https://doi.org/10.1006/cviu.1999.0832
https://doi.org/10.1016/j.knosys.2021.107400
https://doi.org/10.1023/B:AIRE.0000045502.10941.a9
https://doi.org/10.1002/widm.2


Sensors 2024, 24, 1083 21 of 21

54. Singh, K.; Upadhyaya, D.S. Outlier Detection: Applications and Techniques. Int. J. Comput. Sci. Issues 2012, 9, 307.
55. Smiti, A. A Critical Overview of Outlier Detection Methods. Comput. Sci. Rev. 2020, 38, 100306. [CrossRef]
56. Boukerche, A.; Zheng, L.; Alfandi, O. Outlier Detection: Methods, Models, and Classification. ACM Comput. Surv. 2021, 53, 55.

[CrossRef]
57. Chandola, V.; Banerjee, A.; Kumar, V. Anomaly Detection: A Survey. ACM Comput. Surv. 2009, 41, 15. [CrossRef]
58. Wang, G.; Chen, Y. Robust Feature Matching Using Guided Local Outlier Factor. Pattern Recognit. 2021, 117, 107986. [CrossRef]
59. Ren, K.; Ye, Y.; Gu, G.; Chen, Q. Feature Matching Based on Spatial Clustering for Aerial Image Registration with Large View

Differences. Optik 2022, 259, 169033. [CrossRef]
60. Jiang, X.; Ma, J.; Jiang, J.; Guo, X. Robust Feature Matching Using Spatial Clustering with Heavy Outliers. IEEE Trans. Image

Process. 2020, 29, 736–746. [CrossRef] [PubMed]
61. Kinzig, C.; Cortes, I.; Fernandez, C.; Lauer, M. Real-Time Seamless Image Stitching in Autonomous Driving. In Proceedings of the

2022 25th International Conference on Information Fusion (FUSION), Linköping, Sweden, 4–7 July 2022; pp. 1–8.
62. Rizk, M.; Mroue, A.; Farran, M.; Charara, J. Real-Time SLAM Based on Image Stitching for Autonomous Navigation of UAVs

in GNSS-Denied Regions. In Proceedings of the 2020 2nd IEEE International Conference on Artificial Intelligence Circuits and
Systems (AICAS), Genova, Italy, 31 August–2 September 2020; pp. 301–304.

63. Dasgupta, S.; Banerjee, A. An Augmented-Reality-Based Real-Time Panoramic Vision System for Autonomous Navigation. IEEE
Trans. Syst. Man Cybern. A 2006, 36, 154–161. [CrossRef]

64. Zhao, X.; Wang, H.; Wang, Y. Medical Image Seamlessly Stitching by SIFT and GIST. In Proceedings of the 2010 International
Conference on E-Product E-Service and E-Entertainment, Henan, China, 7–9 November 2010; pp. 1–4.

65. Samsudin, S.; Adwan, S.; Arof, H.; Mokhtar, N.; Ibrahim, F. Development of Automated Image Stitching System for Radiographic
Images. J. Digit Imaging 2013, 26, 361–370. [CrossRef]

66. Yan, N.; Mei, Y.; Xu, L.; Yu, H.; Sun, B.; Wang, Z.; Chen, Y. Deep Learning on Image Stitching with Multi-Viewpoint Images: A
Survey. Neural Process Lett. 2023, 55, 3863–3898. [CrossRef]

67. ASSIST-IoT D7.2 Pilot Scenario Implementation. Architecture for Scalable, Self-human-centric, Intelligent, Secure, and Tactile next
generation IoT. Available online: https://assist-iot.eu/wp-content/uploads/2022/05/D7.2_Pilot_Scenario_Implementation-
First_Version.pdf (accessed on 15 January 2024).

68. Truong Giang TopicFM. Robust and Interpretable Topic-Assisted Feature Matching. Available online: https://github.com/
TruongKhang/TopicFM (accessed on 15 January 2024).

69. Edstedt, J. RoMa. Robust Dense Feature Matching. Available online: https://github.com/Parskatt/RoMa (accessed on 15 January
2024).

70. Paul-Eduard, S. LightGlue. Local Feature Matching at Light Speed. Available online: https://github.com/cvg/LightGlue
(accessed on 15 January 2024).

71. Sun, J. LoFTR. Detector-Free Local Feature Matching with Transformers. Available online: https://github.com/zju3dv/LoFTR
(accessed on 15 January 2024).

72. Ivashechkin, M. OpenCV. Open Source Computer Vision Library. Available online: https://github.com/opencv/opencv (accessed
on 15 January 2024).

73. Bougnoux, S. From Projective to Euclidean Space under Any Practical Situation, a Criticism of Self-Calibration. In Proceedings
of the Sixth International Conference on Computer Vision (IEEE Cat. No. 98CH36271), Bombay, India, 4–7 January 1998;
pp. 790–796.

74. Hartley, R.; Zisserman, A. Multiple View Geometry in Computer Vision, 2nd ed.; Cambridge University Press: Cambridge, UK, 2004;
ISBN 9780511187117.

75. Borkman, S.; Crespi, A.; Dhakad, S.; Ganguly, S.; Hogins, J.; Jhang, Y.-C.; Kamalzadeh, M.; Li, B.; Leal, S.; Parisi, P.; et al. Unity
Perception: Generate Synthetic Data for Computer Vision. arXiv 2021, arXiv:2107.04259.

76. Bourou, S.; Maniatis, A.; Kontopoulos, D.; Karkazis, P.A. Smart Detection System of Safety Hazards in Industry 5.0. Telecom 2023,
5, 1–20. [CrossRef]

77. Mildenhall, B.; Srinivasan, P.P.; Tancik, M.; Barron, J.T.; Ramamoorthi, R.; Ng, R. NeRF: Representing Scenes as Neural Radiance
Fields for View Synthesis. Commun. ACM 2022, 65, 99–106. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.cosrev.2020.100306
https://doi.org/10.1145/3381028
https://doi.org/10.1145/1541880.1541882
https://doi.org/10.1016/j.patcog.2021.107986
https://doi.org/10.1016/j.ijleo.2022.169033
https://doi.org/10.1109/TIP.2019.2934572
https://www.ncbi.nlm.nih.gov/pubmed/31449018
https://doi.org/10.1109/TSMCA.2005.859177
https://doi.org/10.1007/s10278-012-9483-5
https://doi.org/10.1007/s11063-023-11226-z
https://assist-iot.eu/wp-content/uploads/2022/05/D7.2_Pilot_Scenario_Implementation-First_Version.pdf
https://assist-iot.eu/wp-content/uploads/2022/05/D7.2_Pilot_Scenario_Implementation-First_Version.pdf
https://github.com/TruongKhang/TopicFM
https://github.com/TruongKhang/TopicFM
https://github.com/Parskatt/RoMa
https://github.com/cvg/LightGlue
https://github.com/zju3dv/LoFTR
https://github.com/opencv/opencv
https://doi.org/10.3390/telecom5010001
https://doi.org/10.1145/3503250

	Introduction 
	Related Work and Background 
	Vehicle Exterior Inspection 
	Image Matching 
	Outlier Detection 
	Image Stitching 

	Datasets 
	Methodology 
	Image Matching 
	Filtering Module 
	Semantically Enriched Features 
	Outlier Detection 
	Geometry Verification 


	Results 
	Conclusions 
	References

