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Abstract: During the learning of a new sensorimotor task, individuals are usually provided with
instructional stimuli and relevant information about the target task. The inclusion of haptic devices
in the study of this kind of learning has greatly helped in the understanding of how an individual can
improve or acquire new skills. However, the way in which the information and stimuli are delivered
has not been extensively explored. We have designed a challenging task with nonintuitive visuomotor
perturbation that allows us to apply and compare different motor strategies to study the teaching
process and to avoid the interference of previous knowledge present in the naïve subjects. Three
subject groups participated in our experiment, where the learning by repetition without assistance,
learning by repetition with assistance, and task Segmentation Learning techniques were performed
with a haptic robot. Our results show that all the groups were able to successfully complete the task
and that the subjects’ performance during training and evaluation was not affected by modifying the
teaching strategy. Nevertheless, our results indicate that the presented task design is useful for the
study of sensorimotor teaching and that the presented metrics are suitable for exploring the evolution
of the accuracy and precision during learning.

Keywords: motor learning; skill learning; human–robot interaction; visuomotor perturbation; motor
teaching; tracking task; robot tutoring

1. Introduction

In the last few decades, the study of motor learning has led to great advances in the
understanding of the skill acquisition process. In general, motor learning is an internal
process that consists of developing cognitive structures through information processing.
In the most traditional way, when naïve individuals need to acquire a new skill, they
have to rely on the ability of expert individuals to transfer the right kind and amount of
information necessary for the performance of such a skill, establishing a teaching–learning
interaction. The relationship between the expert and the naïve during such an interaction
has been studied mainly in pedagogical environments, either in the classroom or in the
physical education field [1,2]. Nevertheless, and despite the big efforts from teachers
and pedagogues to develop and implement novel and more effective teaching techniques,
the sensorimotor skill teaching process has struggled in innovation regarding the methods
behind it. However, teachers and pedagogues have established that motor teaching should
focus on the instructional stimuli able to produce the desired learning outcomes [3,4].

Given the heuristic nature of motor learning, spontaneous optimal solutions may
appear during task exploration [2,5]. For this reason, it is expected that during the sensori-
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motor skill teaching, the expert will assist the naïve in autonomously finding the solution
of the problem [6,7]. This means that the expert should encourage exploratory activity [8]
and the “repetition without repetition” approach [9]. This is the repeating of the means
of solving a problem, rather than repeating the solution to it (optimization by repetition).
The concept of “repetition without repetition” is of particular importance in real-life tasks
since we are continuously facing unique and unpredictable situations. This variability
can guide one to the proper exploration of the possible solutions, increasing the learning
rhythm and the knowledge generalization [10–12].

To assist naïve subjects in finding the correct solution for the task they are learning,
there are different strategies that experts can employ during their involvement in motor
teaching. The expert can provide implicit information about the task and its goals. Process-
ing this kind of information requires the lower cognitive involvement of the naïve, allowing
for the task exploration and relying on a subconscious learning process [13,14]. The expert
can also provide explicit and detailed information about the task and its objectives. This
approach requires high levels of cognitive processing on the part of the inexperienced
individuals and increases the possibility of poor movement performance during stressful
scenarios [13]. Another option is to provide guidance in the execution of the task, which
can be verbal, visual, or physical [15,16]. This learning is the most specific, since the expert
guides the naïve through a particular movement pattern step by step. Even if physical
guidance has proven to be useful while learning motor skills, at least for a short period
just after removing the assistance [17], the passive participation of the naïve can cause
problems related to the absent or reduced sensory feedback, as well as the distorted rela-
tionship between sensory perception and motor responses [18]. However, approaches that
encourage the appropriate sequences of movement directions have shown beneficial effects
on movement structuring and sensory integration [19]. Another strategy is to segment a
task into subtasks, where each subtask is learned individually [20]. The inductive transfer
used in Segmentation Learning is especially efficient when the objective of the training
is the generalization of the acquired knowledge, and it plays an essential role when the
training data is scarce [21]. Further on, learning subtasks may enhance the understanding
of the task’s requirements, enabling the adoption of explicit strategies that foster wider
generalization [22].

Robotics is a viable alternative for physical guidance, and robotic systems have been
used in fields such as rehabilitation [23,24], physiotherapy [25], human skill learning [26–28],
human–human coordination [29,30], and human motor control studies [31–33]. In recent
years, the field of sensorimotor learning has witnessed significant advancements, particu-
larly in the use of haptic devices for enhancing learning and skill acquisition. Studies such
as those by Fu and Santello [34] have explored the intricacies of force control and perception
using bioinspired prosthetic hands, providing valuable insights into the integration of hap-
tic feedback in prosthetic systems. Similarly, the efficacy of spatially separated cutaneous
haptic guidance in motor skill training highlights the potential of multi-modal feedback
in enhancing training outcomes in humans [35] as well as robot sensing technologies [36].
Liu et al. [37] have extended this exploration to the realm of virtual reality, examining
how haptic devices facilitate the learning of dexterous object manipulation in a virtual
setup. Moreover, the work by He et al. [38] on medical simulators for tissue examination
training underscores the importance of multi-modal sensory feedback. Collectively, these
studies contribute to a broader understanding of how haptic technologies can be effectively
integrated into sensorimotor training, thus paving the way for innovative teaching method-
ologies in this field. However, in the field of sensorimotor learning utilizing haptic devices,
an unexplored aspect appears to be the strategies for conveying instructional stimuli and
related information during the learning process. In most of the existing sensorimotor skill
teaching studies, the robot still acts as a demonstrator of the task that the naïve subject
has to imitate [39–45]. All these works are of great importance and present advances in
the use of robots as teachers for humans. However, the demonstrator role of the robot
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during the sensorimotor teaching process leaves the advantages of robot physical guidance
largely unexplored.

The goal of this study is to examine teaching with robot physical guidance in a complex
novel task. We present a tracking task that involves a visuomotor perturbation with contin-
uously rotated mapping between the motor input and the resulting movement, which is
aimed to generate high cognitive activity. Such cognitive activity is a consequence of the
visuomotor recalibration and the creation of new motor strategies [46–49]. This research
introduces a task that demands adaptation to a novel environment where conventional
motor skills offer limited advantages. The task’s complexity stems from a progressively dis-
torted connection between motor commands and their execution, featuring a continuously
changing relationship between arm movements and a virtually rotated space. This type
of distortion, uncommon in daily activities, challenges subjects to learn without relying
on prior knowledge, emphasizing the task’s difficulty and the critical role of the teaching
process in shaping performance outcomes.

We examined the proposed approach for studying sensorimotor teaching with an
experiment consisting of three groups of subjects, who completed the task in three different
conditions following different experimental protocols. The first group performed the exper-
iment without haptic guidance (non-assisted learning), the second group performed the
experiment with intermittent haptic guidance (assisted learning), and the third group first
performed two segments of the task, followed by the main task (Segmentation Learning).
At the end of the experimental protocol, we tested the ability of the subjects to generalize
the acquired knowledge by randomly modifying the rotation angle of the experimental
task. We aimed to determine whether a particular teaching strategy could enhance the
subjects’ comprehension of the task and their proficiency in transferring this knowledge to
a novel yet related scenario. We hypothesised the following:

H1: The utilization of robotic haptic guidance improves the teaching process resulting in improved
learning performance for unfamiliar and challenging tasks when compared to learning
without assistance.

H2: Segmentation training setting enhances the teaching process in terms of learning performance
and the generalization of unfamiliar challenging tasks compared to both assisted and
non-assisted learning.

2. Methods
2.1. Participants

A total of 27 right-handed subjects (29 ± 5 years old, 15 males and 12 females) par-
ticipated in the study. Prior to their participation, the subjects were informed about the
course of the experiment and signed a written consent approved by the Slovenian National
Medical Ethics Committee (No. 339/2017/7). All experimental protocols were approved
by the National Medical Ethics Committee (No. 339/2017/7) and the methods were carried
out in accordance with the relevant guidelines. The experimental groups were created by
randomly assigning each subject to one of the three experimental groups corresponding to
the three experimental conditions:

1. Non-Assisted (NAD): The subjects performed the Main Task while the robot acted
merely as an interface with the virtual environment and did not intervene in the
performance. The group under this condition was considered the control group.

2. Assisted (ATD): The subjects performed the Main Task and the robot assisted them
by giving a guiding force. This mild force (3 N maximum) tried to guide the hand
movement in the human space in order for the pointer to follow the correct path
of the target in the virtual task space. The guidance can be viewed as a teaching
instruction for the subjects to learn the correct movement. The trials in this condition
were intermittently assisted, i.e., the assistance was given every other trial in a solo-
assisted-solo sequence to track the learning process.
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3. Segmentation (SEG): Subjects in this condition performed two separate sub-tasks
followed by the Main Task, with the intention to maximize the generalization of the
acquired knowledge. As in the ATD group, the subjects in this group also received
intermittent assistance from the robot.

2.2. Experiment

During the experiment, the subjects were sitting in front of the screen with both feet
touching the floor and without crossing their legs. They were positioned in a way such
that the horizontal center of the lower screen edge, the center of the haptic robot Phantom
Omni (SensAble Technologies, Wilmington, MA, USA), and the center of their chest were
horizontally aligned. The manipulation of the end-effector was performed with the right
hand while the left one was resting over their left leg (Figure 1).

Figure 1. Experimental setup. The robot was aligned with the center of the screen. All subjects were
requested to keep the center of their chest in line with the robot and the center of the screen.

The subjects had to perform a tracking task by manipulating the Phantom Omni robot
(Figure 1). The robot measured the subjects’ movements and mapped them into a virtual
task environment. The human uses the end-effector of the robot to control a virtual pointer,
which moves in the virtual task space (Figure 2, left panel). The movements are limited
to the (y, z) plane by a spring-like force acting in the x-axis. The mapping of the (y, z)
on the screen corresponds to left and right for the y-axis, up and down for the z-axis,
and in and out for the x-axis. Note that this mapping is only valid for when no visuomotor
perturbation is in progress. The Phantom Omni robot was programmed in C++ using the
CHAI3D libraries and its utilities for the creation of the virtual environment graphics.

In the virtual environment, the pointer was presented as a grey sphere with rp = 0.375 cm.
The target was presented as a sphere with rt = 0.5 cm and changed among 3 colours depend-
ing on the trial stage. During the 3 s of movement the target was coloured green, letting the
subjects know that they could proceed with the tracking; when the movement was completed
the target changed to red, indicating the 3 s of resting; and at the end of the resting period,
the target colour switched to yellow to indicate that the new trial was ready to start and the
subject needed to make the pointer coincide with the target in order to start the next trial.
During the assisted trials, the assistance was given by a virtual spring attached on its extremes
to the target and the pointer, and with a spring coefficient kp = 0.015 N/m. Moreover,
during the whole experiment, a spring force acting in the x-axis with a kp = 0.03 N/m helped
the subjects to keep their movements in the (y, z) plane.



Sensors 2024, 24, 1231 5 of 17

Subjects were instructed to align the cursor they controlled with the movement of
the target. They were told the position of the cursor would not always align with the
movement of their hand. They were also informed that there might be assistance from the
robot on some trials. Moreover, subjects in the SEG group were told the task would change
in between and that their objective was still to keep the cursor inside the target. To maintain
the attention of the subjects during the experiment, we implemented a scoring system
based on the accuracy of the tracking movement. The main idea behind the scoring system
was to keep the subjects focused and motivated in the tracking of the target. Additionally,
the use of the score served the subjects as a guide for finding the optimal movement i.e., the
subject repeated and explored the movements that provided the most points. The trial
score, session score, and max score across subjects were displayed on the screen throughout
the whole session (Figure 1), and the subjects were instructed to aim to beat the max score.

2.2.1. Experimental Task

The goal of the subjects was to track a moving target. The target moved in the z-axis
and the movement followed a sinusoidal profile aimed to exhibit the response of a second-
order system to reproduce the stages of a natural reaching movement: acceleration towards
a target, constant velocity, and deceleration (Figure 2).
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Target movement on the screen

Figure 2. (Left panel): Task environment. On the screen where the virtual environment is presented,
the target was moving vertically with a speed profile defined by s(t). (Right panel): Position change
profile in the z-axis described by the function s(t). This profile is an approximation to the Gaussian
integral curve.

This movement is defined by the following function:

s(t) = 10 ·
cos

(
(t/t f ) + π

)
+ 1

2
(1)

where s(t) is the movement profile function, t f is the time factor given by t f = tT/π,
the term tT represents the total time duration of each trial (3 s), and t is the current time of
the trial. The target position can be expressed with the following vector:

p =

 0
0

s(t)

. (2)

2.2.2. Experimental Conditions

To test the hypotheses regarding robot sensorimotor teaching, we designed a novel task
setting that involves an unfamiliar visuomotor perturbation. Performing casual movements
in the Cartesian space is already a familiar and intuitive motor task for humans. Thus,
the objective of our experimental design is to examine the motor learning/teaching of an
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unfamiliar task with a high learning difficulty by itself. To facilitate this, we developed
an experimental environment where the visualization of the virtual space is distorted
in a way that the arm movement in either the y-axis or z-axis does not map directly to
the movement of the pointer shown on the screen. This mapping followed a non-linear
relationship. For example, when a subject moved straight only along the z-axis, the pointer
in the task space would move along a curved path in the virtual task space as shown
in Figure 3. This mapping was unknown to the subjects and was the goal of the motor
learning/teaching process.

Y / cm

Z
 / 

cm

Ideal hand trajectory

Hand trajectory
Pointer movement

Y / cm

Z
 / 

cm

Straight hand trajectory

Figure 3. Representation of the relationship between hand movement and pointer movement during
visuomotor rotation. (Left panel): representation of an ideal hand trajectory (blue) required to obtain
a perfectly straight path of the pointer in the virtual environment (red). (Right panel): representation
of a straight hand trajectory (blue) which would cause an arched trajectory of the pointer in the
virtual environment (red).

To study the effects of different teaching strategies and test our hypotheses, we set
three experimental conditions. These conditions vary in the way the virtual environment is
presented and the assistance given by the robot. For the first two experimental conditions
(Assisted and Non-Assisted), we used the so-called Main Task, and for the third condition,
we additionally used the so-called task segmentation.

Main Task

The visuomotor perturbation was emulated by inducing non-linear mapping between
the movement in the human space and the actual movement of the pointer in the virtual
task space. This mapping followed a rotation matrix:

R =

1 0 0
0 cos(θ(t)) − sin(θ(t))
0 sin(θ(t)) cos(θ(t))

. (3)

By multiplying (2) and (3), we obtain the mapping between the movement in human
space and the movement of the pointer in virtual task space:

Rp =

 0
−s(t) sin(θ(t))
s(t) cos(θ(t))

, (4)

where θ(t) is defined as
θ(t) = φ(t/tT). (5)
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Parameter φ is the maximum rotation angle to be used during the trial. The ideal hand
trajectory can be imagined to be constructed by continuously rotating the initial trajectory
defined with (2) by a time-dependent angle defined by (5). This mapping can be clearly
understood by looking at the example hand movements presented in Figure 3.

Task Segmentation

The secondary tasks were designed to present the Main Task features separately,
i.e., first, the subject is introduced to the rotation of the virtual reality (Rotation Task),
and then is introduced to the translation part of the movement (Translation Task).

Rotation Task: During the Rotation Task, the required movement to perform was a
trajectory describing an arc with a 10 cm radius (Figure 4a), which can be expressed as

pRT =

 0
10 sin(θ(t))
10 cos(θ(t))

. (6)

As a consequence of the combination of the target movement and the frame’s rotation,
the target is shown on the screen as apparently static at the top of the screen. However,
if the subjects do not make any movement, the visual effect will be that the pointer moves
away from the target towards the left with an arched trajectory (Figure 4b). To solve
the task correctly, the subject has to move the end-effector of the robot towards the right
in order to keep the pointer overlapped with the target (Figure 4a). The rationale of
this secondary task is that by experiencing this kind of perturbation, the subjects can
learn to adapt their movements to the virtual rotation. This would guide them to the
understanding that the environment perceived visually does not correspond to “normal”
visuomotor proprioception.
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a) b) c)

Figure 4. Representation of the translation and rotation tasks. (a) An ideal hand trajectory (blue)
along the arc defined for the rotation task results in the pointer (red) remaining stationary inside
the target location (gray). (b) During the rotation task if the hand is stationary (blue) at the starting
position of (0, 10), this results in the pointer tracing an arc (red). (c) Representation of the Translation
Task, where the target on the screen was moving along the trajectory of the Main Task (gray). The ideal
hand trajectory (blue) and pointer path (red) coincide since there was no visuomotor rotation applied
in this case.

Translation Task: In the Translation Task, the required movement is given by (4)
(Figure 4c), without any rotation of the virtual task space. With this, the subject is able to
see the real trajectory followed by the target. This subtask is considered the easiest and it is
intended for the subjects to explore the movement they need to perform to complete the
Main Task successfully.

2.3. Experimental Protocol

The experiment consisted of three sessions with a separation period of a minimum of
12 and a maximum of 48 h between them. In each session, the subjects had to complete a
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total of 80 trials (Figure 5). Each trial consisted of 3 s of target tracking, 3 s of rest, and a
standby period the length of which was decided by the subject. The sessions were divided
into three main stages:

1. Ten Familiarization trials: The φ angle was set at 0 degrees. This stage was used to
let the subjects familiarize themselves with the virtual environment during the first
session, and as memory washout during the second and third sessions.

2. Sixty Training trials: The φ angle was set at 90 degrees. This stage determined the
difference among groups:

(a) NAD group performed 60 Main Task trials unassisted.
(b) ATD group performed 60 Main Task trials with intermittent assistance.
(c) SEG group performed 20 Rotation Task trials followed by 20 Translation Task

trials and 20 Main Task trials, intermittently assisted.

3. Ten Generalization trials: During this stage, the subjects were presented with a version
of the Main Task where the φ angle changed in a pseudo-random sequence from trial
to trial with possible values between 0 and 90 degrees in intervals of 10 degrees (30, 0,
60, 40, 10, 80, 50, 90, 20).

SEG

Figure 5. Experimental protocol followed by the different groups. The red squares represent the
non-assisted stages, and the green squares represent the intermittently assisted stages.

2.4. Data Analysis

To observe motor learning, we evaluated the accuracy of the movements. The accuracy
was measured with respect to the radius of the pointer (rp). To calculate the sum of given
points, we set 5 scoring areas around the target (Figure 6), where each area differed by 25%
of the total amount of points with the areas around it. The percentage of points acquired
was saved in the distance factor d f , which was defined as the weighted Euclidean distance
given by the following equation:

d f =


1 when d ≤ rp

0.75 when rp < d ≤ 2rp
0.5 when 2rp < d ≤ 3rp

0.25 when 3rp < d ≤ 4rp
0 otherwise

(7)

where d is the Euclidean distance from the center of the target to the center of the pointer.
The score was dependent on the amount of time spent in each one of the scoring areas
and it is calculated at the end of every haptic cycle (1 kHz). The result was added to the
accumulated score of the trial; thus, the score was defined as

score = 100 ·
∑(ti − ti−1)d fi

tT
(8)

where the expression (ti − ti−1) is the period of time being evaluated and compensates
for the variability of the haptic cycle (1 kHz ± 5 Hz) due to the system delays. With these
metrics, subjects can reach a maximum of 100 points per trial and 8000 points per session.
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Figure 6. Visual representation of the scoring system. The scoring areas (orange) are concentric
to the target (green). The scoring areas are the zones of the virtual space where the subjects can
collect accuracy points the radii of which are related to the pointer radius (rp). The amount of points
collected is dependent on the distance factor presented in (7), which is calculated by measuring the
Euclidean distance between the centers of the target and the pointer. The grey circles representing the
pointer are situated at the outer edge of the scoring areas.

We additionally looked at the max error during learning. Max error was determined
as a maximum Euclidean distance from the center of the target to the center of the pointer
during each trial.

To properly look into the learning process, we decided not to consider the even trials
(in which the robot assistance was present) in the analysis. Neither did we consider the
trials in which the SEG group was changing conditions, since these trials presented errors
unrelated to the task performance but to the unexpected condition change.

To be able to observe the learning process, several subjects were discarded due to an
outlier performance, and we kept acquiring data until we obtained three balanced groups
in the number of subjects who successfully showed the learning of the task. The outliers’
performance was determined by calculating the mean and standard deviation (σ) at the
last training trial and all the subjects that fell out of the 3σ from the mean were discarded.
To understand the distribution of the discarded subjects, three of them belonged to the
NAD group, one belonged to the ATD, and one to the SEG group.

To perform the statistical analysis and explore the statistical significance of the results
among the different experimental groups, we used the one-way ANOVA. We set the
statistical significance of the analysis as alpha = 0.05. Further, we performed the post-hoc
t-tests with Bonferroni correction. ANOVA, t-tests, and Bonferroni correction analysis
were performed in R. The data points are reported as a mean ± standard error unless
specified otherwise.

3. Results

The results of the performance analysis can be divided into two sections: the training
and generalization phases. In the training phase, we focused on the performance evolution
during three sessions of the experiment, which denotes the learning process experienced
by the subjects. In the generalization phase, we analyzed the ability to transfer the acquired
knowledge into scenarios similar to the one learned during the training phase.
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3.1. Training Phase

The subjects in each group performed three sessions of the experiment (Figure 7). The
NAD group had no assistance during training, the ATD group had intermittent assistance,
and the SEG group first completed the Rotation and Translation Tasks, followed by the
Main Task with intermittent assistance. To compare learning between the NAD, ATD, and
SEG groups during the Main Task, we looked at the average scores and max errors for the
trials when all the groups performed the Main Task without assistance. The average scores
and max errors for all the groups across the sessions are presented in Table 1. There was no
significant difference in the average score (F(2, 26) = 0.03, p = 0.975) or average max error
(F(2, 26) = 0.90, p = 0.420) between the groups for the first session.
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r /
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SEG

Figure 7. Training scores and max errors of the experimental groups: The graphic shows scores and
max errors for the non-assisted trials of the experimental protocol. The Non-Assisted group, which
is the control group, is presented in blue (NAD), Assisted group in red (ATD), and Segmentation
group in green (SEG). The dashed grey lines divide each one of the sessions, and the standard error is
represented by the error bars. Each session only includes odd trials in which the robot assistance is
not present without 2 trials where the conditions were changing.

However, the subjects of the SEG group were exposed to the Main Task only at
the end of the first session (trial 19 of Figure 7), after they completed the Rotation and
Translation Tasks. The average score of the SEG group on their first exposure to the
Main Task was 51.05 ± 5.78, which is on average 10 points higher than the scores of
the NAD group (40.77 ± 2.89) and 19 points higher than the ATD group (32.93 ± 1.45)
(trial m top panel of Figure 7 top). The ANOVA test showed the difference among the
groups was statistically significant (F(2, 26) = 5.64, p < 0.01). The post hoc t-tests with
Bonferroni correction showed that only the difference between the ATD and SEG groups
was significant (t(2, 16) = 3.04, p = 0.016). The average max error of the SEG group on
their first exposure to the Main Task was 6.01 ± 4.08 cm, which is lower than the max
error of the NAD group (11.30 ± 2.91) and the ATD group (11.15 ± 2.20) cm (trial 1 on
bottom panel of Figure 7). The ANOVA test showed the difference among the groups was
statistically significant (F(2, 26) = 8.17, p = 0.002). The post hoc t-tests with Bonferroni
correction showed a significant difference between the NAD and SEG groups (t(2,16) = 3.32,
p = 0.009) as well as the ATD and SEG groups (t(2, 16) = 3.17, p = 0.012).
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There was no significant difference in the average score (F(2, 26) = 2.80, p = 0.081) or
average max error (F(2, 26) = 1.07, p = 0.360) between the groups for the second session.
There was also no significant difference in the average score (F(2, 26) = 2.36, p = 0.116) or
average max error (F(2, 26) = 2.78, p = 0.082) between the groups for the third session.

All the groups improved their scores throughout the sessions, as seen in Table 1.
There was a significant difference between the first and the last session for all three groups
(t(2, 16) = 4.72, p < 0.001, t(2, 16) = 2.54, p = 0.022, t(2, 16) = 3.88, p = 0.001 for the
NAD, ATD, and SEG groups, respectively). There was also an improvement throughout
the sessions in terms of the max errors. There was a significant difference between the first
and the last session for all three groups (t(2, 16) = 3.81, p < 0.002, t(2, 16) = 2.39, p = 0.029,
t(2, 16) = 2.73, p = 0.015 for the NAD, ATD, and SEG groups, respectively).

While the NAD and ATD groups only performed the Main Task, the SEG group also
performed the Rotation and Translation Tasks. In the Rotation Task, the accuracy improved
throughout the experiment, with the scores going from an average of 49.62 ± 13.03 in the first
session to 74.01 ± 9.55 at the second session to 81.83 ± 5.01 at the last session (F(2,26) = 26.65,
p < 0.001), while the max errors decreased from 4.75± 2.23 to 1.98± 0.83 cm to 1.40± 0.23 cm
in the last session (F(2, 26) = 15.14, p < 0.001). The Translation Task was performed with
relatively similar efficiency throughout the experiment, with the scores going from an average of
92.24 ± 4.64 in the first session to 93.43 ± 3.46 to 95.11 ± 2.37 at the last session (F(2,26) = 1.44,
p = 0.256), while the max errors went from 0.87 ± 0.13 to 0.85 ± 0.13 cm to 0.76 ± 0.09 cm in
the last session (F(2, 26) = 2.14, p = 0.139).

Table 1. Average training scores and max errors of the experimental groups across sessions.

NAD ATD SEG

Score Error /cm Score Error/cm Score Error/cm

Session 1 68.84 ± 12.54 3.81 ± 2.15 68.19 ± 15.25 2.65 ± 1.26 67.42 ± 12.16 3.27 ± 2.00
Session 2 84.69 ± 4.47 1.63 ± 0.56 77.19 ± 9.64 1.96 ± 0.85 81.29 ± 4.77 1.59 ± 0.33
Session 3 89.41 ± 3.70 1.08 ± 0.18 83.57 ± 9.82 1.52 ± 0.65 83.86 ± 3.67 1.43 ± 0.27

3.2. Generalization

To test if different teaching strategies influence one’s capacity to apply and transfer
acquired knowledge to related tasks, we examined the performance during the general-
ization phase. The evaluation of the teaching strategies used during the generalization
phase was performed by analyzing the subjects’ performance during the trials in which
the rotation angle θ changed from trial to trial. In Figure 8, the values of θ are organized in
ascending order to facilitate data interpretation.

The average scores and max errors for all the groups across the sessions are pre-
sented in Table 2. There was no significant difference in the average score (F(2,26) = 2.85,
p = 0.077) or average max error (F(2, 26) = 4.09, p = 0.029, post hoc tests for NAD-ATD,
NAD-SEG, and ATD-SEG comparisons: t(2, 16) = 2.37, p = 0.080, t(2, 16) = 0.34, p = 1.0,
t(2, 16) = 2.01, p = 0.123) between the groups for the first session.

Table 2. Average generalization scores and max errors of the experimental groups across sessions.

NAD ATD SEG

Score Error/cm Score Error/cm Score Error/cm

Session 1 81.08 ± 5.84 0.18 ± 0.05 70.59 ± 13.94 0.33 ± 0.19 78.31 ± 7.16 0.19 ± 0.07
Session 2 88.20 ± 3.02 0.12 ± 0.03 77.21 ± 11.50 0.22 ± 0.12 83.68 ± 4.19 0.15 ± 0.04
Session 3 89.31 ± 3.87 0.11 ± 0.03 83.59 ± 6.03 0.16 ± 0.08 86.55 ± 4.12 0.12 ± 0.02

The scores for the NAD group in the second session were statistically higher com-
pared to the ATD and SEG groups (F(2, 26) = 5.18, p = 0.013; t(2, 16) = 2.77, p = 0.027,
t(2, 16) = 2.63, p = 0.037). Looking at the average max errors in the second session, the sta-



Sensors 2024, 24, 1231 12 of 17

tistical analysis revealed a difference in the max errors between the NAD and ATD groups
(F(2, 26) = 5.22, p = 0.013, t(2, 16) = 2.66, p = 0.034). There was no significant difference
in the average score (F(2, 26) = 3.23, p = 0.057) or average max error (F(2, 26) = 2.25,
p = 0.127) between the groups for the third session.
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Figure 8. Scores from the generalization phase of the experiment. The rotation angles during the
familiarization phase are set in a pseudorandom sequence. In the figure, the rotation angles are
arranged in ascending order to facilitate data interpretation. The Non-Assisted group, which is the
control group, is presented in blue (NAD), the Assisted group in red (ATD), and the Segmentation
group in green (SEG). The standard error is represented by the error bars.

The average generalization performance improved from the first to the last session,
as can be seen in Table 2. The improvement was statistically significant for all three
groups (t(2, 16) = 3.52, p = 0.003, t(2, 16) = 2.57, p = 0.021, t(2, 16) = 2.99, p = 0.009).
Similarly, the max errors improved from the first to the last session. The improvement
was statistically significant for all three groups (t(2, 16) = 2.94, p = 0.010, t(2, 16) = 2.40,
p = 0.029, t(2, 16) = 2.57, p = 0.021).

The generalization scores of all the groups looked inversely proportional to the rotation
angle; the greater the rotation angle, the lower the score achieved (Figure 8). With the
exception of the 30◦ rotation angle, the average scores in all the groups when the rotation
angle was in the range of 0–50◦ maintained a value around 90 points. The average scores
at a 30◦ rotation showed an increase session after session. Similarly, the scores when the
rotation angle was 60◦, 80◦, and 90◦ showed an increase throughout the experiment.

4. Discussion

During the expert–naïve interaction in sensorimotor teaching, the stimuli from the
teaching expert are often influenced by the previous knowledge of the naïve [21], which
can either potentiate or bias the learning towards pre-existing skills. This study introduces
a task designed to exploit a new environment where prior motor knowledge is minimally
useful. The task involves a constantly changing mapping from arm movement to a virtually
rotated space, a requirement not typically found in daily activities.

The intricacy of our tasks lies in the progressively altered correlation between motor
commands and their execution. This type of progressive distortion is atypical in everyday
life, thereby hindering subjects from drawing on prior knowledge. The inability to utilize
existing knowledge renders the task challenging to master without instructional interven-
tion, leading to the assumption that the observed performance outcomes are intrinsically
linked to the teaching methodology employed. Relevant studies on fabric-based haptic
devices for motor learning and on enhancing fingertip force learning through haptic feed-
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back support the significance of specialized teaching approaches in learning novel motor
tasks [50,51].

The task was used to evaluate the effects of different sensorimotor teaching techniques
through haptic guidance, where we explored the use of Assisted Learning and Segmentation
Learning in the training of human subjects. The assisted teaching technique used was
limited to a spring-like haptic assistance. The two groups in which such techniques were
applied were compared against a control group where the subjects solved the task without
any assistance. All the groups were capable of learning the task along the three sessions
of the experiment, which showed that the designed experimental task with visuomotor
perturbation was learnable to begin with. All the groups improved their scores and
decreased their errors from the first to the last session. However, there were a few subjects
that were not able to successfully learn the task and were discarded. Three of them belonged
to the NAD group, one belonged to the ATD, and one to the SEG group.

On average, the NAD, ATD, and SEG groups had a similar performance during the
training. Contrary to what was expected, the Main Task scores were practically equal
between the groups at the end of all the sessions. Moreover, the NAD, ATD, and ATD
groups showed a similar performance in their errors with comparable errors during the
first, second, and third sessions. The performance scores and errors of the SEG and ATD
groups, which were assisted during learning, do not show any observable advantages,
which goes against hypothesis H1. Moreover, the performance scores and errors of the
SEG group do not show any observable advantage on the use of the segmentation training,
which goes against hypothesis H2.

The subjects of the SEG group were exposed to the Main Task only at the third stage
of the first session following the Rotation Task and Translation Task stages. Their average
scores showed a better performance than the other two groups when they were exposed
to the Main Task for the first time. The maximum error values confirmed the better
performance of the SEG group on their first exposition to the Main Task which can be
attributed to the influence of the rotation and translation subtasks. This was expected since
the Translation Task stage included the same physical movement of the arm as in the later
Main Task; therefore, the subjects were only required to maintain that movement but with
different visual stimuli. This shows how learning a specific physical movement first can
have a positive influence on the initial performance in a more complicated task.

In the generalization phase, the performance of the groups was comparable during
the first session. However, during the second session, the performance of the NAD group
was slightly better than the performance of the ATD and SEG groups. In the third session,
the performance of all the groups was again comparable with no statistical differences in
the scores and errors between the groups. The lack of a significantly better performance
of the SEG group is attributed to the fact that the multitask technique requires longer
periods of training in order to show its advantages as well as the careful planning of the
task sequence presented to the subjects [52,53].

The planning of the task sequence is a key factor in the achievement of the “repetition
without repetition” training approach. This approach, often underscored by the inductive
transfer inherent in Segmentation Learning, becomes particularly advantageous when
the training objective leans towards enhancing the generalization of learned knowledge.
Immersing learners in subtasks can also amplify their grasp of the comprehensive task
requirements and lead to the application of explicit strategies in the generalization process.
According to hypothesis H2, the effects of this training approach were expected to manifest
in the performance of the SEG group during the generalization phase. The rationale
was that the participants within this group would develop enhanced a comprehension
of the task and proficiency in transferring this knowledge to novel yet related scenarios.
However, contrary to what we expected, the subjects in the SEG group did not have a better
generalization performance than their counterparts in the ATD and NAD groups.

Previous studies have shown that the learning of rotations up to 90◦ is exponential
and shows limited generalization [49]. The main difference with these studies is that the
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rotation in our study was continuous in time during the whole trial instead of fixed. Since
the order of the rotation degrees in the generalization phase was fixed in our experiment,
the performance in each trial might have been heavily influenced by the rotation amplitude
of the preceding trial. However, especially the scores beyond 60◦ improved significantly
from the first to the last session. This suggests that with further training, the performance
decay will disappear and the scores achieved at all the rotation angles will have similar
values despite being exposed only to 0◦ and 90◦ rotation angles.

The results of the experiment did not prove our initial hypotheses, which might be
due to some of the limitations of our study. Human–robot interaction during sensorimotor
teaching is complicated due to the complex interaction between the human, the robot,
and the environment. As a consequence, knowledge acquisition is not merely determined
by prior information and skills [28,37]. There was only haptic assistance without any other
visual or audio feedback during the intermittent assistance phase. Perhaps additional visual
or audio stimuli could better reinforce the learning of the complex mapping between the
hand and pointer movement [4]. Additionally, in order to increase the sense of the immer-
sion of the subjects, the experimental setup could be upgraded to use stereo vision using
a VR headset. Hardware limitations, i.e., the small force applied for the assistance could
also be the reason for the lower scoring of the ATD group. Additionally, the segmentation
approach for the task might have been nonintuitive for the subjects, so exploring additional
tasks with various ways of segmentation could prove to be more effective. Moreover,
as we mentioned before, the task is designed to avoid interference with daily living tasks.
However, the concept of daily living tasks is a constantly evolving concept that mutates
together with society and the technology available to the general public. For this reason, it is
important to consider that modern society has extensive exposure to virtual environments
and this influences the results of using robotic devices and virtual agents for sensorimotor
teaching. This would be in line with some studies that report a superior real-to-virtual
environment mapping in gaming subjects with respect to those who normally do not have
contact with video games [54,55].

In future work, we will aim to verify the observations about how the gaming experi-
ence can influence the results of various visuomotor performances. Another very important
aspect of future experimentation would be to explore the individual responses to the teach-
ing strategy. Based on these responses, the teaching strategy could be adapted, taking into
consideration contextual factors and the individual motor skills in order to provide effective
teaching with the long-term retention of these skills. The individualization of teaching
strategies has been proven to be useful when the training is directed to the performance of
a specific task [56], but the question of how to improve the generalization of the acquired
knowledge and how to ensure the subjects’ long-term retention of these skills remains
open. The inclusion of sensorimotor teaching techniques can give a new direction to the
robot assisted motor learning. Nevertheless, the robots must include robust motor teaching
procedures in their algorithms in order to be able to act as sensorimotor teachers. This
requires the creation of faithful models of teaching and learning processes in mathematical
formulations so that they can be used by the robot control systems. The mathematical
models developed in the area of motor learning have been mainly directed to the kinematic
and muscle actuation of the movement and the movement primitive approach [57–62].
In the implementation of these learning models, the concepts of kinesthetic teaching are a
common feature [53], and several conceptual models of the expert-naïve relationship have
been presented [63–65], but the mathematical formalization of such concepts have lacked
proper attention.

Overall, our results indicate that the task design is useful for the study of sensorimotor
teaching and for the generalization of the knowledge acquired in the process. The met-
rics presented allow us to explore the evolution of accuracy and precision during the
training sessions.
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