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Abstract: This paper introduces an FPGA-based implementation of a smart switch designed to
avoid inrush currents occurring during the connection of single-phase transformers utilized in grid-
connected photovoltaic (PV) systems. The magnitude of inrush currents is notably impacted by the
residual flux within the transformer core and the precise moment of energization relative to the wave
cycle. Alternative methods frequently hinge on intricate procedures to estimate residual flux. This
challenge is adeptly circumvented by the innovative smart control system proposed herein, rendering
it a cost-effective solution for grid-connected PV systems. The proposed solution for mitigating
inrush current remains effective, even in the face of challenges with current and voltage sensors. This
resilience arises from the system’s ability to learn and adapt by leveraging information acquired from
the network.

Keywords: grid-connected PV systems; transformer; saturation; smart switch; FPGA; inrush current

1. Introduction

Field Programmable Gate Arrays (FPGAs) are a top pick for industrial, power, and
Internet of Things (IoT) applications, thanks to their robust processors, evolving capacity,
and cost-effective reconfigurability. Their unique blend of reconfigurability and parallel
processing makes them more valuable than microcontrollers, enabling the development of
highly efficient hardware architectures with exceptional energy efficiency [1–4].

Various references discuss FPGA applications in power systems, with highlighted
examples [5–9]. In [5], an FPGA-based smart energy meter enables remote monitoring
of power systems, adapting to different conditions, including bidirectional power flow
in distributed generation with photovoltaic systems. The implementation in an FPGA of
advanced signal processing techniques, such as orthogonal empirical mode decomposition,
is proposed in [6] to identify power quality disturbances (PQDs) in real time. In [7],
PQD detection relies on the Hilbert–Huang transform on an FPGA. For the same purpose
(detect and classify PQD), Ref. [8] presents an FPGA-based smart sensor that integrates
higher-order statistic processing cores, while Ref. [9] proposes a portable FPGA-based
system that achieves PQD recognition and classification through discrete wavelet transform,
mathematical morphology, decomposition of singular values, and statistical analysis. On
the other hand, Ref. [10] details an FPGA implementation of a power quality analyzer.

The FPGA implementation of a methodology based on statistical time features and
support vector machines (SVMs) for the diagnosis of short-circuited turn faults is presented
in [11]. For the diagnosis methodology, 19 indicators from the transformer vibration signals
are computed; then, the most discriminant features are selected. Finally, a support vector
machine classifier is employed to achieve the diagnosis automatically.

Other papers focus on electrical controls [12–14]. Ref. [12] uses an FPGA in the loop for
sliding mode control in wind energy’s Doubly Fed Induction Generator (DFIG) modeling.
In [13], FPGA enables finite state-predictive direct current control (FS-PDCC) for power
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converters. Ref. [14] introduces an FPGA-based Grid Friendly Appliance (GFA) controller
for grid frequency monitoring and load disconnection.

In [15,16], novel approaches for the real-time simulation of power converters in FPGAs
are proposed, while Ref. [17] introduces a sub-microsecond-level real-time simulation
method for microgrids. The case studies demonstrate that the proposed simulation methods
consume significantly fewer FPGA resources than traditional approaches.

Researchers have optimized overcurrent relays using FPGA technology for high-speed
protective relays in smart grids [18–21]. In [18], an ANN-based flexible over-current relay
on an FPGA achieves an ultra-low processing time and adaptive remote settings. Ref. [19]
details an FPGA-based overcurrent relay with concurrent sense-process-communicate
cycles and an FFT filter for precise current component isolation. Ref. [20] introduces a
real-time, low-latency hardware digital distance protective relay on FPGA for efficient
data throughput in high-frequency sampled data. Ref. [21] implements an adaptive Mho
characteristic on an FPGA board, using phasor estimation errors for swift computational
speeds and integrating Ethernet-based protocols to validate relay performance in digital
substation environments.

DC grids are gaining popularity for their efficiency, especially with DC-based re-
newables like solar and wind power. This is useful for applications like electric vehicles
and DC electric railways as it eliminates the need for an AC conversion, improving the
overall efficiency [22,23]. In [22], a DC circuit breaker for high-voltage DC transmission
systems reduces surge voltage during current clearing using semiconductor devices and a
freewheeling diode. FPGA-based controllers are used for converters and DC breakers. In
low-voltage DC microgrids during short-circuit faults, a solid-state circuit breaker’s safety
depends on effective snubber overvoltage suppression. Reference [23] introduces a specific
snubber design method using FPGA-based controllers for three tested snubbers.

FPGA controllers play a crucial role in PV systems due to their adaptability, robust
processing power, parallel processing capabilities, and flexibility to accommodate changing
standards [24–27]. In [24], a DSTATCOM model with an ANN controller addresses power
quality issues related to current by implementing an online learning-based algorithm
suitable for balanced non-linear loads. Validation is conducted through experiments using
an FPGA controller. In [25], power-sharing control (PSC) for a solar PV system integrated
into a low-voltage DC nano-grid is implemented on an FPGA. Ref. [26] introduces a
reconfigurable FPGA implementation for Maximum Power Point Tracking (MPPT) in PV
systems, utilizing a fuzzy logic-based controller effective under variable irradiance and
temperature conditions. Ref. [27] presents an FPGA-based MPPT implementation using a
dual Kalman filter for real-time estimation of the settling time of the entire system.

Energizing transformers can induce a significant non-sinusoidal inrush current, es-
pecially with residual flux, leading to mechanical stress, relay tripping, and voltage sags
affecting power quality [28–31]. Resonance risks, causing temporary overvoltages (TOVs)
and potential transformer winding failures, are explored in [32–34]. Ref. [28] introduces
methods for evaluating and mitigating voltage sags during energization. Refs. [29,30]
investigate the impact of inrush currents on transformer coil mechanical forces using FEM
models. In [31], probabilistic distance measure (PDM) is explored to prevent damages
from differential protection failures in distinguishing inrush from internal faults. Ref. [32]
examines uncertainties affecting resonant overvoltages during transformer energization.
Ref. [33] studies switching transient impacts on arresters, proposing preventive measures.
Ref. [34] offers analysis tools, using traveling window DFT, to assess the likelihood of
overvoltages from inrush currents during offshore transformer startups connected by
sub-sea cables.

In [35–37], several methodologies are proposed to identify inrush currents in protection
schemes and distinguish them from fault currents.

Addressing challenges during energization is crucial for system reliability and equip-
ment protection [38–40]. Ref. [38] introduces a simplified phase-controlled switching
strategy to reduce high inrush currents in Y-ungrounded transformers. Ref. [39] analyzes
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inrush current suppression in nuclear plant transformers during no-load closing using a
pre-magnetization technique with a small transformer (Pre-T) in series, without the need for
closing angle control. Ref. [40] limits inrush current during black starts of medium voltage
distribution networks (MV-DNs) through battery energy storage system (BESS) control.

Renewable energy integration, particularly PV transformer energization, can impact
power system stability and quality. In [41], the influence of PV transformer energization is
analyzed, exploring issues like harmonic resonance and voltage distortion.

In [42–45], the challenges of inrush currents during PV transformer energization are
discussed. Ref. [42] suggests peak instant switching and high-frequency operation to
stabilize transformer-integrated PV systems. Ref. [43] proposes a method to minimize
inrush current by optimally selecting the wave-energizing instant. Ref. [44] introduces
an approach to eliminating magnetization inrush currents and voltage sags in step-up
transformers for renewables. Ref. [45] focuses on power converter control, using state
feedback and adjusting magnetic flux with an FPGA-generated gate signal to prevent
issues during grid fault clearance.

This research introduces a smart switch implemented with FPGA technology to mit-
igate inrush currents when connecting single-phase transformers in grid-connected PV
systems. Unlike methods requiring complex procedures for residual flux estimation, the
proposed smart system effectively overcomes this challenge. It provides a robust and adap-
tive solution, addressing potential problems with current and voltage sensors by taking
advantage of their learning and adaptive capabilities based on the acquired information.

Unlike other existing methodologies, which need to acquire voltage and current
signals from the transformer continuously, our system requires these measurements only
once. Building upon these initial measurements, it calculates the de-energization point-
on-wave and the energization point-on-wave, which remain constant through subsequent
transformer connections and disconnections. Subsequently, only monitoring the grid
voltage is necessary. The inclusion of additional sensors is justified because, while the
initial measurements are needed only once, the system becomes more robust by adapting to
changes in conditions, such as transformer aging or switch deterioration. In such situations,
the de-energization point-on-wave and the energization point-on-wave may experience
variations, demonstrating the proposed system’s flexibility and adaptability.

2. Theoretical Background

The basic configuration of a single-phase grid-tied PV system incorporating a trans-
former is shown in Figure 1. The system comprises a solar panel array, a DC–DC converter,
a single-phase inverter, an LCL filter, a saturable transformer, and a switch.
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Figure 1. Basic setup of a one-phase grid-tied PV system.

The proposal involves disconnecting the PV system first, then disconnecting the
transformer from the grid. Doing it the other way around (first disconnecting the grid and
then the PV) implies having a lower residual flux (since the transformer is being fed from
the low voltage side). In other words, the residual flux also depends on the supply voltage,
and the converter topology will affect the voltage drop across the converter. As voltages
are measured, if the reverse disconnection process is performed, the residual flux will be
determined by the measured voltage, not by the converter topology.

Notably, connecting the transformer to the distribution grid or recovering from faults
may result in elevated inrush currents, particularly when the ferromagnetic core is driven
into saturation.
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Inrush Current and Residual Flux

Power transformers are designed to operate slightly above the knee point of the
saturation (or anhysteretic) curve during steady-state conditions. A slight increase in
flux beyond this point results in a noticeable rise in current (known as inrush current),
as illustrated in Figure 2a. When a transformer is switched off (de-energized), the iron
core of the transformer may retain residual flux due to hysteresis. After being switched on
(energized), the maximum theoretical flux peak can reach twice the rated flux peak plus
the residual flux (ϕR). The identification of the optimal point-on-wave for energization,
a critical factor in mitigating inrush current, depends on the magnitude of residual flux.
These two factors, energization point-on-wave and residual flux, are the only controllable
variables influencing inrush current.
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Figure 2. (a) Inrush current generation and (b) typical inrush current waveform.

The iron losses in a transformer core can be classified into three categories: hysteresis
losses, classical eddy-current losses, and excess or anomalous losses [46,47]. The hysteresis
losses are considered static as their value per cycle is independent of the operating frequency.
These losses are proportional to the enclosed area within the static hysteresis loop (depicted
by the red line in Figure 3), with evolution contingent on past or historical values. In
contrast, eddy losses are considered dynamic as their value per cycle exhibits frequency
dependence [48,49].

Static hysteresis is responsible for the residual flux. Since classical eddy losses and
excess losses have no impact on residual flux, both elements are collectively categorized as
eddy losses in this study. Consequently, the no-load current, denoted as i, is the sum of the
current attributed to hysteresis losses (iH) and the current arising from eddy losses (iE), as
illustrated in Figure 3. This yields two distinct loops:

- A static hysteresis loop (ϕ–iH, red line in Figure 3). This loop is a result of core
magnetization and hysteresis losses and cannot be directly measured through the
classical no-load test.

- A dynamic loop (ϕ–i, blue line in Figure 3). This loop is directly measurable and
comprises the static hysteresis loop plus the eddy losses.
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The trajectories during the de-energization transient play a crucial role in minimizing
the inrush current, given their dependence on residual flux. Figure 4 illustrates two
representative trajectories of the de-energization transient.
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tive residual fluxes.

When the switch aperture initiates between points 1 and 3 on Figure 3, for example,
at the upper blue circle in Figure 4, the flux trajectory commences along the major loop.
This trajectory continues until the residual flux consistently attains the maximum possible
residual flux, denoted as ϕRM. Conversely, if the aperture initiates at the lower blue circle,
marked at a distinct de-energization point-on-wave, the flux follows an asymmetric minor
loop trajectory. This trajectory persists until the residual flux reaches ϕR, a value smaller
than ϕRM.

Determining the optimal moment to switch on the PV installation, a critical consid-
eration for mitigating inrush current, is contingent upon the timing of the PV installation
switch-off. This is because it influences the residual flux condition. Consequently, both
switch-on and switch-off times are intended to be managed by the smart switch.

3. Optimizing Inrush Current Mitigation through Smart Switching

The fundamental approach to eliminating inrush currents is to ensure that the prospec-
tive flux at energization matches the residual flux. Thus, the ideal energization point-on-
wave occurs when the prospective flux equals the residual flux, as illustrated in Figure 5.
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As it has been explained, the residual flux is solely determined by the de-energization trajec-
tory, which, in turn, is influenced only by the de-energization point-on-wave. Therefore, the
magnitude of the inrush current can be optimized by controlling both the de-energization
and energization points-on-wave.
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The proposed strategy is based on that previously presented in [50] and comprises two
simple steps. Initially, it involves ensuring that the residual flux at de-energization attains
its maximum value (ϕRM). Subsequently, the second step entails energizing the transformer
at the optimum point-on-wave for ϕRM. The comprehensive strategy is summarized
in Figure 5.

To enforce ϕRM, the de-energization point-on-wave αD must fall between 90◦ and αRM.
The angle αRM can be calculated using Equation (1), where ϕPEAK represents the maximum
rated flux and U1 is the RMS primary transformer voltage.

αRM = 180◦ − asin
(

ϕRM
ϕPEAK

)
≈ 180◦ − asin

(
ωϕRM√

2U1

)
(1)

The sudden interruption of current in a transformer with an IGBT breaker can in-
duce significant overvoltages. To prevent this, de-energization is timed when the current
approaches zero. This de-energization point-on-wave, denoted as α0, can be determined
through Equation (2), where ϕ0 is the instantaneous flux when the current is null.

α0 = 180◦ − asin
(

ϕ0
ϕPEAK

)
≈ 180◦ − asin

(
ωϕ0√

2U1

)
(2)

On the other hand, given the commonly low values of primary winding resistance
and primary leakage inductance in PV installations, the expression for energization flux,
detailed in Equation (3), is applicable.

ϕ = ϕR +

√
2U1

ω
[sin(ωt)− sin(αE)] (3)

This equation shows the influence of both the energization point-on-wave, denoted
as αE, and the residual flux, denoted as ϕR, on the flux during energization. To prevent
subsequent inrush current, the offset in Equation (3) must be null. Consequently, if ϕR
equals ϕRM, the optimal αE is determined by the following:

αE = 180◦ − asin
(

ϕRM
ϕPEAK

)
= αRM (4)
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Therefore, the smart switch will perform the connection and disconnection of the
photovoltaic installation at the time instances corresponding to the optimal points-on-wave
(α0 and αE).

4. FPGA-Based Smart Switching Implementation

The smart switching strategy could be implemented solely by acquiring the supply
voltage signal, but a significant drawback arises in the determination of α0 and αE using
Equations (2) and (4). For this, previous knowledge of offline data, such as ϕRM, ϕ0, ϕPEAK,
and U1, is necessary. These parameters are different for each transformer, and some of
them can be obtained through testing involving the static hysteresis loop and dynamic loop
of the transformer, requiring a previous transformer testing stage and pre-programming
the smart switch. However, implementing such a procedure is impractical for an online
system, as presented in this paper. In addressing this challenge, the system incorporates a
learning mechanism and acquires two new signals: the primary current and the transformer
secondary voltage.

Firstly, the determination of the de-energization point-on-wave (α0) is facilitated by
identifying the angle of the supply grid when the current crosses zero in the positive
direction. To achieve this, the FPGA-based processor within the system is equipped with
both a zero-crossing detector and a phase-locked loop (PLL).

Precise determination of αE requires knowledge of ϕRM. To overcome this issue,
the smart switching system acquires and integrates the secondary voltage before de-
energization until several seconds after de-energization. This approach allows for the
extraction of ϕRM, facilitating the calculation of the corresponding energization point-on-
wave αE. Subsequently, to ensure system resilience in the face of potential current and/or
secondary voltage sensor failures, these calculated points-on-wave are stored in a read-only
memory (ROM), which is valuable in case the primary current and secondary voltages are
not available due to issues with the corresponding sensors. In this case, the system already
has the necessary information (as long as the transformer or operating conditions do not
change) to energize and de-energize the transformer during the appropriate moments by
solely monitoring the grid voltage, as indicated in Figure 6.
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In this way, the effectiveness of the proposed solution for inrush current elimination
endures, even when confronted with current and voltage sensor issues. This resilience,
which stems from the system’s capacity to learn and adapt based on information gleaned
from the measurements, gives a high robustness to all the system.
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The circuit diagram of the proposed smart switch approach is presented in Figure 7.
Both energization and de-energization are accomplished through the use of a semiconductor
switch.
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Figure 7. Schematic diagram of the proposed smart switch for inrush current optimization.

The semiconductor switch comprises two IGBTs, each equipped with an antiparallel
diode, connected in series with a common emitter. It boasts a high chopping capability,
ensuring a swift clearance time at any given instant, irrespective of the load nature, and
notably, it operates without generating any electric arc. The IGBT used in this paper
incorporates an active clamping feature to limit transient overvoltages when it turns off.
A metal oxide varistor (MOV) is also connected in parallel with the breaker for the same
purpose. The IGBT switch is shown in Figure 8.
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The conventional method for active clamping (Figure 9) is to use a chain of avalanche
diodes connected between the collector and the gate of an IGBT. When the collector-emitter
voltage exceeds the breakdown voltage of the diodes, the diode current sums up with
the output current from the driver output. With the increased gate-emitter voltage, the
transistor remains in active mode, causing the interruption of the turn-off process. This
interruption slows down the speed, resulting in a limited overvoltage. Avalanche diodes
conduct high peak currents while actively limiting overvoltage during this time period. The
clamping diodes are directly connected to both the IGBT’s gate and the input of an amplifier
on the same board. Consequently, the primary current source for recharging the gate is
derived from the gate driver’s power supply rather than through the clamping diodes.
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Figure 9. Detail of the active clamping board.

Figure 10 illustrates the block diagram outlining the general architecture of the pro-
posed smart switching system. The system delineates into three primary stages: primary
sensors, a data acquisition system (DAS), and an FPGA-based processor.
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Figure 10. General structure of the proposed smart switching system.

The initial stage comprises primary sensors, featuring a current sensor (utilizing Hall
Effect clamp meter technology) and two voltage sensors. The smart switch prototype,
implemented as an FPGA-based processor, has been successfully developed on the dSPACE
MicroLabBox platform, which integrates a Xilinx FPGA. Testing has been conducted using
a 320 VA single-phase transformer.

The MicroLabBox integrates analog-to-digital converters boasting a 16-bit resolution,
a sampling frequency of 1 million samples per second (sps), and an input range spanning
from −10 V to +10 V. In this work, the measured signal has undergone internal resam-
pling within the DSPACE system, resulting in a reduced sampling frequency of 8000 sps,
deemed more suitable for digital systems. Prior to conversion, signal conditioning entails
the use of a fully-differential isolation amplifier for electrical isolation and a low-pass
anti-aliasing filter.
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FPGA-Based Processor

The processor has been fully implemented on an FPGA (Xilinx Kintex-7 XC7K325T,
Xilinx, San Jose, CA, USA), and its development has been exclusively conducted using the
Very High-Speed Integrated Circuit Hardware Description Language (VHDL) and IEEE
standard libraries. It is noteworthy that no commercially available processing cores or
libraries have been utilized in this development.

The FPGA-based processor serves as the ultimate stage within the system, responsible
for issuing the trip signal to the IGBT switch. It is structured into two stages. The first stage
encompasses three processing cores: a zero-crossing detector, an integrator core, and a PLL
core. The second stage, receiving data from the preceding cores, determines the timing
for dispatching both opening and closing trigger signals. Additionally, the FPGA-based
processor incorporates a ROM and the essential drivers to ensure seamless communication
with the DAS. It also integrates a corresponding finite state machine (FSM), imperative for
handling the operation of all processing cores.

Figure 11 shows the fundamental architecture of the positive zero-crossing detector,
employing two comparator blocks. The detection algorithm is straightforward: the two
most recent input samples are compared to zero, and the positive zero-crossing is identified
when the last sample is positive and the penultimate sample is negative.
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Figure 11. Architecture of the digital structure to achieve positive zero-crossing detection.

The system encompasses three input signals: x(n), STR, and SR, along with two output
signals, D2 and END. The transformer current, x(n), is an 18-bit signal presented in a
2.16 fixed-point format. STR serves as a 1-bit indicator signal, signaling the initiation of
calculations, while SR, another 1-bit signal, informs the processing core of the availability of
a new x(n) sample for reading. ZC is the output signal indicating the detection of a positive
zero-crossing. Lastly, END is a 1-bit signal that indicates the completion of a calculation,
indicating that a new result is ready for reading.

The processing core employs a parallel register (Register 1) to store the preceding
input sample, x(n − 1). Upon the availability of a new sample at the input x(n), the register
is enabled, facilitating the storage of the latest sample while discarding the penultimate one.
Additionally, two registers are employed to regulate the output result flow. The core incor-
porates a finite state machine (FSM) to govern the activation of registers and, consequently,
the data flow. This FSM also manages the indicator signals (STR, SR, and END).
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The ZC signal is activated when both inputs of the AND gate are set to ‘1’, signifying
the fulfillment of the specified conditions necessary for detecting a positive zero-crossing.

Figure 12 shows the overarching architecture of the PLL core. This core operates
as a transfer delay PLL (TD-PLL). The TD-PLL method generates quadrature signals
by introducing a delay to the original signal equivalent to a quarter of its frequency
period (T/4).
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The TD-PLL features a T/4 delay block for the generation of orthogonal signals
(xα, xβ). Through the application of the Park transformation, these variables undergo
conversion to a rotating dq reference frame. The requisite phase for this transformation is
derived from the PLL phase output (ωet), ensuring that the q component is proportionally
related to the phase error between the actual phase of the input signal and the estimated
phase. This error is subsequently directed to a filter, a proportional-integrator (PI) controller,
aiming to minimize it to zero and thereby achieving effective synchronization of the PLL
phase output with the input phase.

Applying the Park transformation to xα and xβ, the q component is derived as follows:

q = −xα · cos(ωet) + xβ · sin(ωet) (5)

The sine and cosine functions used in the Park transformation are implemented in the
FPGA through the utilization of lookup tables (LUTs).

Figure 13 depicts the architecture of the transfer delay block. This block also has the
STR and SR input signals and the END output signals, similar to the zero-crossing detection
core. L−1 parallel registers are connected in cascades to store the L−1 most recent input
samples, where L is equal to T/4. The initial outputs of all registers are equal to zero. The
input x(n) and the registers’ outputs are connected through a multiplexor to the output.
With the help of the multiplexor and a counter, the flow of present and past input samples
can be controlled by the FSM.

It is noteworthy that the used FPGA operates at a base frequency of 100 MHz, signifi-
cantly exceeding the sampling frequency.

Figure 14 illustrates the architecture of the final processing core responsible for com-
puting the integral (integral calculation being a component of the PLL) of the secondary
voltage using the trapezoidal rule. Featuring a register at the input x(n), this processing
core stores the previous sample, adds it to the current sample, and subsequently multi-
plies the result by the sampling period Ts, corresponding to half of the sampling period,
(t(n) − t(n − 1))/2. The cumulative integral at any given time is derived through successive
summations facilitated by an accumulator.
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5. Experimental Results

The efficacy of the smart switching system has been substantiated through validation
with a 320 VA single-phase transformer characterized by a 120/72 V rating and short-circuit
reactance values of 0.046 pu and 0.07 pu. In Figure 14, the associated waveforms depict
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the supply voltage, the transformer flux (derived through the integration of the secondary
voltage), the transformer current, and the transformer secondary voltage.

The smart switching system requires only two sets of data: ϕRM and ϕ0, or their
corresponding voltage points-on-wave αRM and α0, coupled with an understanding of the
utilized switching technology. As explained before, these data sets can be acquired through
preliminary transformer no-load tests or by monitoring the primary current and secondary
voltage of the transformer during the initial de-energization. All the signal waveforms
acquired during the smart switching are depicted in Figure 15, while in Figure 16, they are
depicted with more detail only during the de-energization.
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As illustrated in Figure 16, the accurate de-energization point-on-wave can be de-
termined by detecting the current positive zero-crossing, and ϕRM can be derived from
the flux waveform after de-energization. Notably, in the event of a failure in either the
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current sensor or the sensor responsible for acquiring the secondary voltage, the proposed
smart switching system can seamlessly persist in an operation without any compromise
to its efficiency.
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Figure 17 illustrates various levels of inrush currents. In Figure 17a, the worst-case
scenario is depicted, showcasing a peak inrush current of approximately 12 pu. This
extreme condition is realized with a de-energization point-on-wave (αD) at 90◦ and an
energization point-on-wave (αE) at 270◦. It is crucial to note that for larger transformers,
the maximum residual flux values are higher (around 0.7 pu), potentially leading to more
severe inrush currents with this conventional approach. In contrast, Figure 17b displays the
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resulting currents with the proposed smart switching system, demonstrating the absence
of any overcurrent issues.
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resulting with smart switching.

In future research, the proposed smart switching approach can be seamlessly extended to
cater to three-phase PV systems, requiring a thorough analysis of the necessary modifications.

6. Conclusions

Uncontrolled inrush currents bring forth considerable risks, including heightened
stress on equipment, potential transformer damage, and disruptions to the electrical grid. In
the context of grid-connected PV systems, the significance of this issue cannot be overstated.
A seamless and controlled energization process is indispensable for ensuring optimal
performance, reducing equipment wear, and upholding the overall reliability of the power
distribution network.

This paper presents the implementation of a novel FPGA-based smart switch designed
to address the specific challenge of inrush currents in grid-connected PV systems. Taking
advantage of the versatility and cost-effective reconfigurability of FPGAs, this proposed
intelligent control system proves to be a suitable solution. It deftly navigates the complexi-
ties of residual flow estimation and provides robust functionality even in the presence of
challenges with current and voltage sensors. Since the strategy only needs two pieces of
information that never change, the system can allow for current sensor or secondary voltage
failures and operate by simply monitoring the grid voltage. The system’s adaptive learning
and storage capabilities contribute significantly to its overall resilience and effectiveness.
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