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Abstract: In this paper, we propose a novel method for monocular depth estimation using the
hourglass neck module. The proposed method has the following originality. First, feature maps are
extracted from Swin Transformer V2 using a masked image modeling (MIM) pretrained model. Since
Swin Transformer V2 has a different patch size for each attention stage, it is easier to extract local and
global features from images input by the vision transformer (ViT)-based encoder. Second, to maintain
the polymorphism and local inductive bias of the feature map extracted from Swin Transformer V2,
a feature map is input into the hourglass neck module. Third, deformable attention can be used at
the waist of the hourglass neck module to reduce the computation cost and highlight the locality
of the feature map. Finally, the feature map traverses the neck and proceeds through a decoder,
comprised of a deconvolution layer and an upsampling layer, to generate a depth image. To evaluate
the objective reliability of the proposed method in this paper, we used the NYU Depth V2 dataset
to compare and evaluate the methods published in other papers. As a result of the experiment, the
RMSE value of the novel method for monocular depth estimation using the hourglass neck module
proposed in this paper was 0.274, which was lower than those published in other papers. The lower
the RMSE value, the better the depth estimation method; therefore, its efficiency compared to other
techniques has been proven.

Keywords: monocular depth estimation; hourglass neck module; swin transformer V2; masked
image modeling; deformable attention

1. Introduction

As the importance of the role of depth estimation technology increases in autonomous
driving, AR (Augmented reality)/VR (Virtual Reality), drones, and robots, the need for
research in the field of depth estimation is expanding. Prior to the activation of deep-
learning-based depth estimation, various sensors are used to add depth values when taking
images or estimate depth values by obtaining disparity with two or more camera lenses.
For example, the initial depth estimation relied on handcrafted features to estimate depth
through stereo matching and calibration, which had a disadvantage in that the performance
changed significantly depending on the difficulty of image processing, such as illumination
and color temperature.

With the recent development of hardware, depth estimation, a deep learning method,
is developing with high computing power. However, while wide-field and general-purpose
depth estimation is possible using high computing power and a transformer-based encoder,
it is still difficult to draw a detailed depth map by highlighting local characteristics. The
majority of transformer-based encoders utilize a self-attention mechanism, where self-
attention performs attention operations between a reference point, typically a pixel in an
image, and all other pixels within the image. Consequently, due to attention operations
spanning all regions of the image, there is a risk that local details may not be accentuated,
and nuanced depth representations may be obscured by global features.
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Therefore, in this paper, an hourglass neck is placed between the encoder and decoder
to strengthen the local feature map. Deformable attention is applied in the middle of the
neck module to focus more on local areas and extract more features. Since local features are
emphasized in the neck module, which extracts and proposes a global feature map from
the transformer stage of the encoder, this can help estimate the depth map, which is more
distinct and has a clear perspective, such as distinguishing between objects with differences
in depth and background. When monocular depth estimation was performed using the
hourglass neck module proposed in this paper, the RMSE was calculated to be 0.274. It can
be seen that the result is improved compared to the RMSE value of 0.287 without using the
hourglass neck module. This paper presents the related works in Section 2, a description
of the proposed method in Section 3, the results derived from the proposed method in
Section 4, and a discussion in Section 5.

2. Related Works

Recently, the use of a depth estimation method that combines stereo images and deep
learning has been increasing, breaking away from the classical depth estimation method.
The paper [1], published in 2017, carried out unsupervised stereo matching. This paper
applied random initialization to set the initial predicted left disparity and predicted right
disparity and performed a consistency check through learning to derive a confidence map.
The paper [2], published in 2018, produced a disparity map (depth map) by seamlessly
reflecting the overall contextual information of the image through CNN [3–5] and spatial
pyramid pooling (SPP) as an approach to stereo matching, but the edges of objects had a
lack of detailed representation.

On the other hand, the monocular depth estimation (MDE) field, which estimates
depth values from images acquired from monocular lenses, began to be adopted starting
with a paper [6] published in 2014. Depth was estimated from a single image using
two network stacks that subdivide their results locally. However, unlike stereo images,
MDE has difficulties with estimating the depth value only with local short information;
therefore, research is underway to build the depth and structure of the network used in the
learning model.

A paper [7] published in 2017 proposed a method for inferring right RGB images from
left RGB images, deviating from the existing perspective. A depth map was estimated by
calculating the disparity between the inferred right RGB image and the input left RGB
image. Similarly, a paper [8] published in 2019 proposed a method for obtaining the
disparity between one frame and the next frame by conducting learning using continuous
frames in an image sequence without using a ground-truth dataset.

On the other hand, a method for improving the quality of the estimated depth map
by combining unsupervised learning Cycle-GAN and segmentation was proposed in
a paper [9] published in 2020. This paper suggested that MDE is also possible with
unsupervised learning.

Over the past few years, much progress has been made in the field of MDE in reducing
the error rate of the estimated depth map and at the same time estimating or generating
a depth map similar to the actual ground truth. It could be argued that the paper [10]
proposed by Jin Han Lee et al. in 2019 presents an example of using CNN-based supervised
learning for MDE to derive compliance results. DeepLab’s atrous spatial pyramid pooling
(ASPP) [11], which has the structure of an encoder–decoder and can respond well to multi-
scale deep networks to widen the receptive field and enhance the features of the detailed
parts of the image, was applied. For the decoder, a local planar guidance (LPG) layer
was proposed, which effectively establishes a direct and explicit relationship between
the feature extracted from the encoder and the final output. In 2022, a paper by Zhenyu
Li et al. [12] sought to improve both the global and local features extracted from the encoder
through the HAHI (hierarchical aggregation heterogeneous integration) module. The
HAHI module consists of a self-attention module for the enhancement of features obtained
from hierarchical layers of the Swin Transformer and a cross-attention module for affinity
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modeling of features obtained from two heterogeneous encoder branches. The learning
model in the paper using the HAHI module consists of an encoder–HAHI module–decoder
structure, and the encoder consists of two branches: a Swin Transformer branch and a
CNN branch. The feature maps extracted from these two encoder branches were matched
in the HAHI module, and different heterogeneous features interacted and cross-attention
was performed, producing good results. Meanwhile, in 2023, a paper [13] published by
Zhenda Xie et al. introduced masked image modeling (MIM) into depth estimation. MIM
is a theory proposed to improve performance in various general-purpose tasks by using the
masked image as the transformer’s pre-training data in a situation where the transformer
is rapidly emerging as an encoder in various fields. The authors applied the pre-trained
model published in SimMIM [14] to the depth estimation task to derive the results of
compliance.

In this section, each of the previously introduced methods has been progressively
improving accuracy and generating high-quality depth maps. However, it is discerned that
there are areas where enhancements can be made. The potential improvements for each
system can be summarized as shown in Table 1.

Table 1. Possible improvements for each introduced method.

Method Possible Improvements Points

Unsupervised learning of
stereo matching [1] Dependency on initial predicted disparity

Pyramid stereo matching network [2] Lack of detailed object representation

Digging into self-supervised
monocular depth estimation [8] Operability of large and heavy networks

Cycle-GAN with segmentation [9] Relatively long learning time,
a characteristic of unsupervised learning

BTS [10] Dependency on decoder

Depthformer [12] Complexity of calculations

Depth estimation with
masked image modeling [13] Lack of detailed object representation

The reasons for suggesting the hourglass neck module in this paper are as follows.
First, in a transformer-based encoder with a self-attention module, the globality of the
feature map is emphasized and learned, while the locality of the feature map may be
relatively insufficient. However, by improving the locality of the feature map using the
hourglass neck module, the overall estimation accuracy of the depth map can be improved.
Second, the hourglass neck module applies deformable attention to the middle part. In
addition, it is a simple form that applies two convolution layers each before and after
deformable attention. This structure can refine the feature map extracted from the encoder
with lower computational cost and higher locality than self-attention.

3. Depth Estimation Method Using Hourglass Neck

Figure 1 outlines the proposed depth estimation method using the hourglass neck
module. The training process is shown in Figure 2.

First, after loading SimMIM’s pre-trained masked image modeling learning model,
a feature map for the input RGB image is extracted using Swin Transformer V2 [15]. The
attention value maintains a stable value because it performs an operation that is not
dependent on the amplitude of the input transformer block using scaled cosine attention.
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coder composed of the Swin Transformer V2 to extract a feature map. The extracted feature map is 
enhanced with local features through the hourglass neck module. The feature map with reinforced 
local features is input to the decoder to estimate the depth map. The calculated RMSE between the 
estimated depth map and the ground truth is computed. The training continues by adjusting the 
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Figure 1. Outline of the proposed depth estimation method; The RGB image passes through an
encoder composed of the Swin Transformer V2 to extract a feature map. The extracted feature map is
enhanced with local features through the hourglass neck module. The feature map with reinforced
local features is input to the decoder to estimate the depth map. The calculated RMSE between the
estimated depth map and the ground truth is computed. The training continues by adjusting the
weights until the calculated RMSE reaches the target value.
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Second, the feature map extracted from the encoder is delivered to the hourglass
neck to strengthen the local feature map. The middle of the neck module consists of
deformable attention, which allows it to focus on local areas and extract more features.
After extracting the global feature map from the encoder’s transformer stage, the neck
module emphasizes local features, which can help estimate the depth map with clearer
boundaries and more perspective, such as distinguishing between objects with differences
in depth and background.

Third, the depth map is estimated by inputting the extracted feature map into the
decoder. Since the estimated depth map needs to be compared with the ground truth, the
estimated depth map increases to 480 × 480 pixels, which is the spatial size of the input data
to the encoder of the learning model. Fourth, a comparison is performed with the estimated
depth map and the ground truth of the training dataset to calculate the scale-invariant Log
(SiLog) Loss that reduces loss when the distance between the two pixels on the estimated
depth map is similar.

Finally, the estimated depth map is evaluated by calculating the root mean square
error (RMSE) between the estimated depth map and ground truth. Learning proceeds in
the direction of making both the calculated SiLog Loss and RMSE close to zero.

Section 3 consists of four subsections, Section 3.1 explains feature map extraction using
swin transformer v2, Section 3.2 explains local feature map enhancement with hourglass
neck, Section 3.3 explains upsampling decoder, and Section 3.4 explains SiLog loss and
RMSE calculation.

3.1. Feature Map Extraction Using Swin Transformer V2

The Swin Transformer is a deep learning network created for image learning, and it
performs well, reducing the computational cost of performing self-attention by all patches,
which are disadvantages of the existing ViT. ViT makes each patch size 16 × 16 to maintain a
total of (224/16)2 = 196 patches, while the Swin Transformer takes the approach of merging
more and more patches from a small 4 × 4 patch size like a pyramid structure. Swin
Transformer V2 is an improved network to improve the Swin Transformer to be applied to
very large images and to effectively utilize pre-trained models learned with small-sized
models for transfer learning. Figure 3 shows the difference in the block between Swin
Transformer V1 and V2.

In Figure 3, Z, q, k, and v represent the input feature, query, key, and value in order,
and WQ, WK, and WV refer to the attention weight of the query, key, and value. In addition,
qkT in V1 is the attention result of the query and key, and this attention operation consists
of a matrix multiplication operation. Furthermore, instead of adding absolute coordinates
in the existing position embedding, the relative coordinate B is entered into Softmax. In
V2, scaled cosine attention is applied instead of the existing attention to perform cosine
operations on query and key. After that, it is scaled with a trainable scalar τ. The authors of
Swin Transformer V2 posit right after Equation (2), Section 3.2 in their paper, that the scalar
τ is not shared between the attention head and layers, and it is set to 0.01 or higher. Instead
of relative coordinates B in V1, Log-CPB refers to the relative bias that allows learning to
take place well in various window resolutions. The corresponding value is entered into
the MLP, the final bias is output, and it is entered into Softmax with the scaled cosine
attention result.

In addition, by moving the normalization layer from the beginning to the end of each
residual unit, the activation value is lowered, and by using scaled cosine attention instead
of the existing self-attention, the operation is performed regardless of the input amplitude,
so the attention value remains stable. In this paper, the pre-trained model of MIM is loaded
and applied to the model to learn the weight of the image. As shown in Figure 4, when
pretraining is performed on an image with a mask between objects and a mask between
the object and the background, the original signal (part of image) of the masked area is
predicted. This can have the effect of increasing the boundary line prediction bias from
the masked area in performing the monocular depth estimation (MDE). Therefore, these
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allow the MDE to be accurately performed in more diverse environments. Due to the recent
computing costs rising continuously, the demand for learning data is increasing, and the
depth of the learning model network is deepening. This further highlights the importance
and effectiveness of using the pre-trained model, and in this work, a learning model was
constructed using the SimMIM pre-trained model.
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Masked image modeling (MIM) is the task of masking and predicting a portion of
an input image. Random masking is performed on image patches, and the patch size is
32 × 32. The masking ratio is set randomly from 10% to 70%, and a raw pixel regression
task is applied to predict a raw image from the masked image.

In this paper, a feature map of size 1536 × 15 × 15 (dimension × height × width) is
extracted from RGB images randomly cropped to 480 × 480 using Swin Transformer V2
consisting of four stages. The reason for applying a random crop is not to lose diversity
in learning and to reduce the amount of computation. Figure 5 shows the feature map
extraction process using Swin Transformer V2.
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Figure 5. Feature map extraction process using Swin Transformer V2. The red square represents the
randomly cropped part of the image.

Table 2 shows the structure of Swin Transformer V2 used in this paper. Batch size (BS)
refers to the number of data samples the learning model trains on at one time. Therefore,
assuming that the size of one image is 3 × 480 × 480 and BS is 5, the amount of data input
to the learning model at one time is 5 × 3 × 480 × 480.

Table 2. Structure table of Swin Transformer V2 applied in this paper.

Stage Contents Count Output Size

0 Input RGB Image X Batch Size BS, 3, 480, 480

1
Linear Embedding X1

BS, 14,400, 192Swin Transformer Block X2

2
Patch Merging X1

BS, 3600, 384Swin Transformer Block X2

3
Patch Merging X1

BS, 900, 768Swin Transformer Block X6

4
Patch Merging X1

BS, 225, 1536Swin Transformer Block X2

- Normalize X1 BS, 1536, 15, 15

Swin Transformer
Block

Window Multi-Head Attention

X1 -

Layer Normalization
Multi-Layer Perceptron

Layer Normalization
Shifted Window

Multi-Head Attention
Layer Normalization

Multi-Layer Perceptron
Layer Normalization

3.2. Local Feature Map Enhancement with Hourglass Neck

The hourglass neck module is a neck module in the form of an hourglass and is
proposed to strengthen the locality [16] of the feature map extracted from the encoder’s
Swin Transformer V2. The transformer has the advantage of being able to use the weight
of the pre-trained model using a large amount of datasets and being able to grasp global
features well, and it can also be applied to general tasks. However, most transformer blocks
are made based on self-attention; the reference point performs attention operations on
all pixels in the image. Therefore, there is a disadvantage of not being able to utilize the
locality of the feature map well. Therefore, in this paper, the locality of the local feature
map is highlighted by proposing an hourglass neck module, with aim of contributing to the
accuracy of the final estimated depth map. Figure 6 shows the structure of the hourglass
neck module.
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Additionally, Figure 7 shows that the deformable attention of the hourglass neck
module can help express clear boundaries and distinguish objects from the background
when estimating the depth map. To give a brief example of the concept, assume that there
is a reference point expressed as a blue square at the center of the ceiling fan blade to
perform deformable attention. Deformable attention performs an attention operation only
on sampling points around this reference point. If deformable attention is performed on
the edge of an object in this way, the attention score of the object and the surrounding
background is bound to be significantly different from self-attention that calculates the
entire image.
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The hourglass neck module has the same input and output size as BS × 1536 × 15 × 15
(BS × D × H × W) so as not to lose the global features of the feature map extracted from
Swin Transformer V2. First, to reduce the computational cost [17], the dimension is reduced
to BS × 384 × 15 × 15 using the 1 × 1 convolution layer twice. This can be expressed as
Equation (1).

xconv = ReLU
(

Conv
(

Hx

4
,

Wx

4
, Conv

(
Hx

2
,

Wx

2
, x

)))
(1)

In Equation (1), x is the initial input feature map, and Hx and Wx are the height and
width sizes of the input feature, respectively. Therefore, Conv

(
Hx
2 , Wx

2 , x
)

means that a
1 × 1 convolution operation is taken with a size in which the output height and width are
half of the input feature map x.

By applying deformable attention to the center of the neck, the dimension of the input
reduced feature map is effectively modeled according to the guidance of the important
region. On the other hand, the equation of deformable attention used in this paper is shown
in Equation (2).

DeformAttn
(
zq, pq, x

)
= ∑M

m=1 Wm

[
∑K

k=1 Amqk · W ′
mx

(
pq + ∆pmqk

)]
(2)
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In Equation (2), x is the input feature map, q is the query element which is a weight
vector for the image pixel that is the subject of analysis, zq is the content feature of query
element q, Amqk indicates the kth attention weight in the mth attention head, W ′

m and Wm are
learnable weight pq is the reference point of query element q, m is the attention head index,
k is the sampling point index, and ∆pmqk is offset to add to the reference point; therefore,
pq + ∆pmqk becomes a sampling point. pq + ∆pmqk is fraction, bilinear interpolation is
applied. Both ∆pmqk and Amqk are obtained through linear projection of query feature zq.
zq is supplied to the linear projection operator of 3MK channels. The first 2MK channels
encode the sampling offset ∆pmqk, and the remaining MK channels are fed to the softmax
operator to obtain the attention weight Amqk. Using Equation (2), the feature map reduced
in dimensions in Equation (1) is input into deformable attention. This is expressed as
Equation (3).

xdeAttn = ReLU
(
DeformAttn

(
zq, pq, xconv

))
(3)

In Equation (3), the deformable attention result derived from Equation (2) passes
through the ReLU function and becomes the feature map xdeAttn. After that, the dimension
is expanded twice again using the 1 × 1 convolution layer. The feature map extracted by
performing deformable attention is used as an input, which is expressed as Equations (4)
and (5). In Equation (4), 2 × HxdeAttn and 2 ×WxdeAttn are the Height and Width, respectively,
derived from the input feature map xdeAttn passing through the deconvolution layer.

xDeconv = ReLU
(
Deconv

(
2 × HxdeAttn , 2 × WxdeAttn , xdeAttn

))
(4)

xout = ReLU
(

Deconv
(
4 × HxdeAttn , 4 × WxdeAttn , xDeconv

))
(5)

Finally, before inputting into the hourglass neck module for the first time, the feature
x and the neck module operation result xout are summed and input to the ReLU function.
This is as shown in Equation (6).

out = ReLU(xout + x) (6)

In this work, in order not to lose the globality of the feature map extracted from Swin
Transformer V2, the first tensor input to the hourglass neck is cloned and the sum operation
is performed with the output tensor after the operation of the hourglass neck is completed.
Finally, after entering the result of the sum operation into the ReLU function, the result
value is transferred to the decoder. The ReLU function is a nonlinear activation function
that outputs positive values as they are and negative values as zero, with homogeneity but
no additionality. By outputting a negative value as 0, the operation is executed faster, and
the convergence speed of Loss is very fast because the output value range is wide.

3.3. Upsampling Decoder

The decoder is composed of a universal deconvolution layer, convolution layer, and
upsampling layer. Figure 8 shows the structure of the decoder used in this paper.

The decoder used in this paper is based on the structure of the paper [18] proposed
by Kim Doyeon et al. First, the input feature map of BS × 1536 × 15 × 15, which has
passed through the Hourglass Neck module, is input into the Deconvolution block. The
deconvolution block consists of three layers, and when passing through the block, the
map is reduced in dimension to BS × 32 × 120 × 120 × 120, and the size increases. Then,
using the convolution layer, the height and width of the feature map are fixed, and the
dimension is extended to 192 only. This is because if expansion to the same size as the image
input rapidly to the initial model is attempted while the dimension is expended, there is a
possibility that the feature map with the reduce the density of meaningful data [19]. The
feature map, which passes through the convolution layer, sets the scale factor to 2 and
passes through the upsampling layer twice to restore the size of HxW to the same size
as the initial model. The final depth map estimation is then performed through the last
Conv-ReLU-Conv-Sigmoid layer.
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3.4. SiLog Loss and RMSE Calculation

In this paper, the scale-invariant Log (SiLog) Loss function is used as the Loss function.
The SiLog Loss function compares the estimated depth map with the ground truth of the
training dataset to reduce loss when the distance between the two pixels on the estimated
depth map is similar to the ground truth. Equation (7) represents the scale-invariant Log
Loss function.

L(y, y∗) =
1
n∑i{log(yi)− log(y∗i )}

2 − λ

n2

{
∑i log(yi)− log(y∗i )

}2
(7)

In Equation (7), n is the total number of pixels, and i is the index of the corresponding
pixel. di is the log(yi) applied to the estimated depth map minus the log(y*

i ) applied to the
depth map, which is the ground truth. Referring to Equation (4) of the paper proposed by
Eigen et al. [6], λ is set to 0.5 to operate as a loss function with scale invariance.

Meanwhile, the root mean square error (RMSE) is used to evaluate the estimated depth
map. The equation of RMSE is shown in Equation (8).

RMSE =
√

MSE (8)

The RMSE function is a function that puts the root on the mean square error (MSE)
function. The equation of the MSE function is shown in Equation (9).

MSE =
1
n∑n

i=1(yi − y∗i )
2 (9)

In Equation (9), yi is the predicted value of the pixel i estimated depth map, and y*
i is

the real value of pixel i ground-truth. n is the total number of pixels of the depth map. In
addition, since the dataset usually dealt with in deep learning is vast and often large, the
value of MSE sometimes becomes too large when the error agreement value is calculated to
be very large. Therefore, for reasons such as a decrease in computational speed, the RMSE
function that puts the root on the MSE function is used instead of the general MSE function.
Learning is continued by updating the weight values until the RMSE and SiLog functions
reach the target value.

Figure 9 is a loss graph of the SiLog function calculated while learning Epoch 60 using
the NYU Depth V2 dataset [20]. The system learned 24,231 images pair, while 654 pair test
sets were used for validation.
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The code corresponding to this paper can be found at the following address and access
on 2 February 2024: https://github.com/TGFLOPS/Hourglass-MDE.

4. Results

To evaluate the objective reliability of the proposed method in this paper, the experi-
ment was conducted using the NYU Depth V2 dataset. The RGB image is retrieved from
the NYU Depth V2 dataset and entered into an encoder consisting of Swin Transformer
V2 to extract the feature map. The extracted feature map reinforces locality using the
hourglass neck module. After that, the SiLog Loss and RMSE for the estimated depth map
are calculated by entering the upsampling decoder to calculate the result.

The NYU Depth V2 dataset was a standard dataset built and released by New York
University with Kinect camera from Microsoft, Washington, USA, which was used as
a comparative benchmark in existing papers. The NYU Depth V2 dataset consists of a
training set of 24,231 RGB and depth ground-truth images pair in 26 indoor locations and
a test set of 654 RGB and depth ground-truth images pair. In this paper, 654 test sets of
16 categories were used as shown in Table 3 to construct and evaluate the same environment
based on the results performed in comparative papers. Figure 10 shows an example image
of the NYU Depth V2 dataset used in this paper, and Figure 11 shows the depth map
estimated using the proposed method and the NYU Depth V2 dataset. In Figure 11, the
black area at the edge of the ground truth photo taken with a kinetic camera is caused by
the disparity in the ground truth data between the left and right lenses of the camera. The
estimated depth figures are the result of normalizing and colorizing the original depth map
generated by the learning model for visibility.

Table 3. Test set in 16 categories of NYU Depth V2 dataset.

Place Amount of Pair Data

Bathroom 58

Bedroom 191

Bookstore 11

Classroom 23

Computer lab 3

Dining room 55

https://github.com/TGFLOPS/Hourglass-MDE
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Table 3. Cont.

Place Amount of Pair Data

Foyer 2

Home office 24

Kitchen 106

Living room 107

Office 38

Office kitchen 4

Playroom 14

Reception room 5

Study 11

Study room 2
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The hardware used in the experiment described in this paper consists of Intel(R)
Xeon(R) Silver 4214R 2.4 GHz CPU, 128 GB of RAM, and NVIDIA GeForce RTX A6000
(VRAM 48 GB) GPU. Experiments were conducted using the Ubuntu 20.04 operating
system, using Visual Studio Code and Python 3.8.10. The main libraries used were CUDA
11.3, cuDNN v8.4.1, Pytorch 1.11.0, etc.

In order to evaluate the objective performance of the monocentric depth estimation
using the hourglass neck module proposed in this paper, we compared and evaluated
the methods published in other papers using the NYU Depth V2 dataset. RMSE was
used as an accuracy evaluation metric. Table 4 shows the comparison results of the NYU
Depth V2 dataset between the proposed method in this paper and the methods published
in other papers, and the RMSE was adjusted to three decimal places. The proposed
method performed monocular depth estimation by applying the hourglass neck module
and produced excellent results with an RMSE of 0.274. The absolute relative error (AbsRel)
also means that the lower the value, the better the quality of the estimated depth map.
The δ1, δ2 and δ3 values indicate a better depth estimation method: the higher the better.
δ1, δ2 and δ3 metrics represent the ratio between the larger and smaller values among
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the predicted and true values. In this context, a threshold is employed, and if the ratio is
smaller than the threshold, it is considered a True Positive. In the majority of MDE papers,
the threshold values are denoted as δ1 = 1.25, δ2 = 1.252, and δ3 = 1.253. Table 5 shows the
results of not applying monocular depth estimation and the hourglass neck module with
the hourglass neck module. Furthermore, we measured the total number of parameters in
the learning model when utilizing and not utilizing the Hourglass Neck module to compare
computation costs. The utilization of the Hourglass Neck module yielded improved results,
and the increase in the number of parameters was marginal.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 18 
 

 

 
Figure 11. Depth estimation results of the images from the NYU Depth V2 dataset. 

The hardware used in the experiment described in this paper consists of Intel(R) 
Xeon(R) Silver 4214R 2.4 GHz CPU, 128 GB of RAM, and NVIDIA GeForce RTX A6000 
(VRAM 48 GB) GPU. Experiments were conducted using the Ubuntu 20.04 operating sys-
tem, using Visual Studio Code and Python 3.8.10. The main libraries used were CUDA 
11.3, cuDNN v8.4.1, Pytorch 1.11.0, etc. 

In order to evaluate the objective performance of the monocentric depth estimation 
using the hourglass neck module proposed in this paper, we compared and evaluated the 
methods published in other papers using the NYU Depth V2 dataset. RMSE was used as 
an accuracy evaluation metric. Table 4 shows the comparison results of the NYU Depth 
V2 dataset between the proposed method in this paper and the methods published in 
other papers, and the RMSE was adjusted to three decimal places. The proposed method 
performed monocular depth estimation by applying the hourglass neck module and pro-
duced excellent results with an RMSE of 0.274. The absolute relative error (AbsRel) also 
means that the lower the value, the better the quality of the estimated depth map. The δ1, 
δ2 and δ3 values indicate a better depth estimation method: the higher the better. δ1, δ2 
and δ3 metrics represent the ratio between the larger and smaller values among the pre-
dicted and true values. In this context, a threshold is employed, and if the ratio is smaller 
than the threshold, it is considered a True Positive. In the majority of MDE papers, the 
threshold values are denoted as δ1 = 1.25, δ2 = 1.252, and δ3 = 1.253. Table 5 shows the 
results of not applying monocular depth estimation and the hourglass neck module with 
the hourglass neck module. Furthermore, we measured the total number of parameters in 
the learning model when utilizing and not utilizing the Hourglass Neck module to com-
pare computation costs. The utilization of the Hourglass Neck module yielded improved 
results, and the increase in the number of parameters was marginal. 

  

Figure 11. Depth estimation results of the images from the NYU Depth V2 dataset.

Table 4. Results of the RMSE for the proposed method and those from other papers on images from
the NYU Depth V2 dataset.

Method RMSE↓ AbsRel↓ δ1↑ δ2↑ δ3↑ #Params↓
Depthformer [12] 0.339 0.096 0.921 0.989 0.998 273 M

GLPDepth [17] 0.344 0.098 0.915 0.988 0.997 62 M

BTS [9] 0.407 0.110 0.885 0.978 0.994 47 M

DPT [21] 0.356 0.110 0.904 0.988 0.998 225 M

MIM-Depth-
Estimation [13] 0.287 0.083 0.949 0.994 0.999 148 M

The Proposed Method 0.274 0.097 0.953 0.994 0.999 151 M

Table 5. Results of the proposed method with and without the hourglass neck module applied.

Method RMSE↓ AbsRel↓ δ1↑ δ2↑ δ3↑ #Params↓
Without Hourglass

Neck Module 0.288 0.087 0.953 0.993 0.998 148 M

The Proposed Method 0.274 0.097 0.953 0.994 0.999 15 1M
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The arrow symbols in Tables 4–6 indicate the directionality of each evaluation metric.
If the arrow points downward, it signifies that a lower value of the corresponding metric
reflects better performance of the learning model. Conversely, if the arrow points upward,
it indicates that a higher value of the evaluation metric represents superior performance of
the learning model.

Table 6. Results of the proposed method for the local region with and without the hourglass neck
module applied.

Method RMSE↓ AbsRel↓ δ1↑ δ2↑ δ3↑
Without Hourglass

Neck Module 1.031 0.110 0.934 0.999 0.999

The Proposed Method 1.128 0.125 0.891 0.999 0.999

Figure 12 presents a graph showing the results of the comparative evaluation of the
RMSE. The RMSE value of the proposed method was lower than that of the methods
published in other papers. The RMSE value indicates that the closer the value is to zero,
the better it is compared to the methods published in other papers.
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Figure 12. Comparison of the RMSE value of the proposed method and the RMSE values of methods
presented in other papers on images from the NYU Depth V2 dataset.

Figure 13 presents the result of estimating the depth map from real-life photos rather
than the NYU Depth V2 dataset using the proposed method; Figure 14 shows the result of
comparing the method in Table 3 with the local depth estimation. It can be seen that the
local depth estimation of the proposed method, as indicated by the red box, performed well.

Additionally, to substantiate the improvements of the proposed method, we conducted
comparisons by focusing solely on the region corresponding to the red box in Figure 14,
comparing it with the ground truth. The results for this analysis are presented in Table 6.
Due to the reduction in size of the evaluation region compared to the original NYU Depth
V2 dataset images, there may be variations in the scale of each metric result value. Also,
the corresponding input data in Table 6 is the result of comparing the png files of the Depth
Map output from each method. However, both methods were compared against the same
region of the ground truth.
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The following and final section, Section 5, briefly explains the methodology of this
paper and future research directions.

5. Discussion

In this paper, a novel method for monocular depth estimation using the hourglass
neck module was proposed. The proposed method extracts a feature map from Swin
Transformer V2 using the MIM pre-trained model. Swin Transformer V2 has a different
patch size for each attention stage, so it is easier to extract local and global features from
images input by the vision transformer (ViT)-based encoder. To refine and maintain the
polymorphism and local inductive bias of the feature map extracted from the attention head
of Swin Transformer V2, feature maps are passed through the hourglass neck to aid model
learning. In addition, deformable attention can be used in the middle of the hourglass
neck module to reduce the computational cost and highlight the locality of the feature
map. The feature map passing through the neck passes through a decoder consisting of
a deconvolution layer and an upsampling layer to estimate the depth map. The accuracy
of the method proposed in this paper and those published in other papers was compared.
In order to evaluate the objective reliability of the comparison results, the NYU Depth V2
dataset, which is a published standard dataset, was used for experimentation. The RMSE
value of the method proposed in this paper was calculated as 0.274, and the lower the value,
the better the result, so the superior efficiency of the performance was proven in the results
of monocular depth estimation compared to that of the methods published in other papers.

On the other hand, the proposed method exhibited improved results compared to
existing methods, albeit marginally, and incurred a slight increase in computation cost.
Minimizing the increase in computation cost while finding the threshold that maximally
enhances the performance of the learning model seems crucial.

According to recent publications, achieving highly satisfactory results involves addi-
tional training on a significantly large scale of unlabeled data [22] or incorporating semantic
segmentation [23]. The outcomes are very promising; however, as the models and data
in these papers are progressively increasing in size, the computation cost is also on the
rise. Without additional data, it seems plausible to anticipate improvements in results by
applying semantic segmentation to the existing Swin Transformer V2-based learning model
network used in this paper. As for the future research direction, it is considered necessary
to estimate the depth map without relying too much on the weight on the feature map
produced by the transformer. The reason is that only Swin Transformer V2 was used for
the encoder in this paper, and the transformer requires a large quantity of learning data to
learn to perform above the threshold. Therefore, the pre-trained model is essential because
the weight of the MIM pre-trained model is too large to detect the local feature map well.
In addition, research is needed to increase the accuracy of the monocular depth estimation
results to the actual measurement level. Finally, research in the relevant field is needed so
that it can be combined with fields such as AR and VR through the depth map estimated in
this paper.
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