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Abstract: Neurodegenerative diseases (NDs), such as Alzheimer’s, Parkinson’s, amyotrophic lateral
sclerosis, and frontotemporal dementia, among others, are increasingly prevalent in the global
population. The clinical diagnosis of these NDs is based on the detection and characterization of
motor and non-motor symptoms. However, when these diagnoses are made, the subjects are often
in advanced stages where neuromuscular alterations are frequently irreversible. In this context,
we propose a methodology to evaluate the cognitive workload (CWL) of motor tasks involving
decision-making processes. CWL is a concept widely used to address the balance between task
demand and the subject’s available resources to complete that task. In this study, multiple models
for motor planning during a motor decision-making task were developed by recording EEG and
EMG signals in n = 17 healthy volunteers (9 males, 8 females, age 28.66 ± 8.8 years). In the proposed
test, volunteers have to make decisions about which hand should be moved based on the onset of
a visual stimulus. We computed functional connectivity between the cortex and muscles, as well
as among muscles using both corticomuscular and intermuscular coherence. Despite three models
being generated, just one of them had strong performance. The results showed two types of motor
decision-making processes depending on the hand to move. Moreover, the central processing of
decision-making for the left hand movement can be accurately estimated using behavioral measures
such as planning time combined with peripheral recordings like EMG signals. The models provided
in this study could be considered as a methodological foundation to detect neuromuscular alterations
in asymptomatic patients, as well as to monitor the process of a degenerative disease.

Keywords: neurodegenerative diseases; cognitive workload; statistical modeling; motor planning;
decision-making; functional connectivity

1. Introduction

Currently, there is a growing acceptance of the notion that neurodegenerative diseases
(NDs) can be better characterized in terms of the functional and anatomical alterations
of neuromuscular connectivity [1,2]. Numerous studies have conclusively demonstrated
the presence of widespread changes in cerebral connectivity throughout the neurode-
generative processes of diseases such as Alzheimer’s [3], Parkinson’s [4], amyotrophic
lateral sclerosis [5], and frontotemporal dementia [6]. These alterations often give rise
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to motor symptoms, such as tremors, muscular rigidity, bradykinesia, as well as non-
motor symptoms, including cognitive impairment, emotional changes, and sleep disorders,
among others [7–9]. Taking into consideration the neuroanatomical structures that these
diseases can alter, it becomes evident that the execution of motor tasks can also be affected.

In general, the execution of complex motor actions involving processes such as plan-
ning, decision-making, and execution, entails a certain cognitive workload (CWL), engaging
the involvement of multiple brain areas and processes related to the coordinated activa-
tion of muscles. Consequently, alterations in any part of the neuromuscular network that
governs such motor programs can lead to inefficiencies in their execution [10]. In this
context, signals such as the electroencephalogram (EEG) and the electromyogram (EMG)
have been demonstrated to be promising tools for determining and quantifying cortical
and motor functional states associated with motor program execution. Furthermore, they
could potentially serve as tools for the early detection of neurodegenerative diseases [11].

CWL represents the balance between task demand and the subject’s available resources
to complete it [12,13]. Individuals with different experiences and abilities may complete the
same task in diverse manners. Previous research has shown that EEG measurements can be
used to classify the levels of CWL. Recent studies using EEG have introduced quantitative
models for estimating CWL using spectral features [14–17] and brain networks [18–20].
Chikhi et al. [21] have suggested that it is crucial to explore the relation between CWL
and other factors that may potentially influence EEG spectral power and to combine this
measure with other processing methods for the central and peripheral nervous system.
This multidimensional approach will provide a more-comprehensive understanding of the
complex dynamics underlying CWL.

In the field of motor control, there is a growing interest in evaluating performance dur-
ing the motor decision-making (MDM) process [22,23]. In the literature, reaction time (RT)
is a widely used measurement for assessing performance [24–27]. In a previous work [28],
we have shown that MDM during reaction tasks requires a remarkably short time, less than
500 ms. In this context, electrophysiological signal recordings (i.e., EEG, EMG) provide high
temporal resolution, enabling the neural activity to be processed in short time intervals.
Signal coupling is a valid method to assess functional connectivity between the brain and
muscles or between muscles. Measurements such as corticomuscular coherence (CMC) and
intermuscular coherence (IMC) are employed [29]. Recently, coherence analysis using a
new pre-processing computational technique [30] combining time–frequency analysis and
the continuous wavelet transform has been introduced. This method enables processing
data recorded during large joint or multi-joint movements [31–37]. There is still divergence
in the results reported and the consensus regarding the specific frequency bands associated
with motor control [38]. Our study builds upon emerging evidence [31–36,39] suggesting a
relationship between beta-band CMC and the motor command direction from the cortex
to the muscle. It is well known that motor production is a complex process involving
the structural and functional interconnections between several brain regions and the pe-
ripheral system. Previous studies [23,40–43] have suggested that certain aspects of motor
planning take place in the premotor area (PMA) and supplementary motor area (SMA).
These regions are believed to play crucial roles in coordinating and orchestrating motor
programs and actions. Evidence suggests that MDM can be assessed by monitoring the
frontal brain cortex. However, the implicated networks remain unclear [44]. Despite other
studies [34,37,45–47] having previously employed functional connectivity states (i.e., CMC)
to identify differences in motor control between healthy subjects and patients with mo-
tor disorders, this study introduces an approach for monitoring functional connectivity
changes in the beta band to analyze the relationship between MDM and CWL. In order to
explore this relationship, we designed an experimental protocol based on a go/no-go task.

In this study, we assessed MDM performance and functional connectivity to develop
models using multiple linear regression. Likewise, to address CWL in central processing,
the performance of the models was compared during a motor reaction task. Although this
study was applied to healthy subjects, it is intended that this modeling methodology be
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applied to subjects with ND in order to characterize, monitor, and predict their neurode-
generative processes.

2. Materials and Methods
2.1. Participants

Seventeen healthy volunteers (nine males, eight females, age 28.66 ± 8.8 years) par-
ticipated in a motor reaction study using visual stimulus. The study was conducted by
following the ethical guidelines established in the Declaration of Helsinki and approved
by the ethics committee of the Miguel Hernandez University from Elche, Spain (Refer-
ence: IB.EFJ.04.21). Subjects were previously instructed about the tasks and gave written
informed consent. All participants self-reported as right-handed, with normal or corrected-
to-normal vision, and declared no history of neurological or locomotor disorders.

2.2. Experimental Design

The experiment consisted of sitting the subjects in front of a table with their hands
located in a predefined position (Figure 1A). On the table and in front of the subject, a device
was placed (reactimeter). The reactimeter emits programmed lights following a predefined
protocol. The device emits one-color light (red or green) and includes a motion sensor.
When the subject places the hand on the reactimeter, the light turns off; then, it is possible
to measure the time lapse between the light being turned on and turned off. The subject
was instructed to associate the green color stimulus with the right hand movement and the
red color with the left hand movement. The task consisted of randomly emitting green or
red light, so the subject had to make a decision before moving any hand. Twenty repetitions
were performed in this condition. The minimum time between repetitions had to be 6 s;
after that, the stimulus was spontaneously delivered. Participants were unaware of this
information and were warned to remain attentive. In order to avoid artifacts in EEG
recordings due to hand movements, the device was located 30 cm from the subject’s hands.
During the test, the participant should keep the gaze fixed on the device.

Figure 1. (A) Experimental setup. (B) Variables’ interaction for modeling. (C) Sixty-four-channel EEG
configuration system; electrodes in blue represent the premotor area.

2.3. Instrumentation

A linear position transducer with a 1 kHz sampling rate (WinLaborat, Buenos Aires,
Argentina), was attached to both forearms using adjustable tapes in order to detect the
hands’ movement. EMG surface recordings were acquired by an RHA2000-series (Intan,
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Los Angeles, CA, USA) acquisition system (16-channel amplifier and 25 kHz sampling rate).
Muscle activity data were collected from both anterior deltoid muscles using Ag/AgCl
button electrodes (Dormo, Barcelona, Spain); skin surface preparation and electrodes’
placement were performed following the SENIAM guidelines. To measure the RT, we
used a system designed and manufactured in our laboratory (LINTEC, San Miguel de
Tucuman, Argentina). It consists of a control center programmed for eliciting the signal
via WiFi to the device to turn on/off the light. We used the SynAmps RT system, a 1 kHz
sampling rate, and a 64-channel Quik-Cap helmet (Compumedics Neuroscan, Charlotte,
NC, USA) for cortical activity recordings. EEG data were acquired with software Curry
v7. Conductive gel was applied to the helmet electrodes, ensuring an impedance <25 kΩ.
An external synchronization system (trigger) was activated by the operator before the test
began. The trigger was configured to simultaneously send a signal to both the Intan and
SynAmps systems. Both recordings were acquired separately, but synchronized later by
signal pre-processing. The position transducer and the reactimeter data were acquired by
using Intan board’s auxiliary channels.

2.4. Signal Pre-Processing

The analysis was performed offline with the Matlab 2020b software. The motion
capture signal was analyzed using classical kinematics formulations for obtaining dis-
placement data. The reactimeter data were kept as binary on–off data. Electromyography
recordings were resampled at 1 kHz. We applied a 5th-order Butterworth filter (band-pass
13–100 Hz, band-stop 49–51 Hz). Electroencephalography signals were pre-processed in
two stages. In the first stage, the EEGLAB toolbox [48] was used. The channels were
re-referenced to the average, and an FIR high-pass 4 Hz filter was applied. Next, a visual
inspection using the ‘scroll data’ and ‘channel properties’ functions corroborated no big
artifacts coming from non-typical biological sources. However, as Klug and Gramann [49]
recommended, we avoided eliminating channels or segments of the recording that contain
artifacts of apparent biological origin (muscle contractions, eye-blinking, eye movement)
before Independent Component Analysis (ICA). The next step was to perform ICA to
identify signal components that could be covering the cortical signal. The RunICA algo-
rithm was applied on 64 channels. Next, the ICLabel algorithm was applied to classify
Independent Components (ICs). ICs identified as ‘muscle’, ‘eye’, ‘bad channel’, and ‘heart’
with a probability higher than 0.6 were labeled. After a visual inspection of each IC, some
of them were discarded. We discarded 19.97 ± 5.72 from 64 ICs per series. Finally, the signal
was reconstructed without the discarded components. The second stage was performed in
Matlab, and a fifth-order Butterworth filter (band-pass 13–100 Hz) was applied.

2.5. Motor Planning Phase Identification

Specific events during the task (i.e., light turn-on, muscle contraction onset) were used
to determine the onset and finalization of the motor decision-making phase. The time
interval between the light turning on and the muscle contraction onset was named the
‘motor planning phase’ (PLAN). PLAN represents the time interval when the subject
makes a decision about which hand should move and planning its movement. Visual
inspection was conducted to discard execution mistakes, and 3% of the repetitions of the
right hand and 3.1% of the left hand were discarded. Motor planning phase durations
(TimePLAN) were calculated for the remaining repetitions. A more-detailed explanation of
event detection can be seen in the Supplementary Material.

2.6. Functional Connectivity Computation

The procedure to compute CMC and IMC is based on the method of Bigot et al. [30].
We made minor variations in order to analyze events in a fixed time window. This pro-
cedure can be summarized in the next steps: (1) select two time series (i.e., EEG-EMG
or EMG-EMG); (2) select the segment to analyze (we used a 1 s window prior to muscle
contraction onset); (3) apply the continuous wavelet transform of both segmented signals;
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(4) compute the ‘Mean Cross-Spectrum’ between each signal pair, and compute the ‘Mean
Auto-Spectrum’ for both signals separately; (5) compute the ‘Magnitude-Squared Coher-
ence’ only where the ‘Mean Cross-Spectrum’ was statistically significant; (6) compute the
CMC as the single value (mean) within each window of interest. The CMC was computed
between an EMG signal from the anterior deltoid muscle of the moved limb and 64 EEG
channels (Figure 1C). The IMC was computed between EMG signals from both anterior
deltoid muscles. For computing the CMC and IMC in the PLAN phase, we used a 1 s
window prior to muscle contraction onset. The limits in the frequency for the window were
established between 15 and 30 Hz, corresponding to the beta-band. For calculating the
connectivity change (CC) within the same fixed time window, we divided this 1 s window
into two 500 ms windows. Detailed explanations with a step-by-step graphical example
can be seen in the Supplementary Material.

We calculated the CC for the CMC as indicated by Equation (1); it was also applied
to the CC for the IMC (Equation (2)). According to Equations (1) and (2), if the change
is positive, it means ‘synchronization’, and if the change is negative, ‘desynchronization’.
Six EEG channels were selected to represent the PMA: F1, F3, F5, FC1, FC3, and FC5
(left hemisphere) and F2, F4, F6, FC2, FC4, and FC6 (right hemisphere). The CCCMC
data extracted from these six channels (highlighted in blue in Figure 1C) for each brain
hemisphere were pooled to obtain a single value as the mean.

CCCMC =
CMCfinal − CMCinitial

CMCinitial
× 100 (1)

CCIMC =
IMCfinal − IMCinitial

IMCinitial
× 100 (2)

2.7. Statistical Procedure for Modeling and Testing

The normal distribution of the data was verified through the Shapiro–Wilk test only
for the variable TimePLAN . The results are presented as the means and standard devia-
tions. To test the hypothesis, we performed a t-test for paired samples. For the variables
CCCMC and CCIMC, a normal distribution was not verified. The results are presented
as the medians. We used the non-parametric Wilcoxon one-tailed Signed-Rank test for
paired comparisons. For the models’ formulation, we assigned CCCMC as the dependent
variable (y) and TimePLAN (x1) and CCIMC (x2) as the independent variables, as indicated
by Equation (3).

y = a1x1 + a2x2 + c (3)

where a1 and a2 are the coefficients for independent variables x1, x2; c is the intercept. Three
models were calculated as follows: MRIGHT includes the data associated with the right
hand election. MLEFT includes the data associated with the left hand election. MBILATERAL
includes all the data. For each model, the same procedure was applied using Matlab 2020b,
depicted in Figure 2.

The variables of interest were randomly resampled using the bootstrap function
within the 95% confidence interval. Resampling was performed, obtaining 1000 samples
excluding extreme outlier values. Subsequently, a randomized partition algorithm was
applied to create subgroups using the cvpartition function with the following parame-
ters: nObservations = 1000, ‘kFold’, nFolds = 100. cvpartition is a Matlab built-in function
to define training and test sets for validating a statistical model using cross-validation.
One hundred partitions were obtained for each model. The models were trained using
cross-validation (crossval function) with the corresponding k-folds. The model with the
lowest mean-squared error (MSE) was selected as the most-appropriate in each case. Fi-
nally, to evaluate and compare the performance of the selected models, fitting descriptive
measures were used: the determination coefficient (R2) and the standard error of estimation
(SEE). R2 represents the proportion of the dependent variables’ variability explained by
the model, and SEE represents the variability of the model’s prediction errors. Therefore,
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R2 with a high value and SEE with a low value indicate that the model is able to make
accurate predictions.

Figure 2. Modeling procedure flowchart. In the upper part, each step of the modeling procedure. In
the lower part, three-dimensional representations of the resampled data: for the bilateral model (black
dots), for the right model (green dots), for the left model (red dots). The colored planes represent the
developed models.

3. Results

The results for connectivity changes (CCCMC, CCIMC) and planning time (TimePLAN)
are presented in Table 1. CCCMC represents functional connectivity changes in central
nervous processing. CCIMC represents functional connectivity changes in the peripheral
system. TimePLAN represents performance in motor decision-making.

Table 1. Experimental group data. TimePLAN values are presented as the means. CCIMC and CCCMC

values are presented as the medians.

Right Hand Left Hand

Subject TimePLAN (s) CCIMC (-) CCCMC (-) TimePLAN (s) CCIMC (-) CCCMC (-)

P1 0.298 −0.186 0.451 0.244 −0.424 −0.402
P2 0.225 1.057 0.739 0.198 1.215 1.266
P3 0.271 −0.005 0.145 0.188 −0.132 0.023
P5 0.257 −0.317 0.969 0.154 0.057 0.315
P6 0.348 −0.668 −0.184 0.229 −0.508 −0.171
P7 0.148 0.019 −0.318 0.213 −0.132 0.022
P8 0.304 −0.387 −0.225 0.189 0.623 0.919
P9 0.245 0.167 −0.079 0.260 −0.570 0.155

P10 0.236 0.106 0.285 0.251 −0.052 0.054
P11 0.240 −0.628 0.330 0.165 −0.249 0.134
P13 0.319 0.168 0.040 0.302 −0.585 −0.061
P14 0.231 −0.070 0.213 0.347 0.653 0.957
P15 0.372 0.523 −0.078 0.278 −0.660 −0.061
P16 0.316 −0.174 −0.252 0.308 −0.662 −0.147
P17 0.224 −0.030 1.069 0.199 0.370 −0.047
P18 0.273 1.255 0.192 0.192 −0.154 −0.001
P19 0.266 1.919 −0.032 0.183 1.174 0.201

Mean 0.269 - - 0.229 - -
Median - −0.005 0.145 - −0.132 0.023
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Firstly, we conducted a temporal analysis. TimePLAN corresponding to the right hand
movement was significantly higher than the left hand (p < 0.05). Secondly, comparisons
for connectivity measures between hands were conducted. CCCMC and CCIMC did not
show significant differences. The distribution of the original and resampled data using
the bootstrap procedure in the three dimensions of the models is presented in Figure 3.
To better visualize the trends in the data distribution, two resamplings (×100 and ×1000)
are depicted.

Figure 3. Distribution of resampled data using the bootstrap procedure. The original data are
represented by circles (o), while the resampled data are represented by dots (·). In the left column,
×100 resampling; in the right column, ×1000 resampling. In the top row, data selection for the
bilateral model (in black); in the middle row, data for the right hand model (in green); in the bottom
row, data for the left hand model (in red).

Figure 4 depicts the trend of the resampled data distribution in the connectivity vari-
ables. CCCMC data predominantly assumed positive values (synchronization), in line
with our previous expectations. Additionally, it was observed that the CCIMC data pre-
dominantly assumed negative values (desynchronization), since a differentiation between
muscles was expected based on the exclusive selection of one muscle over the other during
decision-making. The data did not follow these patterns, which was attributed to the
heterogeneity of the original samples. Overall, for MBILATERAL, 95% of the data remained
within the expected quadrant, while for MRIGHT , 80%, and for MLEFT , 85%.
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The results of the three models are presented by Equations (4)–(6), while Figure 5
visually illustrates the performance of each model.

MBILATERAL : y = −3.2105x1 + 0.075775x2 + 0.86281, (4)

MRIGHT : y = −2.657x1 − 0.012588x2 + 0.91984, (5)

MLEFT : y = 0.9242x1 + 0.73318x2 + 0.02245, (6)

where y is the dependent variable CCCMC; x1 is the independent variable TimePLAN ; x2 is
the independent variable CCIMC.

Figure 4. Distribution of resampled data according to the connectivity variables. The shaded rectangle
(in yellow) represents the quadrant formed by positive values for the corticomuscular connectivity
variable (CCCMC) and negative values for the intermuscular connectivity variable (CCIMC). In the
left figure, resampled data for the bilateral model are presented (in black), with 95% of the data in
the expected quadrant. In the middle figure, resampled data for the right hand model are shown (in
green), with 80% of the data in the expected quadrant. In the right figure, resampled data for the left
hand model are displayed (in red), with 85% of the data in the expected quadrant.

The descriptive measures shown in Figure 5 revealed that MBILATERAL showed
R2 = 0.49, indicating that the model was able to explain 49% of the observed variability in
the dependent variable, leaving 51% of unexplained variability, which may be attributed
to other variables not included in the analysis or random factors. MLEFT , with R2 = 0.74,
demonstrated a high percentage of explained variability and the lowest SEE, while MRIGHT ,
with R2 = 0.11, indicated that the model poorly explained the variability based on the se-
lected independent variables, consequently showing the highest SEE. Lastly, based on
the high accuracy of MLEFT , Pearson correlation coefficients were computed between
CCCMC and CCIMC (r = 0.84, p < 0.01), between CCCMC and TimePLAN (r = −0.41, p < 0.05),
and between CCIMC and TimePLAN (r = −0.61, p < 0.01). Finally, Figure 6 summarizes the
performance of MLEFT .
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Figure 5. Scatter plot of model fit. The X-axis represents the values of the original data for CCCMC;
the Y-axis represents the model outputs. In the left figure, the fit distribution for MBILATERAL is
depicted in black; in the middle figure, MRIGHT is represented in green; in the right figure, MLEFT is
shown in red. The solid lines (-) represent the fitted line; dashed and dotted lines (-·-) represent the
limits of the standard error of estimation (SEE).

Figure 6. Graphical representation of the left hand motor planning model. (A) The right (contralateral)
premotor area synchronizes with the left anterior deltoid muscle (agonist muscle); both anterior
deltoid muscles desynchronize between them; the motor planning time is shorter for the left hand
compared to the right hand. (B) Strong correlation (0.84) between connectivity changes. Moderate
and inverse correlation between corticomuscular synchronization (−0.41) and planning time, as well
as between intermuscular desynchronization (−0.61) and planning time. (C) Three-dimensional
representation of the fitting plane of the left hand model (MLEFT), showing the distribution trend
and high predictive capacity. * p < 0.01 ** p < 0.05.

4. Discussion

In this study, three models were developed to estimate the corticomuscular connectiv-
ity change in the contralateral premotor area (CCCMC) using two independent variables:
planning time (TimePLAN) and intermuscular connectivity change (CCIMC). Dissimilar re-
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sults obtained from the models suggest that the central processing for both hands involves
different resources. Consequently, the cognitive workload (CWL) for decision-making
between two hands has shown disparities.

According to Cohen’s classification [50] in relation to the determination coefficient,
the results showed that the MBILATERAL model had a moderate predictive capacity (R2 = 0.49,
SEE = 0.089). This indicates that MBILATERAL is non-specific, as nearly half of the variability in
the model output remained unexplained. Currently, some postulates [51–53] about hemisphere
specializations are discussed in the literature. A recent study [52] has shown activation on the
left hemisphere (parietal and frontal regions) during movements of either the left or the right
hand. In contrast, the activation of the same regions in the right hemisphere was limited to
movements with the left hand (contralateral). This suggests that the left hemisphere performs
some extra work. In the case that the left hand movement has to be suppressed, the activity
of both hemispheres will be disrupted. In addition, the processing time required for both
hemispheres’ activation increases. This is not the case for right hand movement, in which
only one hemisphere is activated [52]. These previous studies based their conclusions about
hand performance on RT measures. In our previous work [28], we used the planning time
and showed the opposite result. The planning process for the left hand movement required
significantly less time than the right hand in right-handed subjects, as we have shown. This
increased planning time for right hand movement reveals that the reactive inhibition of the
left hand (resulting in a right hand selection) requires a longer processing time compared to
the opposite decision (left hand selection). The shorter processing time for the left hand could
indicate a higher efficiency of the nervous system in motor planning, as reflected in the high
precision of the MLEFT (R2 = 0.74, SEE = 0.057) compared to the low predictive capacity of
MRIGHT (R2 = 0.11, SEE = 0.102). Supporting this idea, an inversely proportional relationship
was obtained between TimePLAN and CCCMC (r =−0.41) and CCIMC (r =−0.61). This evidence
suggests that the relationship between time and connectivity changes could be interpreted as
an efficiency measure. This issue will be further analyzed in the following paragraphs.

According to MLEFT , there was a high correlation (r = 0.84) between these connectivity
variables (CCCMC and CCIMC). To interpret this correlation, it is necessary to consider
the data distribution presented in Figure 4 (right panel). When brain resources were
less required (CCCMC tends to zero), there was greater intermuscular desynchronization
(i.e., increased intermuscular differentiation). In other words, if cerebral processing is low,
intermuscular differentiation is high. Conversely, when central processing is high, muscular
desynchronization tends to zero. In summary, MLEFT showed that lower corticomuscular
synchronization corresponds to higher intermuscular desynchronization, shorter plan-
ning time, and greater efficiency in the whole processing. In the case of the right hand,
MRIGHT did not provide a conclusive explanation for the same relation between variables,
although the same pattern was observed in the descriptive measures presented in Table 1.
When higher brain resources were required (median synchronization of 14.5%), the inter-
muscular differentiation decreased (median desynchronization of 0.5%). In consequence,
a longer TimePLAN for the right hand was obtained in comparison to the left hand (p < 0.05).
This result suggests a lower efficiency for right hand processing. For these reasons, despite
the motor task being similar, motor planning processing for both hands was different,
and a higher CWL for the right hand was obtained. This difference in processing is a
central issue when assessing motor-related actions in healthy subjects. However, these
results should also be considered when designing unilateral (or bilateral) motor tasks for
evaluating patients affected by neurodegenerative diseases with motor impairments.

The use of connectivity measures in assessing the efficiency of motor decision-making
tasks represents a novel approach in the field. While previous studies have predominantly
relied on measures such as reaction time (RT) and other behavioral indicators, using
planning times could represent a significant breakthrough for addressing central processes.
On the other hand, it has been suggested that corticomuscular connectivity states can reveal
differences in motor control efficiency in individuals with neuromuscular impairments such
as stroke [34,45,46] or spinal cord injuries [47]. In this sense, our exploration of connectivity
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changes provides valuable insights into the underlying neural processes during motor
planning in healthy subjects. Finally, the proposed modeling methodology and the findings
described in this study could be employed for both early detection and characterization
of ND (i.e., observing differences compared to healthy subjects) and for monitoring and
tracking their progression (i.e., analyzing the dynamics of the models).

5. Conclusions

In this study, we demonstrated that it is possible to model motor tasks involving
decision-making processes through the direct relationship between neuromuscular con-
nectivity changes. In healthy subjects, we have presented evidence suggesting that motor
planning for both hands involves different central processing, resulting in distinct motor
decision-making performances. Despite the task demand being equal for both hands due
to identical motor tasks, the cognitive workload was higher for right hand movement,
requiring different brain resources compared to the left hand. These results allowed us
to hypothesize that modeling the corticomuscular dynamics involved in decision-making
processes, which can be altered by neurodegenerative disorders in preclinical stages, may
serve as the methodological foundation for diagnosing and monitoring such disorders.
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CC connectivity change
CMC corticomuscular coherence
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ICA Independent Component Analysis
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ND neurodegenerative disease
PLAN motor planning phase
PMA premotor area
RT reaction time
SMA supplementary motor area
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