
Citation: Stathatos, E.; Tzimas, E.;

Benardos, P.; Vosniakos, G.-C.

Convolutional Neural Networks for

Raw Signal Classification in CNC

Turning Process Monitoring. Sensors

2024, 24, 1390. https://doi.org/

10.3390/s24051390

Academic Editor: Yan Pang

Received: 5 January 2024

Revised: 19 February 2024

Accepted: 19 February 2024

Published: 21 February 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Convolutional Neural Networks for Raw Signal Classification in
CNC Turning Process Monitoring
Emmanuel Stathatos, Evangelos Tzimas, Panorios Benardos * and George-Christopher Vosniakos

Manufacturing Technology Laboratory, School of Mechanical Engineering, National Technical University of
Athens, Heroon Polytechniou 9, GR15772 Athens, Greece; mstatha@mail.ntua.gr (E.S.);
v_tzimas@mail.ntua.gr (E.T.); vosniak@central.ntua.gr (G.-C.V.)
* Correspondence: pbenard@mail.ntua.gr; Tel.: +30-210-772-1799

Abstract: This study addresses the need for advanced machine learning-based process monitoring
in smart manufacturing. A methodology is developed for near-real-time part quality prediction
based on process-related data obtained from a CNC turning center. Instead of the manual feature
extraction methods typically employed in signal processing, a novel one-dimensional convolutional
architecture allows the trained model to autonomously extract pertinent features directly from the raw
signals. Several signal channels are utilized, including vibrations, motor speeds, and motor torques.
Three quality indicators—average roughness, peak-to-valley roughness, and diameter deviation—are
monitored using a single model, resulting in a compact and efficient classifier. Training data are
obtained via a small number of experiments designed to induce variability in the quality metrics by
varying feed, cutting speed, and depth of cut. A sliding window technique augments the dataset
and allows the model to seamlessly operate over the entire process. This is further facilitated by the
model’s ability to distinguish between cutting and non-cutting phases. The base model is evaluated
via k-fold cross validation and achieves average F1 scores above 0.97 for all outputs. Consistent
performance is exhibited by additional instances trained under various combinations of design
parameters, validating the robustness of the proposed methodology.

Keywords: industry 4.0; smart manufacturing; process monitoring; signal processing; deep learning;
part quality prediction; CNC machining

1. Introduction

Industry 4.0 is characterized by the integration of digital technologies, including
Big Data, the Internet of Things, Machine Learning (ML), and cyber-physical systems
into manufacturing [1,2]. Cyber-physical systems often appear in the form of Digital
Twins, which typically incorporate advanced ML models for monitoring individual
machines [3,4] or broader systems [5,6]. These models carry out real-time inference
based on data collected from the physical assets, in order to evaluate the monitored
system’s status and even propose corrective actions when needed [7]. CNC machine
tools are prime candidates for integration with such process monitoring models. The
machine tool provides useful process-related data in the form of signals, and the model
uses these signals to predict outcomes, such as quality metrics of the produced parts [8]
and equipment health [9].

Signals have been widely used as model inputs in the domains of machine health
monitoring and predictive maintenance. The typical procedure involves hand-crafted
feature design in the time, frequency, or time–frequency domain, followed by feature
extraction from the signals and model training [10]. This methodology has been employed
in manufacturing for part quality characterization [11,12], chatter identification [13,14], tool
wear prediction [15,16], and tool breakage detection [17]. However, manual feature design
requires deep expert knowledge, is strictly application specific, and can lead to poor model

Sensors 2024, 24, 1390. https://doi.org/10.3390/s24051390 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24051390
https://doi.org/10.3390/s24051390
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4484-8359
https://doi.org/10.3390/s24051390
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24051390?type=check_update&version=2

Sensors 2024, 24, 1390 2 of 24

performance due to inadequate information representation [18], especially for complex
domains and multi-sensor setups.

Deep Learning (DL) offers powerful modeling technologies to alleviate these issues, ei-
ther in combination with traditional techniques or as standalone alternatives [10]. The most
prominent types of DL models are Recurrent Neural Networks (RNNs) and Convolutional
Neural Networks (CNNs). RNNs had been the standard for processing sequential data be-
fore Transformers emerged in 2017 [19]. These networks capture the temporal relationships
of the elements in their input and have been successfully applied in tasks such as time-series
classification, prediction, and language processing. However, they face difficulties with
long sequences due to memory limitations and the vanishing or exploding gradients prob-
lem [20]. Long Short-Term Memory networks (LSTMs), a more advanced form of RNNs,
offer improvements but they still struggle with processing high-rate signals, such as the
ones common in industrial applications. For this reason, they must typically be combined
with a feature extraction step [21,22], focusing on learning temporal dependencies between
features instead of the elements of the raw input.

CNNs operate by extracting local information from the input arrays in the form of
feature maps [20,23]. With each successive convolutional layer, these feature maps detect
increasingly complex patterns that underlie the specific characteristics of the input data.
Due to this capability, CNNs have contributed significantly to the Artificial Intelligence
boom of the 2010s. They find diverse applications, from image recognition [24–26] to
state representation in sophisticated reinforcement learning frameworks [27,28].

In process monitoring, CNNs offer the potential to avoid the manual feature design
and extraction steps in favor of adaptive and arbitrarily rich feature representations,
which are integrated in the model itself. Since most CNN architectures were originally
designed for two-dimensional (2D) images, transforming signal data into 2D form was
a logical approach. In CNC turning, Ibarra-Zarate et al. [29] used 2D CNNs on images
of the Mel-Frequency Cepstral Coefficients obtained from acoustic emissions to predict
surface roughness. Kuo et al. [30] applied 2D CNNs on fractional order chaos maps
of vibration data for chatter detection. Hanchate et al. [31] proposed a framework for
predicting average surface roughness in CNC grinding, employing 2D CNNs on time–
frequency spectrogram frames of vibration signals. Furthermore, they implemented
an explainable AI methodology to identify the most pertinent time–frequency bands
influencing the predictions. A similar technique was used by Tran, Liu, and Tran [32] to
detect chatter in CNC milling. They applied 2D CNNs on scalograms of the continuous
wavelet transform of cutting force signals to classify cutting regions as stable, transitive,
or unstable. Kounta et al. [33] focused on chatter prediction via transfer learning. They
developed a classifier by fine-tuning pretrained deep 2D CNNs on the normalized Fast
Fourier Transform (FFT) images of vibration data. Transfer learning was also employed
by Unver and Sener [34] on intrinsic mode functions of cutting force signals. They
proposed a combination of 2D CNNs and analytical solutions of the stability boundary
for chatter detection in shoulder milling.

CNNs, however, are not restricted to 2D inputs. Signals are one-dimensional (1D)
arrays and using 1D convolutions on them removes a preprocessing step while retaining
all feature extraction abilities. Additionally, working with 1D data can result in more
lightweight models that run faster and require less memory. In the industrial domain,
1D CNNs have been successfully applied to fault detection in rotating machinery, either
directly on the raw time-series data [35–38] or on frequency-domain data, obtained after
applying the FFT [39,40].

This approach has recently started gaining traction in manufacturing, predominantly
in CNC milling. Zhang et al. [41] employed CNNs with 1D-adapted inception modules and
residual blocks for chatter identification based on raw cutting force signals. Lu et al. [42]
developed vibration-based 1D CNN models to predict chatter during milling of thin-
walled parts. The CNNs are assisted by an attention mechanism that adaptively identifies
information-rich frequency bands, while reducing noise interference. Huang and Lee [43]

Sensors 2024, 24, 1390 3 of 24

applied 1D CNNs to raw vibration, acoustic emission, and spindle current signals to
estimate tool wear and surface roughness development. They trained separate models
for each metric and performed an influential sensor selection analysis, which preserves
estimation accuracy. Lin et al. [44] also developed 1D CNN regression models for surface
roughness and reported the superior performance of CNNs when directly compared with
FFT feature extractors.

From the above analysis, it is evident that in the realm of process monitoring there is
a recent trend to move away from manual feature extraction methods, with deep learning
approaches that employ CNNs showing promising results. Much of the research has
focused on chatter detection and tool wear prediction. In terms of part quality, surface
roughness has garnered considerable interest while there is a lack of attention to other
important quality indicators, such as dimensional accuracy. Regarding implementation,
the majority of classification models are binary, for example, detecting stable or unstable
cut. Regression models can effectively work only when the machine is actively cutting.
To the authors’ best knowledge, all individual models monitor a single metric.

This study addresses the need for part quality prediction in the context of a process
monitoring framework in manufacturing. Recognizing the limitations of traditional
feature extraction methods, the proposed methodology employs 1D CNNs on raw time
series data from a CNC turning center, including vibrations, motor speeds, and motor
torques, see Figure 1. Training data are acquired via a small number of experiments with
varying process conditions to produce variability in the monitored metrics. A sliding
window technique augments the dataset and allows for continuous monitoring of the
entire process. Three quality metrics are selected: arithmetic average roughness (Ra),
average peak-to-valley roughness (Rz) [45], and diameter deviation from the nominal
value. The classification approach allows for the incorporation of labels not necessarily
related to quality assessment. In this case, the model can detect when the machine is
not cutting, eliminating the need for external triggers to initiate the inference process.
All three metrics, including the non-cutting condition, are monitored by a single model,
resulting in an efficient and easily deployable process monitoring framework. Further-
more, several instances of the model are trained for various combinations of design
parameters, validating the robustness of the methodology and network architecture
under various conditions.

The rest of the paper is organized as follows: Section 2 details the equipment and
experimental procedure and presents the experimental data. It also delves into the
mapping between signals and quality measurements. Section 3 analyzes the design of
the classes, the preparation of data for neural network training, and outlines the network
architecture. Section 4 presents and discusses the model’s performance under various
conditions, including multiple combinations of design parameters, reduced input from a
subset of available signal channels, and alternative definitions of classes. A datastream
simulation demonstrates the model’s capability to closely follow a machining process in
near-real-time. Section 5 highlights the main conclusions of the study and ends with a
discussion on potential future work.

Sensors 2024, 24, 1390 4 of 24
Sensors 2024, 24, x FOR PEER REVIEW 4 of 25

Figure 1. Overview of the proposed methodology: (a) Training phase; (b) Operation phase.

The rest of the paper is organized as follows: Section 2 details the equipment and
experimental procedure and presents the experimental data. It also delves into the map-
ping between signals and quality measurements. Section 3 analyzes the design of the clas-
ses, the preparation of data for neural network training, and outlines the network archi-
tecture. Section 4 presents and discusses the model’s performance under various condi-
tions, including multiple combinations of design parameters, reduced input from a subset
of available signal channels, and alternative definitions of classes. A datastream simula-
tion demonstrates the model’s capability to closely follow a machining process in near-
real-time. Section 5 highlights the main conclusions of the study and ends with a discus-
sion on potential future work.

2. Experimental Setup
2.1. Machine Tool and Instrumentation

Machining experiments were conducted on an OkumaTM LB10II turning center,
equipped with an OSP700L controller, as shown in Figure 2. The machine tool has a max-
imum turning diameter of 170 mm, a maximum part length of 300 mm, a maximum spin-
dle speed of 10,000 RPM, and 12 turret positions. It has a serial port with DNC capability,
which is used to load the G-code. The cutting inserts used are Sandvik CoromantTM
CNMG 12 04 08-MR 4305, mounted on a Sandvik CoromantTM PCLNR 2020K 12 tool
holder.

Figure 1. Overview of the proposed methodology: (a) Training phase; (b) Operation phase.

2. Experimental Setup
2.1. Machine Tool and Instrumentation

Machining experiments were conducted on an OkumaTM LB10II turning center,
equipped with an OSP700L controller, as shown in Figure 2. The machine tool has a maxi-
mum turning diameter of 170 mm, a maximum part length of 300 mm, a maximum spindle
speed of 10,000 RPM, and 12 turret positions. It has a serial port with DNC capability,
which is used to load the G-code. The cutting inserts used are Sandvik CoromantTM CNMG
12 04 08-MR 4305, mounted on a Sandvik CoromantTM PCLNR 2020K 12 tool holder.

The machine tool lacks connectivity for providing real-time process data such as
spindle rotational speed (RPM), axes linear velocities, and cutting forces. To address this,
a direct connection was made to the machine controller mainboard, which provides raw
analog signals for motor speeds and torques. The signals for motor speeds correspond to the
spindle’s rotation speed and the linear velocities of the X (radial) and Z (longitudinal) axes.
Motor torques correlate with cutting force components. Connection to the controller pins
was established using hook-type connectors, see Figure 3a. The other ends of the connectors
were soldered to a 10-pin port bolted in a slot that was cut in the machine cover. In essence,
the machine tool was fitted with a custom-created port, facilitating straightforward physical
access to the controller’s raw analog signals for the data acquisition system.

Sensors 2024, 24, 1390 5 of 24Sensors 2024, 24, x FOR PEER REVIEW 5 of 25

Figure 2. OKUMA LB10ii turning center.

The machine tool lacks connectivity for providing real-time process data such as
spindle rotational speed (RPM), axes linear velocities, and cutting forces. To address this,
a direct connection was made to the machine controller mainboard, which provides raw
analog signals for motor speeds and torques. The signals for motor speeds correspond to
the spindle’s rotation speed and the linear velocities of the X (radial) and Z (longitudinal)
axes. Motor torques correlate with cutting force components. Connection to the controller
pins was established using hook-type connectors, see Figure 3a. The other ends of the
connectors were soldered to a 10-pin port bolted in a slot that was cut in the machine
cover. In essence, the machine tool was fitted with a custom-created port, facilitating
straightforward physical access to the controller’s raw analog signals for the data acquisi-
tion system.

(a) (b)

Figure 3. (a) Connections to machine controller; (b) DAQ and amplifiers.

Figure 2. OKUMA LB10ii turning center.

Sensors 2024, 24, x FOR PEER REVIEW 5 of 25

Figure 2. OKUMA LB10ii turning center.

The machine tool lacks connectivity for providing real-time process data such as
spindle rotational speed (RPM), axes linear velocities, and cutting forces. To address this,
a direct connection was made to the machine controller mainboard, which provides raw
analog signals for motor speeds and torques. The signals for motor speeds correspond to
the spindle’s rotation speed and the linear velocities of the X (radial) and Z (longitudinal)
axes. Motor torques correlate with cutting force components. Connection to the controller
pins was established using hook-type connectors, see Figure 3a. The other ends of the
connectors were soldered to a 10-pin port bolted in a slot that was cut in the machine
cover. In essence, the machine tool was fitted with a custom-created port, facilitating
straightforward physical access to the controller’s raw analog signals for the data acquisi-
tion system.

(a) (b)

Figure 3. (a) Connections to machine controller; (b) DAQ and amplifiers. Figure 3. (a) Connections to machine controller; (b) DAQ and amplifiers.

For the acquisition of vibration signals, two single-axis accelerometers were used: a
KISTLER Type 8640A50 with a ±50 g range and a KISTLER Type 8704B500 with a ±500 g
range. Ideally, accelerometers would be mounted directly on the tool holder. However,
the presence of a turret, which rotates to change tools, renders this approach unsafe.
Additionally, equipping each potential tool required for a given process scenario with
dedicated accelerometers is prohibitively costly for a practical application. The proposed
solution involves mounting the accelerometers behind the turret using a common magnetic
base, see Figure 4a, aligning their axes of measurement with the axes of the turning center (X
and Z). The exact placement of the accelerometers is not critical. However, it is crucial that
they remain stationary once installed, as moving them would alter the signal characteristics
between runs, impacting both experimental results and operational monitoring. This
placement results in vibrations traveling through a kinematic chain containing multiple

Sensors 2024, 24, 1390 6 of 24

structural elements of the machine before reaching the sensors. Consequently, the signals
are weakened, and the readings obtained do not correspond exclusively to vibrations on
the expected axis. Instead, the vibrations detected are vectors with components from all
axes, indicating a more complex signal composition. The hypothesis behind this sensor
placement was that crucial process characteristics are retained in the signal, and neural
networks would be capable of discerning them. Successfully training these models should
demonstrate their robustness, even when relying on far from ideal input data.

Sensors 2024, 24, x FOR PEER REVIEW 6 of 25

For the acquisition of vibration signals, two single-axis accelerometers were used: a
KISTLER Type 8640A50 with a ±50 g range and a KISTLER Type 8704B500 with a ±500 g
range. Ideally, accelerometers would be mounted directly on the tool holder. However,
the presence of a turret, which rotates to change tools, renders this approach unsafe. Ad-
ditionally, equipping each potential tool required for a given process scenario with dedi-
cated accelerometers is prohibitively costly for a practical application. The proposed so-
lution involves mounting the accelerometers behind the turret using a common magnetic
base, see Figure 4a, aligning their axes of measurement with the axes of the turning center
(X and Z). The exact placement of the accelerometers is not critical. However, it is crucial
that they remain stationary once installed, as moving them would alter the signal charac-
teristics between runs, impacting both experimental results and operational monitoring.
This placement results in vibrations traveling through a kinematic chain containing mul-
tiple structural elements of the machine before reaching the sensors. Consequently, the
signals are weakened, and the readings obtained do not correspond exclusively to vibra-
tions on the expected axis. Instead, the vibrations detected are vectors with components
from all axes, indicating a more complex signal composition. The hypothesis behind this
sensor placement was that crucial process characteristics are retained in the signal, and
neural networks would be capable of discerning them. Successfully training these models
should demonstrate their robustness, even when relying on far from ideal input data.

(a) (b)

Figure 4. (a) Placement of accelerometers behind the machine tool turret; (b) Platform for measure-
ment of surface roughness.

The accelerometers were connected to KISTLER amplifiers (Type 5118B2) using low-
noise coaxial cables to ensure high-quality signal transmission. A 10× gain was selected
for the second, lower sensitivity accelerometer to bring both sets of readings to the same
scale. Accelerometer and motor signals were passed through an ADVANTECH USB DAQ
(Type USB-4711A) as shown in Figure 3b to ensure signal synchronization and to facilitate
connection to a PC gateway via USB port. The DAQNavi software (version 4.0.9.0) was
employed for signal acquisition.

Signals were recorded with a sampling rate of 1 kHz. All types of acquired signals
along with the respective DAQ channels are presented in Table 1.

Figure 4. (a) Placement of accelerometers behind the machine tool turret; (b) Platform for measure-
ment of surface roughness.

The accelerometers were connected to KISTLER amplifiers (Type 5118B2) using low-
noise coaxial cables to ensure high-quality signal transmission. A 10× gain was selected
for the second, lower sensitivity accelerometer to bring both sets of readings to the same
scale. Accelerometer and motor signals were passed through an ADVANTECH USB DAQ
(Type USB-4711A) as shown in Figure 3b to ensure signal synchronization and to facilitate
connection to a PC gateway via USB port. The DAQNavi software (version 4.0.9.0) was
employed for signal acquisition.

Signals were recorded with a sampling rate of 1 kHz. All types of acquired signals
along with the respective DAQ channels are presented in Table 1.

Table 1. DAQ setup with acquired signals and respective axes.

DAQ channel 2 3 4 5 6 7 8 9

Axis Spindle Spindle Z Z X X X Z

Signal (V) Torque Speed Velocity Torque Velocity Torque Vibration Vibration

Source Machine controller Accelerometers

Part quality measurements were carried out manually using relevant instruments after
each cut and without removing the part from the spindle. Part diameter was measured
with a TesaTM Micromaster digital CAPA µ micrometer. For surface roughness, a Taylor
HobsonTM Surtronic 3+ was employed, mounted on a custom jig with a magnetic base, see
Figure 4b. This setup enabled quick and stable mounting and easy dismounting after each
set of measurements.

2.2. Experimental Procedure

The experimental strategy involves taking longitudinal passes of a specific length on
cylindrical workpieces, using various combinations of process parameters, namely depth of

Sensors 2024, 24, 1390 7 of 24

cut, feed, and cutting speed, and recording the signals described in Section 2.1. After each
pass, the process is halted, and manual quality measurements are performed at specific
positions along the workpiece. For surface roughness metrics, Ra and Rz are selected. For
dimensional accuracy, the part diameter is measured, which allows for the calculation of
diameter deviation (Ddev) from the nominal value, as specified by the G-code.

The bar stock material is CK45 steel with an initial diameter of 32 mm and a total length
of 75 mm. The machined length is set to 45 mm, allowing for the clamping of the workpiece
to the chuck and providing some leeway for safety. Quality measurements are taken from
three regions, each 15 mm long, denoted as L1, L2, and L3, as shown in Figure 5. These
regions accommodate the stroke length of the Taylor Hobson instrument. The part diameter
is measured at the midpoint of each region. Each individual measurement is repeated three
times at 120-degree angular intervals, and the average of these measurements is taken as
the final value. A python script automatically extracts G-code files for each set of process
parameters. Constant linear cutting speed is employed (G96 command) and pauses for
manual measurements after each pass are specified using the M1 command (optional stop).
The cutting fluid utilized is Premiercut GP Semi-Synthetic Cutting Fluid at a 5% dilution,
in accordance with the manufacturer’s specifications.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 25

Table 1. DAQ setup with acquired signals and respective axes.

DAQ channel 2 3 4 5 6 7 8 9
Axis Spindle Spindle Z Z X X X Z

Signal (V) Torque Speed Velocity Torque Velocity Torque Vibration Vibration
Source Machine controller Accelerometers

Part quality measurements were carried out manually using relevant instruments af-
ter each cut and without removing the part from the spindle. Part diameter was measured
with a TesaTM Micromaster digital CAPA µ micrometer. For surface roughness, a Taylor
HobsonTM Surtronic 3+ was employed, mounted on a custom jig with a magnetic base, see
Figure 4b. This setup enabled quick and stable mounting and easy dismounting after each
set of measurements.

2.2. Experimental Procedure
The experimental strategy involves taking longitudinal passes of a specific length on

cylindrical workpieces, using various combinations of process parameters, namely depth
of cut, feed, and cutting speed, and recording the signals described in Section 2.1. After
each pass, the process is halted, and manual quality measurements are performed at spe-
cific positions along the workpiece. For surface roughness metrics, Ra and Rz are selected.
For dimensional accuracy, the part diameter is measured, which allows for the calculation
of diameter deviation (Ddev) from the nominal value, as specified by the G-code.

The bar stock material is CK45 steel with an initial diameter of 32 mm and a total
length of 75 mm. The machined length is set to 45 mm, allowing for the clamping of the
workpiece to the chuck and providing some leeway for safety. Quality measurements are
taken from three regions, each 15 mm long, denoted as L1, L2, and L3, as shown in Figure
5. These regions accommodate the stroke length of the Taylor Hobson instrument. The
part diameter is measured at the midpoint of each region. Each individual measurement
is repeated three times at 120-degree angular intervals, and the average of these measure-
ments is taken as the final value. A python script automatically extracts G-code files for
each set of process parameters. Constant linear cutting speed is employed (G96 command)
and pauses for manual measurements after each pass are specified using the M1 com-
mand (optional stop). The cutting fluid utilized is Premiercut GP Semi-Synthetic Cutting
Fluid at a 5% dilution, in accordance with the manufacturer’s specifications.

Figure 5. Machined specimens. L1, L2, and L3 denote measurement regions.

To produce variability in the quality metrics with a limited number of experiments,
an orthogonal array is employed with four levels for each of the three factors, as presented
in Table 2, resulting in a total of 16 experiments (i.e., passes). The spindle speed is also
calculated, due to the G96 command, to ensure that the max rotational spindle speed of
the machine tool is not exceeded. Each set of eight consecutive passes, with the specific

Figure 5. Machined specimens. L1, L2, and L3 denote measurement regions.

To produce variability in the quality metrics with a limited number of experiments,
an orthogonal array is employed with four levels for each of the three factors, as pre-
sented in Table 2, resulting in a total of 16 experiments (i.e., passes). The spindle speed
is also calculated, due to the G96 command, to ensure that the max rotational spindle
speed of the machine tool is not exceeded. Each set of eight consecutive passes, with
the specific sequence of depths of cut, reduces the initial diameter of the workpiece by
20 mm. Therefore, starting from a diameter of 32 mm, the part is machined down to
a final diameter of 12 mm, at which point a new workpiece is used. For the specified
design, only two parts are required. Taking consecutive passes on the same part ensures
that different diameters are exposed to a variety of process conditions. This effectively
introduces a fourth factor in the experimental design, the slenderness of the part, as
expressed by the Length-to-Diameter ratio (L/D). This variation in stiffness broadens
the coverage of the process input space, potentially leading to greater variation in the
measured quality metrics. Given that the length is constant in this case, the diameter
itself is a representation of this slenderness.

Sensors 2024, 24, 1390 8 of 24

Table 2. Experimental design.

Experiment
No

Workpiece
Id

Depth of Cut
(mm)

Feed
(mm/rev)

Cutting Speed
(m/min)

Final Diameter
(mm)

Spindle Speed
(RPM)

1

Part 1

0.5 0.2 160 31 1642.89
2 1 0.3 190 29 2085.48
3 1.5 0.4 220 26 2693.39
4 2 0.5 250 22 3617.16
5 0.5 0.3 220 21 3334.67
6 1 0.2 250 19 4188.29
7 1.5 0.5 160 16 3183.1
8 2 0.4 190 12 5039.91

9

Part 2

0.5 0.4 250 31 2567.02
10 1 0.5 220 29 2414.76
11 1.5 0.2 190 26 2326.11
12 2 0.3 160 22 2314.98
13 0.5 0.5 190 21 2879.95
14 1 0.4 160 19 2680.5
15 1.5 0.3 250 16 4973.59
16 2 0.2 220 12 5835.68

2.3. Mapping Signals to Quality Measurements

In the proposed model, signals are inputs and quality metrics, which are expressed
as labels corresponding to specific ranges of these metrics, are outputs. These data need
preprocessing in order to map quality measurements to the appropriate signal segments
so that the input–output pairs can ultimately be constructed. To ensure a continuous
signal history for each of the two specimens, the first step involves merging the signals
from individual passes into a single, continuous signal for each part. This step is required
because the process and data acquisition are paused after each pass to allow for manual
measurements. The continuous signals contain both cutting and non-cutting regions. The
cutting regions, where the tool is engaged with the workpiece, have a direct correspondence
to the measured metrics. Non-cutting regions are a result of the free movement of the axes
as the machine repositions the tool to follow the process plan indicated by the G-code.

The next step is to identify these cutting regions based on information included in the
signals. The most appropriate signal on which to base this segmentation is spindle speed.
This is expected to remain constant at various levels for the duration of a pass. Due to
the usage of G96 (constant linear cutting speed), the smaller the machined diameter, the
higher the spindle speed plateaus, for a given cutting speed. The raw, noisy spindle speed
signal is cleaned by applying a moving average with a window of 100 ms. The cleaned
signal is then numerically differentiated, and the flat regions, where the gradient is below a
threshold of 0.03, are identified. Flat regions shorter than 500 ms are disregarded to exclude
irrelevant periods, such as when the spindle is re-engaged after each pause but operates at
constant RPM for a brief duration before actual cutting starts. Additionally, any flat regions
below a 0.5 V cutoff are also ignored to prevent misidentifying non-cutting regions where
the spindle is stopped, and the spindle speed plateaus near zero. The beginning and end of
the remaining flat regions denote the timestamps for the pure cutting phases. A custom
python script automates the described procedure. The values for the flatness threshold,
the minimum segment length, and the amplitude cutoff are given in Table 3. These were
determined through experimentation involving trial-end-error and are effective across a
wide range of process conditions. From this point forward, the term ‘pass’ will be used to
denote each pure cutting region.

Sensors 2024, 24, 1390 9 of 24

Table 3. Parameters for identifying cutting regions.

Flatness Threshold Minimum Segment Length Amplitude Cutoff

0.03 500 ms 0.5 V

The resulting segmentation into cutting and non-cutting regions is illustrated in
Figure 6. This figure displays the spindle speed signals, both raw and cleaned, for the entire
history of the first specimen (Part 1). Green dashed lines mark the beginning of each pass,
while red dashed lines indicate the end. Outside of these regions, the machine tool is not
cutting, i.e., the tool is not engaged with the workpiece. The eight passes corresponding
to the first half of the experimental design, which are associated with Part 1, are clearly
identifiable. An additional step is then necessary to further segment each pass into the three
sub-regions (L1, L2, and L3) at which measurements were taken. This requires knowledge
of the measurement strategy, i.e., in our case three equidistant measurements on each pass.
This segmentation is indicated by yellow lines in Figure 6, only for the first pass to avoid
overcrowding the illustration.

Sensors 2024, 24, x FOR PEER REVIEW 9 of 25

pause but operates at constant RPM for a brief duration before actual cutting starts. Ad-
ditionally, any flat regions below a 0.5 V cutoff are also ignored to prevent misidentifying
non-cutting regions where the spindle is stopped, and the spindle speed plateaus near
zero. The beginning and end of the remaining flat regions denote the timestamps for the
pure cutting phases. A custom python script automates the described procedure. The val-
ues for the flatness threshold, the minimum segment length, and the amplitude cutoff are
given in Table 3. These were determined through experimentation involving trial-end-
error and are effective across a wide range of process conditions. From this point forward,
the term ‘pass’ will be used to denote each pure cutting region.

Table 3. Parameters for identifying cutting regions.

Flatness Threshold Minimum Segment Length Amplitude Cutoff
0.03 500 ms 0.5 V

The resulting segmentation into cutting and non-cutting regions is illustrated in Fig-
ure 6. This figure displays the spindle speed signals, both raw and cleaned, for the entire
history of the first specimen (Part 1). Green dashed lines mark the beginning of each pass,
while red dashed lines indicate the end. Outside of these regions, the machine tool is not
cutting, i.e., the tool is not engaged with the workpiece. The eight passes corresponding
to the first half of the experimental design, which are associated with Part 1, are clearly
identifiable. An additional step is then necessary to further segment each pass into the
three sub-regions (L1, L2, and L3) at which measurements were taken. This requires
knowledge of the measurement strategy, i.e., in our case three equidistant measurements
on each pass. This segmentation is indicated by yellow lines in Figure 6, only for the first
pass to avoid overcrowding the illustration.

Figure 6. Segmentation of signals based on flat regions of spindle speed for Part 1.

2.4. Process Signals
Figure 7 illustrates the continuous history of Part 1 for the channels corresponding to

spindle torque and speed, as well as X and Z axis vibrations. The start and end of individ-
ual passes are marked by vertical dashed lines (green for start, red for end). The pure
cutting phases are clearly distinguishable in the vibration signals. Their amplitude in-
creases significantly during these periods, from near-zero values otherwise, in alignment
with the spindle speed plateaus. This alignment further validates the method of locating

Figure 6. Segmentation of signals based on flat regions of spindle speed for Part 1.

2.4. Process Signals

Figure 7 illustrates the continuous history of Part 1 for the channels corresponding
to spindle torque and speed, as well as X and Z axis vibrations. The start and end of
individual passes are marked by vertical dashed lines (green for start, red for end). The
pure cutting phases are clearly distinguishable in the vibration signals. Their amplitude
increases significantly during these periods, from near-zero values otherwise, in alignment
with the spindle speed plateaus. This alignment further validates the method of locating
cutting phases based on spindle speed. The spindle torque tends to overshoot, either
positively or negatively, during spindle start-up, shutdown, or changes in RPM. Notably,
within the cutting phases, it stabilizes at a non-zero value, correlating with the tangential
cutting force component.

Sensors 2024, 24, 1390 10 of 24

Sensors 2024, 24, x FOR PEER REVIEW 10 of 25

cutting phases based on spindle speed. The spindle torque tends to overshoot, either pos-
itively or negatively, during spindle start-up, shutdown, or changes in RPM. Notably,
within the cutting phases, it stabilizes at a non-zero value, correlating with the tangential
cutting force component.

Figure 7. Spindle torque and speed, X and Z vibrations for Part 1.

The remaining four signal channels are shown in Figure 8. Rapid G00 movements
outside of cutting phases result in overshooting that is clearly identified in the X and Z
velocity signals. During cutting, the Z velocity takes small negative values corresponding
to the feed parameter. This effect is more pronounced during shorter passes, which corre-
sponds to higher feed rates. As expected in purely longitudinal turning, the X velocity
remains near zero. Both X and Z torques display inertial readings during axes start and
stop phases. The Z torque exhibits correlation with axial force, taking constant negative
values during cutting phases. The X torque remains near zero, reflecting the minimal ra-
dial force component during cutting.

Figure 7. Spindle torque and speed, X and Z vibrations for Part 1.

The remaining four signal channels are shown in Figure 8. Rapid G00 movements
outside of cutting phases result in overshooting that is clearly identified in the X and Z
velocity signals. During cutting, the Z velocity takes small negative values corresponding
to the feed parameter. This effect is more pronounced during shorter passes, which
corresponds to higher feed rates. As expected in purely longitudinal turning, the X velocity
remains near zero. Both X and Z torques display inertial readings during axes start and
stop phases. The Z torque exhibits correlation with axial force, taking constant negative
values during cutting phases. The X torque remains near zero, reflecting the minimal radial
force component during cutting.

Sensors 2024, 24, 1390 11 of 24Sensors 2024, 24, x FOR PEER REVIEW 11 of 25

Figure 8. X and Z velocities and torques for Part 1.

2.5. Quality Measurements
The manual measurements for all quality metrics of the two specimens are compiled

in Figures 9–11. Classes and their corresponding ranges, as summarized in Table 4, are
indicated with yellow annotations and horizontal lines. The measurement IDs keep track
of the pass number and the specific region for each measurement: L1, L2, and L3. The
experimental design produced a satisfactory range of values, providing a suitably large
output space for neural network training. Measurements tend to form triplets, corre-
sponding to the three length segments of the specimens for a given pass. The data are
insufficient to assess the statistical significance of any observed measurement variations
along the length of the specimen. At this stage, they are considered within measurement
uncertainty for hand-operated instruments.

Figure 8. X and Z velocities and torques for Part 1.

2.5. Quality Measurements

The manual measurements for all quality metrics of the two specimens are compiled
in Figures 9–11. Classes and their corresponding ranges, as summarized in Table 4, are
indicated with yellow annotations and horizontal lines. The measurement IDs keep track of
the pass number and the specific region for each measurement: L1, L2, and L3. The experi-
mental design produced a satisfactory range of values, providing a suitably large output
space for neural network training. Measurements tend to form triplets, corresponding to
the three length segments of the specimens for a given pass. The data are insufficient to
assess the statistical significance of any observed measurement variations along the length
of the specimen. At this stage, they are considered within measurement uncertainty for
hand-operated instruments.

Sensors 2024, 24, 1390 12 of 24

Table 4. Labels for all metrics with corresponding ranges.

Metric Label Range (µm)

Roughness
Ra

Class 1 [0, 2.5)
Class 2 [2.5, 4.5)
Class 3 [4.5, 10]

Roughness
Rz

Class 1 [0, 10)
Class 2 [10, 16)
Class 3 [16, 20]

Diameter deviation
Ddev

Class 1 Under [−20, 0)
Class 1 Over [0, 20)
Class 2 Over [20, 80]

All metrics Not Cutting N/A

Sensors 2024, 24, x FOR PEER REVIEW 12 of 25

Table 4. Labels for all metrics with corresponding ranges.

Metric Label Range (μm)

Roughness
Ra

Class 1 [0, 2.5)
Class 2 [2.5, 4.5)
Class 3 [4.5, 10]

Roughness
Rz

Class 1 [0, 10)
Class 2 [10, 16)
Class 3 [16, 20]

Diameter deviation
Ddev

Class 1 Under [−20, 0)
Class 1 Over [0, 20)
Class 2 Over [20, 80]

All metrics Not Cutting N/A

Figure 9. Compilation of Ra measurements with class ranges.

Figure 10. Compilation of Rz measurements with class ranges.

Figure 9. Compilation of Ra measurements with class ranges.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 25

Table 4. Labels for all metrics with corresponding ranges.

Metric Label Range (μm)

Roughness
Ra

Class 1 [0, 2.5)
Class 2 [2.5, 4.5)
Class 3 [4.5, 10]

Roughness
Rz

Class 1 [0, 10)
Class 2 [10, 16)
Class 3 [16, 20]

Diameter deviation
Ddev

Class 1 Under [−20, 0)
Class 1 Over [0, 20)
Class 2 Over [20, 80]

All metrics Not Cutting N/A

Figure 9. Compilation of Ra measurements with class ranges.

Figure 10. Compilation of Rz measurements with class ranges. Figure 10. Compilation of Rz measurements with class ranges.

Sensors 2024, 24, 1390 13 of 24Sensors 2024, 24, x FOR PEER REVIEW 13 of 25

Figure 11. Compilation of Ddev measurements with class ranges.

3. Neural Network Design
3.1. Data Preparation for Neural Network Training

Convolutional Neural Networks have a fixed input length. Furthermore, the devel-
oped model should provide inference during the actual turning process. In order to satisfy
both conditions, a sliding window strategy is employed to create the final input–output
pairs for neural network training.

Firstly, the quality measurements are categorized into specific classes with corre-
sponding labels, as detailed in Table 4. For the two roughness metrics, three classes of
increasing value ranges were created, denoted as Class 1, Class 2, and Class 3. For the
diameter deviation, two tight classes at either side of zero deviation were created: Class 1
Under, for diameters smaller than the nominal, and Class 1 Over, for diameters larger
than the nominal but within a cutoff that mirrors the negative threshold. A third class,
Class 2 Over, encompasses all other greater positive deviations. Lastly, a common label is
introduced to each metric to denote non-cutting regions. This additional class is crucial
for the neural network’s training, as it includes free axes movements, which are a standard
part of any process plan. Consequently, the network can learn to differentiate between
cutting phases (where a specific quality label is expected) and Not Cutting phases. Thus,
each metric ends up with four classes, leading to an imbalanced multiclass classification
problem.

Since there are currently no specifications tied to the quality metrics, the proposed
class definitions were based on the following rationale: for Ra and Rz, class ranges are
determined with the intent of delineating ‘good’, ‘normal’ and ‘bad’ quality levels. Of
course, the range and combinations of process parameters correspond to roughing condi-
tions, meaning that the measured metrics do not dictate the final quality of the part. Thus,
within this context, ‘good’ quality may suggest that more aggressive conditions could be
feasible. Conversely, ‘bad’ quality might indicate roughness so significant that it could
adversely affect a subsequent finishing pass. Although this is speculative and beyond the
scope of the study, it does offer a potential perspective. Consequently, Class 1 is narrow
in both range and representation. Class 2 is deliberately broader to capture the most com-
mon range of measurements. Class 3, equal in representation to Class 1, contains the most
extreme results. A similar thought process is behind the diameter deviation class assign-
ment, with the additional consideration that negative values are now possible. This fact
naturally leads to two mirrored classes for minor deviations around zero: Class 1 Under

Figure 11. Compilation of Ddev measurements with class ranges.

3. Neural Network Design
3.1. Data Preparation for Neural Network Training

Convolutional Neural Networks have a fixed input length. Furthermore, the devel-
oped model should provide inference during the actual turning process. In order to satisfy
both conditions, a sliding window strategy is employed to create the final input–output
pairs for neural network training.

Firstly, the quality measurements are categorized into specific classes with correspond-
ing labels, as detailed in Table 4. For the two roughness metrics, three classes of increasing
value ranges were created, denoted as Class 1, Class 2, and Class 3. For the diameter
deviation, two tight classes at either side of zero deviation were created: Class 1 Under,
for diameters smaller than the nominal, and Class 1 Over, for diameters larger than the
nominal but within a cutoff that mirrors the negative threshold. A third class, Class 2 Over,
encompasses all other greater positive deviations. Lastly, a common label is introduced to
each metric to denote non-cutting regions. This additional class is crucial for the neural
network’s training, as it includes free axes movements, which are a standard part of any
process plan. Consequently, the network can learn to differentiate between cutting phases
(where a specific quality label is expected) and Not Cutting phases. Thus, each metric ends
up with four classes, leading to an imbalanced multiclass classification problem.

Since there are currently no specifications tied to the quality metrics, the proposed
class definitions were based on the following rationale: for Ra and Rz, class ranges are de-
termined with the intent of delineating ‘good’, ‘normal’ and ‘bad’ quality levels. Of course,
the range and combinations of process parameters correspond to roughing conditions,
meaning that the measured metrics do not dictate the final quality of the part. Thus, within
this context, ‘good’ quality may suggest that more aggressive conditions could be feasible.
Conversely, ‘bad’ quality might indicate roughness so significant that it could adversely
affect a subsequent finishing pass. Although this is speculative and beyond the scope of the
study, it does offer a potential perspective. Consequently, Class 1 is narrow in both range
and representation. Class 2 is deliberately broader to capture the most common range
of measurements. Class 3, equal in representation to Class 1, contains the most extreme
results. A similar thought process is behind the diameter deviation class assignment, with
the additional consideration that negative values are now possible. This fact naturally leads
to two mirrored classes for minor deviations around zero: Class 1 Under and Class 1 Over.
These classes could both represent acceptable deviations, though distinctions between
over and under sizing may be crucial for specific applications, and the model is capable of
making this differentiation. All larger deviations are categorized into Class 2 Over, in order

Sensors 2024, 24, 1390 14 of 24

to maintain the same number of classes as for the other two metrics. These class definitions
are used in the subsequent results analysis. In Section 4.5, a non-engineered system with
equally distributed classes will also be examined.

Having established the class ranges, the actual values of measurements are trans-
formed into the corresponding labels. These labels are then repeated along the signal
timeline in accordance with the mapping described in Table 4. Outside of the cutting
regions, the label Not Cutting is consistently applied. The final step is to create a sliding
window, characterized by its length and a step size that allows for overlap between succes-
sive window placements. As the window slides along the signals, it generates input–output
pairs for the neural network: the portion of the signals contained within the window serves
as the input, and the dominant label for each metric is assigned as the output. Each of these
pairs constitutes a single data point. Considering the dominant label as the output handles
cases where the window inadvertently spans multiple classes, as is the case, for example,
when transitioning from a non-cutting to a cutting region.

This sliding window technique enables the neural network to function as a process
monitoring tool. Furthermore, it augments the dataset size. Given the 1 kHz sampling rate,
window and step sizes will be expressed in samples, directly corresponding to milliseconds
(1 ms per sample). While the window size determines the input size of the neural network,
the step size is responsible for the magnitude of this augmentation, as shown in Table 5. For
instance, a window size of 500 samples and a step size of 400 samples yield 289 data points
from 16 experiments, reducing the step size to 100 samples results in 1153 data points. Both
window and step sizes should be tailored to the specific characteristics of each application.
In the case presented, a window size of 500 samples and a step size of 100 samples will be
the default, with further exploration detailed in Section 4.3. The crucial point to note is
that this augmentation allows the model to be effectively trained using data from just two
machined parts.

Table 5. Size of dataset for 500 samples window and various step sizes.

Step Size (Samples) Number of Data Points

100 1153
250 461
400 289

3.2. Neural Network Architecture

Typical classification problems have a single output layer. For binary classification,
this layer has one output node with a sigmoid activation function, which outputs values
from 0 to 1, directly corresponding to the probability of the positive class. In a multiclass
problem, the output layer has as many nodes as there are classes, utilizing a single softmax
activation. This function converts the combined output of these nodes into a probability
distribution, representing the likelihood of each class. For the three metrics of interest—Ra,
Rz, and Ddev—three such models could be trained, each monitoring a specific metric.
However, this study adopts a more general approach, creating a multi-output, multiclass
neural network capable of handling all metrics simultaneously. This requires three separate
output layers, each with its own softmax activation. Having a single model predict all
three metrics is more challenging, but it offers a versatile framework which covers the cases
where either one or multiple metrics are of interest. Additionally, this approach simplifies
deployment and enhances inference efficiency, as running a single multi-output model is
more time-efficient than running three separate models.

The proposed neural network architecture is shown in Figure 12. The shape of the
input layer is determined by the window size and the number of signal channels. For
example, for a window size of 500 samples and the eight monitored channels (see Table 1),
a single input instance to the model is an array of shape 500 × 8. Technically, this forms a
tensor of shape N × 500 × 8, where N denotes the batch size. This structure is utilized in

Sensors 2024, 24, 1390 15 of 24

neural networks both during training and, when feasible, in inference, to process multiple
inputs in parallel.

Sensors 2024, 24, x FOR PEER REVIEW 15 of 25

example, for a window size of 500 samples and the eight monitored channels (see Table
1), a single input instance to the model is an array of shape 500 × 8. Technically, this forms
a tensor of shape N × 500 × 8, where N denotes the batch size. This structure is utilized in
neural networks both during training and, when feasible, in inference, to process multiple
inputs in parallel.

Figure 12. Neural network architecture for window size of 500 samples and 8 signal channels.

The input is passed through two convolutional layers with kernel sizes 30 and 3, re-
spectively. The first kernel is relatively large in order to smooth out noise and capture
more long-term features in the signals, as suggested by Zhang et al. [35]. The second is of

Figure 12. Neural network architecture for window size of 500 samples and 8 signal channels.

The input is passed through two convolutional layers with kernel sizes 30 and 3, re-
spectively. The first kernel is relatively large in order to smooth out noise and capture more
long-term features in the signals, as suggested by Zhang et al. [35]. The second is of more
typical size and it synthesizes first-order features into more complex representations. After
each convolution, a max pooling layer reduces the spatial dimensionality and enhances
feature robustness by focusing on dominant features. The output from the second max
pooling layer is flattened and passed through a dense layer, followed by a dropout layer.
This mitigates overfitting by not allowing the network to become excessively dependent

Sensors 2024, 24, 1390 16 of 24

on specific nodes. Lastly, three outputs with softmax activations give the probability dis-
tribution of classes for each of the metrics of interest. The parameters for all layers are
summarized in Table 6. The model was implemented in TensorFlowTM (v2.10.1) using the
Keras API.

Table 6. Neural network layer parameters.

Layer Parameters

Conv1 kernel 30, filters 64, stride 1
MaxPool1 kernel 2, stride 1

Conv2 kernel 3, filters 128, stride 1
MaxPool2 kernel 2, stride 1

Flatten -
Dense size 100

Dropout rate 0.2
Output X3 3 × size 4

Total trainable parameters: ~1.5 M

Depending on the application and the complexity of features in the monitored inputs,
more convolutional layers can easily be added, as well as additional dense layers before
the outputs. Furthermore, the size of the first, large kernel may be adjusted based on the
sampling rate of the signals. For signals sampled in the tens of kilohertz range, it might
need to be larger, and conversely smaller for signals sampled at lower rates. Such an
investigation is outside the scope of this study, which employs a fixed sampling rate of
1 kHz. The architecture shown represents a lightweight and robust baseline model, which
demonstrates strong performance for the task at hand.

3.3. Model Training Parameters

Several instances of the model will be trained to thoroughly examine its performance
under various scenarios. This section establishes the parameters common to all training
instances, unless otherwise specified in the respective sections. These parameters are
summarized in Table 7. The detailed results for each examined scenario are presented in
Section 4.

Table 7. Default model training parameters.

Parameter Value

Window size 500 samples
Step size 100 samples

Optimizer Adam
Learning rate 0.0005

Loss Categorical cross-entropy
Batch size 128

Max epochs 100
Validation split 0.15 of training

Patience 10 epochs
Min delta 0.001
Test split 0.15 of total

Split random state 42

4. Results and Discussion
4.1. K-Fold Cross Validation

Before presenting detailed performance metrics for specific instances of the model,
k-fold cross-validation is employed to validate the modeling approach and the network
architecture. Instead of using the validation/test split of Table 7, the entire dataset is split
into 10 sets. The model is trained 10 times, each time withholding a different set from

Sensors 2024, 24, 1390 17 of 24

the training process, which is subsequently used for testing the model’s generalization
performance. This strategy mitigates the risk of bias introduced by randomly selecting a
favorable test set. Since there is no explicit validation set, early stopping is not employed,
and each model is trained for 50 epochs. Models are evaluated by their F1 score, which is
the harmonic mean of precision and recall. Results from the cross-validation for all three
quality metrics are summarized in Table 8.

Table 8. k-fold cross validation results (k = 10).

Metric
F1 Macro Average

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average

Ra 0.94 0.97 0.98 1.00 0.97 0.98 0.99 0.95 1.00 0.98 97.76

Rz 0.98 0.97 0.97 1.00 0.96 0.98 1.00 0.97 1.00 0.99 98.34

Ddev 0.97 0.97 1.00 0.96 0.98 1.00 0.99 0.97 1.00 1.00 98.46

The average F1 score across all folds is above 0.97 for all three metrics. The lowest F1
scores for Ra, Rz, and Ddev are 0.94, 0.96, and 0.96, respectively. While some variation in
the F1 scores is expected, the consistently high scores across all metrics suggest that the
model is robust and performs well on the available data.

4.2. Detailed Performance Metrics

To produce visualizations and detailed metrics for the performance of the model, a
specific instance is trained with explicit validation and test sets, according to Table 7. For
reproducibility, the split random state for the test set is set to 42. Early stopping is activated
with 10 epochs patience for improvement on the validation set and a minimum delta of
0.001. A plot of the training and validation loss is shown in Figure 13. Detailed performance
metrics are summarized in Table 9.

The model exhibits high precision and recall, within the anticipated margins based
on the preceding cross validation. This results in a minimal number of misclassifications,
i.e., only 1 out of 173 total classifications for each class, as illustrated in the corresponding
confusion matrices shown in Figure 14.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 25

Split random state 42

4. Results and Discussion
4.1. K-Fold Cross Validation

Before presenting detailed performance metrics for specific instances of the model,
k-fold cross-validation is employed to validate the modeling approach and the network
architecture. Instead of using the validation/test split of Table 7, the entire dataset is split
into 10 sets. The model is trained 10 times, each time withholding a different set from the
training process, which is subsequently used for testing the model’s generalization per-
formance. This strategy mitigates the risk of bias introduced by randomly selecting a fa-
vorable test set. Since there is no explicit validation set, early stopping is not employed,
and each model is trained for 50 epochs. Models are evaluated by their F1 score, which is
the harmonic mean of precision and recall. Results from the cross-validation for all three
quality metrics are summarized in Table 8.

Table 8. k-fold cross validation results (k = 10).

Metric
F1 Macro Average

Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Fold 6 Fold 7 Fold 8 Fold 9 Fold 10 Average
Ra 0.94 0.97 0.98 1.00 0.97 0.98 0.99 0.95 1.00 0.98 97.76
Rz 0.98 0.97 0.97 1.00 0.96 0.98 1.00 0.97 1.00 0.99 98.34

Ddev 0.97 0.97 1.00 0.96 0.98 1.00 0.99 0.97 1.00 1.00 98.46

The average F1 score across all folds is above 0.97 for all three metrics. The lowest F1
scores for Ra, Rz, and Ddev are 0.94, 0.96, and 0.96, respectively. While some variation in
the F1 scores is expected, the consistently high scores across all metrics suggest that the
model is robust and performs well on the available data.

4.2. Detailed Performance Metrics
To produce visualizations and detailed metrics for the performance of the model, a

specific instance is trained with explicit validation and test sets, according to Table 7. For
reproducibility, the split random state for the test set is set to 42. Early stopping is acti-
vated with 10 epochs patience for improvement on the validation set and a minimum
delta of 0.001. A plot of the training and validation loss is shown in Figure 13. Detailed
performance metrics are summarized in Table 9.

Figure 13. Training and validation loss.

Figure 13. Training and validation loss.

Sensors 2024, 24, 1390 18 of 24

Table 9. Model performance metrics.

Metric Label Precision Recall F1-Score Support

Ra

Class 1 1.00 0.97 0.98 30
Class 2 1.00 1.00 1.00 29
Class 3 1.00 1.00 1.00 12

Not Cutting 0.99 1.00 1.00 102

Rz

Class 1 1.00 0.97 0.98 30
Class 2 1.00 1.00 1.00 29
Class 3 1.00 1.00 1.00 12

Not Cutting 0.99 1.00 1.00 102

Ddev

Class 1
Under 1.00 1.00 1.00 21

Class 1 Over 1.00 0.92 0.96 12
Class 2 Over 1.00 1.00 1.00 38
Not Cutting 0.99 1.00 1.00 102

Sensors 2024, 24, x FOR PEER REVIEW 18 of 25

Table 9. Model performance metrics.

Metric Label Precision Recall F1-Score Support

Ra

Class 1 1.00 0.97 0.98 30
Class 2 1.00 1.00 1.00 29
Class 3 1.00 1.00 1.00 12

Not Cutting 0.99 1.00 1.00 102

Rz

Class 1 1.00 0.97 0.98 30
Class 2 1.00 1.00 1.00 29
Class 3 1.00 1.00 1.00 12

Not Cutting 0.99 1.00 1.00 102

Ddev

Class 1 Under 1.00 1.00 1.00 21
Class 1 Over 1.00 0.92 0.96 12
Class 2 Over 1.00 1.00 1.00 38
Not Cutting 0.99 1.00 1.00 102

The model exhibits high precision and recall, within the anticipated margins based
on the preceding cross validation. This results in a minimal number of misclassifications,
i.e., only 1 out of 173 total classifications for each class, as illustrated in the corresponding
confusion matrices shown in Figure 14.

(a) (b) (c)

Figure 14. Confusion matrices: (a) Ra; (b); Rz; (c) Ddev.

4.3. Sliding Window Parameters
The sliding window strategy introduces a form of data augmentation by essentially

duplicating sub-segments of signals for successive data points on the signal timeline. This
may introduce a positive bias in the testing performance, by having specific sub-segments
present in both the training and test sets. On the other hand, increasing the step size re-
duces the amount of data available for training and decreases the representation of each
label in testing. Therefore, a comparison of performance for varying step sizes is not
straightforward. To alleviate the diminishing of dataset sizes, validation during training
is omitted, and the corresponding data are used for training instead. The models are then
trained for 50 epochs for various step sizes. To normalize the differences in support during
testing, the F1 weighted average score is utilized, which takes into account the represen-
tation of each label in the test set. The window size is kept at 500 samples. Results are
given in Table 10.

Figure 14. Confusion matrices: (a) Ra; (b); Rz; (c) Ddev.

4.3. Sliding Window Parameters

The sliding window strategy introduces a form of data augmentation by essentially
duplicating sub-segments of signals for successive data points on the signal timeline. This
may introduce a positive bias in the testing performance, by having specific sub-segments
present in both the training and test sets. On the other hand, increasing the step size reduces
the amount of data available for training and decreases the representation of each label in
testing. Therefore, a comparison of performance for varying step sizes is not straightforward.
To alleviate the diminishing of dataset sizes, validation during training is omitted, and the
corresponding data are used for training instead. The models are then trained for 50 epochs
for various step sizes. To normalize the differences in support during testing, the F1 weighted
average score is utilized, which takes into account the representation of each label in the test
set. The window size is kept at 500 samples. Results are given in Table 10.

Table 10. Model performance for varying step size and window size of 500 samples.

Step Size
F1 Weighted Average Data Points

(Train/Test)Ra Rz Ddev

200 0.99 1.00 0.99 490/87
300 0.97 0.97 0.95 327/58
400 1.00 0.98 0.92 245/44
500 0.91 0.91 0.85 196/35

Sensors 2024, 24, 1390 19 of 24

There is a noticeable trend that as the step size increases, the F1 scores tend to decrease.
It is inconclusive whether this is due to the smaller training sets, which may not provide
the model with sufficient variability and quantity of data to learn effectively, or to the
reduced overlap of data. However, it is noteworthy that for a step size of 500 samples,
corresponding to zero overlap of data, the model’s performance could still be considered
satisfactory, even with an extremely small training set of less than 200 data points.

To further test the robustness of the model against the sliding window parameters,
several instances are trained for varying window sizes. The step size is kept constant at
100 samples, which results in very similar dataset sizes. Results are summarized in Table 11.
No noticeable trend emerges, the observed variations being within the expected margin for
the inherent randomness in training. Thus, the model exhibits the ability to accommodate
various window sizes, depending on the requirements of a given application. Notably,
for window and step size equal to 100 samples, which again corresponds to zero overlap
of sub-segments but with a sizeable dataset this time, the model’s performance remains
extremely high. Therefore, whether overlap exists or not, it does not appear to have a
significant impact on the model’s performance. As anticipated, the dataset size is a much
more influential factor.

Table 11. Model performance for varying window size and step size of 100 samples.

Window Size
F1 Macro Average Data Points

(Train/Test)Ra Rz Ddev

100 0.98 0.98 0.98 986/175
200 0.98 0.98 0.98 985/174
400 0.97 0.98 0.98 981/174
600 0.99 1.00 0.99 978/173
800 1.00 1.00 0.99 974/173

1000 0.97 0.97 0.99 971/172

4.4. Reduced Input

So far, all eight of the available signal channels were used as inputs to the model.
However, depending on the built-in instrumentation of a given machine tool and the
availability of external sensors, alternate use cases may have access to a subset of process
data. Testing all possible combinations of potential input channels would be impractical,
therefore some logical subsets are tested. Additional interesting combinations arising from
the initial results are also examined, all summarized in Table 12.

Table 12. Model performance for reduced input.

Subset of Channels
F1 Macro Average

Ra Rz Ddev

Only vibrations 0.80 0.76 0.71
Only torques 0.94 0.94 0.96

Only velocities 0.99 0.99 0.93
Only Z velocity 0.89 0.90 0.79

Z velocity and all torques 0.99 0.99 0.98

The worst model performance is observed when relying solely on vibrations. This
can be attributed, to an extent, to the placement of the accelerometers behind the turret,
resulting in a weakened signal with a correspondingly lower signal-to-noise ratio that is
also potentially contaminated with natural frequencies of various machine components
as explained in Section 2.1. The high performance of torques on the diameter deviation
metric can be attributed to their correlation with cutting forces, which are primary factors
for part deflection. On the other hand, the high performance of velocities on roughness
metrics highlights their strong dependence on the feed parameter. To elaborate further,

Sensors 2024, 24, 1390 20 of 24

since the turning is purely longitudinal, the feed in the z-direction should be the most
critical velocity. Indeed, using only the Z velocity signal yields very good performance,
considering it involves using only one channel, and this performance surpasses that of any
other single channel that was tested. Finally, combining torques and Z velocity provides a
candidate for the best minimum set of inputs, with performance on par with the full set.

4.5. Alternative Definition of Classes

The rationale behind the definition of classes for the quality metrics was discussed in
Section 3.1. In this section, the performance of the model is examined for a less ‘engineered’
class system, which simply has a number of equally distributed classes in the observed
range of measurements for each metric. This offers the chance to test the model with a
different number of classes as well. The results are summarized in Table 13. The ‘+1’ in
the number of classes denotes the common class ‘Not Cutting.’ Both the F1 macro and the
weighted average are reported since as the number of classes increases, some are left with
extremely low support, making the weighted average potentially more descriptive.

Table 13. Model performance for equally distributed classes.

Number of Equally
Distributed Classes

F1 Macro Average F1 Weighted Average

Ra Rz Ddev Ra Rz Ddev

2 + 1 0.97 0.99 0.98 0.98 0.99 0.99
3 + 1 0.91 0.98 0.97 0.95 0.99 0.98
5 + 1 0.79 0.89 0.98 0.94 0.96 0.99
7 + 1 0.74 0.69 0.64 0.97 0.94 0.91
9 + 1 0.78 0.72 0.71 0.95 0.95 0.94

Both F1 scores are extremely high across all metrics for 2 + 1 and 3 + 1 classes. As the
number of classes increases from 5 + 1 and above, the F1 macro scores tend to drop. This is
expected, as the size of the dataset is not large enough to accommodate adequate learning
examples for so many classes. Furthermore, the support for some classes in the testing
set ends up too low, even zero in some cases, leading to ill-defined F1 scores. In cases
like these, a single misclassification can dramatically change the macro average. This is
reflected in the weighted averages, which maintain higher values. The confusion matrices
for the 9 + 1 case are shown in Figure 15. For the two roughness metrics, Classes 2 and 3
have zero instances in the entire dataset, including the training and testing sets, and thus
are not included in the confusion matrices. All 10 classes are represented for diameter
deviation. Despite the large number of classes for the given dataset size, the performance
of the model is deemed very satisfactory.

Sensors 2024, 24, x FOR PEER REVIEW 21 of 25

(a) (b) (c)

Figure 15. Confusion matrices for 9 + 1 equally distributed classes: (a) Ra; (b) Rz; (c) Ddev.

4.6. Datastream Simulation
The proposed model is designed to be lightweight in order to run during the actual

turning process. Pure inference times are very low, either on the CPU or GPU of a typical
home PC, clocking at under 20 ms. This inference time does not account for data transfer
from and to memory, which is typically not an issue when performing batch processing,
where data are transferred once, and inference is carried out for the entire batch in the
reported times. During real operation however, the situation is different. Batch processing
is not an option since data are being generated in real time from the machine, therefore
the model needs to process a single data point at a time, which is extremely inefficient for
a neural network. The extra overhead in this case is comparable to the inference time,
resulting in a total processing time for a data point closer to 50 ms.

In order to verify the viability of the model in a realistic operation scenario, a
datastream simulation is set up. The signal history of the first specimen is used as input.
All data points are prepared according to the sliding window strategy, but the model is
only allowed to process each of them at specified time intervals, simulating the real data
acquisition procedure with a sampling rate of 1 kHz. First, the model has to wait for 500
ms for the first 500 samples window to fill. For each subsequent inference step, the wait
time is 100 ms, corresponding to the step size of 100 samples. For each inference step, the
exact processing time is calculated and subtracted from the wait time, simulating the con-
tinued data acquisition during model inference. The lag of the model versus the real ma-
chining time is plotted in Figure 16.

Figure 15. Confusion matrices for 9 + 1 equally distributed classes: (a) Ra; (b) Rz; (c) Ddev.

Sensors 2024, 24, 1390 21 of 24

4.6. Datastream Simulation

The proposed model is designed to be lightweight in order to run during the actual
turning process. Pure inference times are very low, either on the CPU or GPU of a typical
home PC, clocking at under 20 ms. This inference time does not account for data transfer
from and to memory, which is typically not an issue when performing batch processing,
where data are transferred once, and inference is carried out for the entire batch in the
reported times. During real operation however, the situation is different. Batch processing
is not an option since data are being generated in real time from the machine, therefore
the model needs to process a single data point at a time, which is extremely inefficient
for a neural network. The extra overhead in this case is comparable to the inference time,
resulting in a total processing time for a data point closer to 50 ms.

In order to verify the viability of the model in a realistic operation scenario, a datas-
tream simulation is set up. The signal history of the first specimen is used as input. All data
points are prepared according to the sliding window strategy, but the model is only allowed
to process each of them at specified time intervals, simulating the real data acquisition
procedure with a sampling rate of 1 kHz. First, the model has to wait for 500 ms for the
first 500 samples window to fill. For each subsequent inference step, the wait time is
100 ms, corresponding to the step size of 100 samples. For each inference step, the exact
processing time is calculated and subtracted from the wait time, simulating the continued
data acquisition during model inference. The lag of the model versus the real machining
time is plotted in Figure 16.

Sensors 2024, 24, x FOR PEER REVIEW 22 of 25

Figure 16. Simulation of model lag VS real process time.

As anticipated, for a total processing time for each data point less than the step size
of the sliding window, the model does not drift away from the machining process. After
an initial large lag which corresponds to the filling of the first window, the model quickly
settles a few tens of milliseconds behind the real process. Random lag spikes may occur,
due to arbitrary processes running on the test PC (i5 class CPU, 1060-3GB GPU, 16 GB
RAM), however, the model quickly returns to its usual slight delay behind the process.
This is presumed to represent an unfavorable scenario where a single-threaded Python
program is responsible for performing the datastream simulation, including data transfer,
time keeping, and inference. Thus, the model should not drift as long as the sliding win-
dow step size is larger than the average processing time of each inference step. Further-
more, there are techniques to further minimize processing times in a real application, such
as deployment in optimized hardware environments or using more efficient computing
frameworks, which are out of the scope of the present work.

5. Conclusions and Future Work
This study presented an innovative application of 1D convolutional neural networks

for raw signal classification in CNC process monitoring. The proposed methodology es-
chews manually engineered feature extraction, typically employed in signal processing,
in favor of temporal pattern identification by the neural network itself. Convolutional lay-
ers identify and synthesize pertinent, process-related information contained in multiple
signal channels acquired from the machine tool, in order to classify the machining process
with respect to its resulting quality. It was shown that with an extremely small number of
experiments, in full compliance to industry expectations, and a sliding window strategy,
a multi-output, multiclass model can be successfully trained to monitor several quality
metrics at once. The performance of the model was investigated under various combina-
tions of design parameters and constraints, and it proved to be a robust base for real-time
monitoring and quality control in CNC machining. Furthermore, this approach provides
a versatile alternative for the classification of high-rate signals across various industrial
domains where such analysis is relevant.

To build upon the presented work, several potential avenues are available. Conduct-
ing more experiments will result in greater coverage of the input space of process condi-
tions, as well as the output space of quality metrics. Moreover, additional experiments
will increase the raw size of the dataset, which is generally beneficial to model training.
Including finishing conditions in the experimental design will offer a complete view of a

Figure 16. Simulation of model lag VS real process time.

As anticipated, for a total processing time for each data point less than the step size
of the sliding window, the model does not drift away from the machining process. After
an initial large lag which corresponds to the filling of the first window, the model quickly
settles a few tens of milliseconds behind the real process. Random lag spikes may occur,
due to arbitrary processes running on the test PC (i5 class CPU, 1060-3GB GPU, 16 GB
RAM), however, the model quickly returns to its usual slight delay behind the process. This
is presumed to represent an unfavorable scenario where a single-threaded Python program
is responsible for performing the datastream simulation, including data transfer, time
keeping, and inference. Thus, the model should not drift as long as the sliding window step
size is larger than the average processing time of each inference step. Furthermore, there are
techniques to further minimize processing times in a real application, such as deployment
in optimized hardware environments or using more efficient computing frameworks, which
are out of the scope of the present work.

Sensors 2024, 24, 1390 22 of 24

5. Conclusions and Future Work

This study presented an innovative application of 1D convolutional neural networks
for raw signal classification in CNC process monitoring. The proposed methodology es-
chews manually engineered feature extraction, typically employed in signal processing,
in favor of temporal pattern identification by the neural network itself. Convolutional
layers identify and synthesize pertinent, process-related information contained in multiple
signal channels acquired from the machine tool, in order to classify the machining process
with respect to its resulting quality. It was shown that with an extremely small number of
experiments, in full compliance to industry expectations, and a sliding window strategy,
a multi-output, multiclass model can be successfully trained to monitor several quality
metrics at once. The performance of the model was investigated under various combina-
tions of design parameters and constraints, and it proved to be a robust base for real-time
monitoring and quality control in CNC machining. Furthermore, this approach provides
a versatile alternative for the classification of high-rate signals across various industrial
domains where such analysis is relevant.

To build upon the presented work, several potential avenues are available. Conducting
more experiments will result in greater coverage of the input space of process conditions, as
well as the output space of quality metrics. Moreover, additional experiments will increase
the raw size of the dataset, which is generally beneficial to model training. Including
finishing conditions in the experimental design will offer a complete view of a typical real
machining application. In this context, it will be interesting to investigate the potential
adverse effects of an aggressive roughing pass on a subsequent finishing pass. This could
be valuable in the context of a process optimization framework, which can suggest efficient
process planning while ensuring final quality. Further considerations relating to tool wear
and the sustainability of the process can also be explored in this light.

Finally, testing the model during real machining operations presents its own set of
challenges, associated with model deployment, establishing communication protocols, and
ensuring seamless integration into the existing workflow. Addressing these challenges is
crucial for the successful application of the model in a live industrial setting.

Author Contributions: Conceptualization, E.S.; methodology, E.S.; experiments, E.S. and E.T.; soft-
ware, E.S. and E.T.; validation, E.S., E.T. and P.B.; investigation, E.S., E.T., G.-C.V. and P.B.; data
curation, E.S. and E.T.; writing—original draft preparation, E.S.; writing—review and editing, G.-C.V.,
P.B. and E.T.; visualization, E.S.; supervision, G.-C.V. and P.B.; project administration, G.-C.V.; funding
acquisition, G.-C.V. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the European Union under Grant Agreement No. 101091783,
project ‘MARS: Manufacturing Architecture for Resilience & Sustainability’, HORIZON-CL4-2022-
TWIN-TRANSITION-01-03.

Data Availability Statement: This study is part of an ongoing EU funded research project and related
data cannot be made public at this time.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Jimeno-Morenilla, A.; Azariadis, P.; Molina-Carmona, R.; Kyratzi, S.; Moulianitis, V. Technology Enablers for the Implementation

of Industry 4.0 to Traditional Manufacturing Sectors: A Review. Comput. Ind. 2021, 125, 103390. [CrossRef]
2. Ching, N.T.; Ghobakhloo, M.; Iranmanesh, M.; Maroufkhani, P.; Asadi, S. Industry 4.0 Applications for Sustainable Manufacturing:

A Systematic Literature Review and a Roadmap to Sustainable Development. J. Clean. Prod. 2022, 334, 130133. [CrossRef]
3. Luo, W.; Hu, T.; Zhang, C.; Wei, Y. Digital Twin for CNC Machine Tool: Modeling and Using Strategy. J. Ambient Intell. Humaniz.

Comput. 2019, 10, 1129–1140. [CrossRef]
4. Tao, F.; Zhang, M.; Liu, Y.; Nee, A.Y.C. Digital Twin Driven Prognostics and Health Management for Complex Equipment. CIRP

Ann. 2018, 67, 169–172. [CrossRef]
5. Lee, J.; Bagheri, B.; Kao, H.A. A Cyber-Physical Systems Architecture for Industry 4.0-Based Manufacturing Systems. Manuf. Lett.

2015, 3, 18–23. [CrossRef]

https://doi.org/10.1016/j.compind.2020.103390
https://doi.org/10.1016/j.jclepro.2021.130133
https://doi.org/10.1007/s12652-018-0946-5
https://doi.org/10.1016/j.cirp.2018.04.055
https://doi.org/10.1016/j.mfglet.2014.12.001

Sensors 2024, 24, 1390 23 of 24

6. Söderberg, R.; Wärmefjord, K.; Carlson, J.S.; Lindkvist, L. Toward a Digital Twin for Real-Time Geometry Assurance in
Individualized Production. CIRP Ann.-Manuf. Technol. 2017, 66, 137–140. [CrossRef]

7. Taha, H.A.; Yacout, S.; Shaban, Y. Autonomous Self-Healing Mechanism for a CNC Milling Machine Based on Pattern Recognition.
J. Intell. Manuf. 2023, 34, 2185–2205. [CrossRef]

8. Guo, W.; Wu, C.; Ding, Z.; Zhou, Q. Prediction of Surface Roughness Based on a Hybrid Feature Selection Method and Long
Short-Term Memory Network in Grinding. Int. J. Adv. Manuf. Technol. 2021, 112, 2853–2871. [CrossRef]

9. Elsheikh, A.; Yacout, S.; Ouali, M.S.; Shaban, Y. Failure Time Prediction Using Adaptive Logical Analysis of Survival Curves and
Multiple Machining Signals. J. Intell. Manuf. 2020, 31, 403–415. [CrossRef]

10. Zhao, R.; Yan, R.; Chen, Z.; Mao, K.; Wang, P.; Gao, R.X. Deep Learning and Its Applications to Machine Health Monitoring. Mech.
Syst. Signal Process. 2019, 115, 213–237. [CrossRef]

11. Du, C.; Ho, C.L.; Kaminski, J. Prediction of Product Roughness, Profile, and Roundness Using Machine Learning Techniques for a
Hard Turning Process. Adv. Manuf. 2021, 9, 206–215. [CrossRef]

12. García Plaza, E.; Núñez López, P.J.; Beamud González, E.M. Efficiency of Vibration Signal Feature Extraction for Surface Finish
Monitoring in CNC Machining. J. Manuf. Process. 2019, 44, 145–157. [CrossRef]

13. Wang, B.; Wei, Y.; Liu, S.; Gu, D.; Zhao, D. Intelligent Chatter Detection for CNC Machine Based on RFE Multi-Feature Selection
Strategy. Meas. Sci. Technol. 2021, 32, 095904. [CrossRef]

14. Yao, Z.; Mei, D.; Chen, Z. On-Line Chatter Detection and Identification Based on Wavelet and Support Vector Machine. J. Mater.
Process. Technol. 2010, 210, 713–719. [CrossRef]

15. Xu, Y.; Gui, L.; Xie, T. Intelligent Recognition Method of Turning Tool Wear State Based on Information Fusion Technology and
BP Neural Network. Shock Vib. 2021, 2021, 7610884. [CrossRef]

16. von Hahn, T.; Mechefske, C.K. Machine Learning in CNC Machining: Best Practices. Machines 2022, 10, 1233. [CrossRef]
17. Li, G.; Fu, Y.; Chen, D.; Shi, L.; Zhou, J. Deep Anomaly Detection for CNC Machine Cutting Tool Using Spindle Current Signals.

Sensors 2020, 20, 4896. [CrossRef] [PubMed]
18. Bengio, Y.; Courville, A.; Vincent, P. Representation Learning: A Review and New Perspectives. IEEE Trans. Pattern Anal. Mach.

Intell. 2013, 35, 1798–1828. [CrossRef] [PubMed]
19. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention Is All You Need. In

Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), Long Beach, CA, USA, 4–9 December
2017; pp. 5999–6009.

20. Lecun, Y.; Bengio, Y.; Hinton, G. Deep Learning. Nature 2015, 521, 436–444. [CrossRef] [PubMed]
21. Zhang, K.; Zhou, D.; Zhou, C.; Hu, B.; Li, G.; Liu, X.; Guo, K. Tool Wear Monitoring Using a Novel Parallel BiLSTM Model with

Multi-Domain Features for Robotic Milling Al7050-T7451 Workpiece. Int. J. Adv. Manuf. Technol. 2023, 129, 1883–1899. [CrossRef]
22. Yang, J.; Wu, J.; Li, X.; Qin, X. Tool Wear Prediction Based on Parallel Dual-Channel Adaptive Feature Fusion. Int. J. Adv. Manuf.

Technol. 2023, 128, 145–165. [CrossRef]
23. Krichen, M. Convolutional Neural Networks: A Survey. Computers 2023, 12, 151. [CrossRef]
24. Simonyan, K.; Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition. In Proceedings of the 3rd

International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015; pp. 1–14.
25. Szegedy, C.; Vanhoucke, V.; Ioffe, S.; Shlens, J.; Wojna, Z. Rethinking the Inception Architecture for Computer Vision. In

Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June
2016; pp. 2818–2826. [CrossRef]

26. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep Residual Learning for Image Recognition. In Proceedings of the 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; Volume 45, pp. 770–778.

27. Silver, D.; Hubert, T.; Schrittwieser, J.; Antonoglou, I.; Lai, M.; Guez, A.; Lanctot, M.; Sifre, L.; Kumaran, D.; Graepel, T.; et al.
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning Algorithm. arXiv 2017, arXiv:1712.01815.

28. Silver, D.; Huang, A.; Maddison, C.J.; Guez, A.; Sifre, L.; Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.; Panneershelvam,
V.; Lanctot, M.; et al. Mastering the Game of Go with Deep Neural Networks and Tree Search. Nature 2016, 529, 484–489.
[CrossRef] [PubMed]

29. Ibarra-Zarate, D.; Alonso-Valerdi, L.M.; Chuya-Sumba, J.; Velarde-Valdez, S.; Siller, H.R. Prediction of Inconel 718 Roughness
with Acoustic Emission Using Convolutional Neural Network Based Regression. Int. J. Adv. Manuf. Technol. 2019, 105, 1609–1621.
[CrossRef]

30. Kuo, P.H.; Tseng, Y.R.; Luan, P.C.; Yau, H.T. Novel Fractional-Order Convolutional Neural Network Based Chatter Diagnosis
Approach in Turning Process with Chaos Error Mapping. Nonlinear Dyn. 2023, 111, 7547–7564. [CrossRef]

31. Hanchate, A.; Bukkapatnam, S.T.S.; Lee, K.H.; Srivastava, A.; Kumara, S. Explainable AI (XAI)-Driven Vibration Sensing Scheme
for Surface Quality Monitoring in a Smart Surface Grinding Process. J. Manuf. Process. 2023, 99, 184–194. [CrossRef]

32. Tran, M.Q.; Liu, M.K.; Tran, Q.V. Milling Chatter Detection Using Scalogram and Deep Convolutional Neural Network. Int. J.
Adv. Manuf. Technol. 2020, 107, 1505–1516. [CrossRef]

33. Kounta, C.A.K.A.; Arnaud, L.; Kamsu-Foguem, B.; Tangara, F. Deep Learning for the Detection of Machining Vibration Chatter.
Adv. Eng. Softw. 2023, 180, 103445. [CrossRef]

34. Unver, H.O.; Sener, B. A Novel Transfer Learning Framework for Chatter Detection Using Convolutional Neural Networks. J.
Intell. Manuf. 2023, 34, 1105–1124. [CrossRef]

https://doi.org/10.1016/j.cirp.2017.04.038
https://doi.org/10.1007/s10845-022-01913-4
https://doi.org/10.1007/s00170-020-06523-z
https://doi.org/10.1007/s10845-018-1453-4
https://doi.org/10.1016/j.ymssp.2018.05.050
https://doi.org/10.1007/s40436-021-00345-2
https://doi.org/10.1016/j.jmapro.2019.05.046
https://doi.org/10.1088/1361-6501/ac04e0
https://doi.org/10.1016/j.jmatprotec.2009.11.007
https://doi.org/10.1155/2021/7610884
https://doi.org/10.3390/machines10121233
https://doi.org/10.3390/s20174896
https://www.ncbi.nlm.nih.gov/pubmed/32872525
https://doi.org/10.1109/TPAMI.2013.50
https://www.ncbi.nlm.nih.gov/pubmed/23787338
https://doi.org/10.1038/nature14539
https://www.ncbi.nlm.nih.gov/pubmed/26017442
https://doi.org/10.1007/s00170-023-12322-z
https://doi.org/10.1007/s00170-023-11832-0
https://doi.org/10.3390/computers12080151
https://doi.org/10.1109/CVPR.2016.308
https://doi.org/10.1038/nature16961
https://www.ncbi.nlm.nih.gov/pubmed/26819042
https://doi.org/10.1007/s00170-019-04378-7
https://doi.org/10.1007/s11071-023-08252-w
https://doi.org/10.1016/j.jmapro.2023.05.016
https://doi.org/10.1007/s00170-019-04807-7
https://doi.org/10.1016/j.advengsoft.2023.103445
https://doi.org/10.1007/s10845-021-01839-3

Sensors 2024, 24, 1390 24 of 24

35. Zhang, W.; Peng, G.; Li, C.; Chen, Y.; Zhang, Z. A New Deep Learning Model for Fault Diagnosis with Good Anti-Noise and
Domain Adaptation Ability on Raw Vibration Signals. Sensors 2017, 17, 425. [CrossRef]

36. Zhang, W.; Li, C.; Peng, G.; Chen, Y.; Zhang, Z. A Deep Convolutional Neural Network with New Training Methods for Bearing
Fault Diagnosis under Noisy Environment and Different Working Load. Mech. Syst. Signal Process. 2018, 100, 439–453. [CrossRef]

37. Kolar, D.; Lisjak, D.; Pająk, M.; Pavković, D. Fault Diagnosis of Rotary Machines Using Deep Convolutional Neural Network with
Wide Three Axis Vibration Signal Input. Sensors 2020, 20, 4017. [CrossRef]

38. Wu, C.; Jiang, P.; Ding, C.; Feng, F.; Chen, T. Intelligent Fault Diagnosis of Rotating Machinery Based on One-Dimensional
Convolutional Neural Network. Comput. Ind. 2019, 108, 53–61. [CrossRef]

39. Janssens, O.; Slavkovikj, V.; Vervisch, B.; Stockman, K.; Loccufier, M.; Verstockt, S.; Van de Walle, R.; Van Hoecke, S. Convolutional
Neural Network Based Fault Detection for Rotating Machinery. J. Sound Vib. 2016, 377, 331–345. [CrossRef]

40. Souza, R.M.; Nascimento, E.G.S.; Miranda, U.A.; Silva, W.J.D.; Lepikson, H.A. Deep Learning for Diagnosis and Classification of
Faults in Industrial Rotating Machinery. Comput. Ind. Eng. 2021, 153, 107060. [CrossRef]

41. Zhang, P.; Gao, D.; Hong, D.; Lu, Y.; Wu, Q.; Zan, S.; Liao, Z. Improving Generalisation and Accuracy of On-Line Milling Chatter
Detection via a Novel Hybrid Deep Convolutional Neural Network. Mech. Syst. Signal Process. 2023, 193, 110241. [CrossRef]

42. Lu, Y.; Ma, H.; Sun, Y.; Song, Q.; Liu, Z.; Xiong, Z. An Interpretable Anti-Noise Convolutional Neural Network for Online Chatter
Detection in Thin-Walled Parts Milling. Mech. Syst. Signal Process. 2024, 206, 110885. [CrossRef]

43. Huang, P.M.; Lee, C.H. Estimation of Tool Wear and Surface Roughness Development Using Deep Learning and Sensors Fusion.
Sensors 2021, 21, 5338. [CrossRef] [PubMed]

44. Lin, W.-J.; Lo, S.-H.; Young, H.-T.; Hung, C.-L. Evaluation of Deep Learning Neural Networks for Surface Roughness Prediction
Using Vibration Signal Analysis. Appl. Sci. 2019, 9, 1462. [CrossRef]

45. ISO 21920-2:2021; Geometrical Product Specifications (GPS), Surface Texture: Profile Part 2: Terms, Definitions and Surface
Texture Parameters. ISO: Geneva, Switzerland, 2021. Available online: https://www.iso.org/standard/72226.html (accessed on
15 November 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.3390/s17020425
https://doi.org/10.1016/j.ymssp.2017.06.022
https://doi.org/10.3390/s20144017
https://doi.org/10.1016/j.compind.2018.12.001
https://doi.org/10.1016/j.jsv.2016.05.027
https://doi.org/10.1016/j.cie.2020.107060
https://doi.org/10.1016/j.ymssp.2023.110241
https://doi.org/10.1016/j.ymssp.2023.110885
https://doi.org/10.3390/s21165338
https://www.ncbi.nlm.nih.gov/pubmed/34450780
https://doi.org/10.3390/app9071462
https://www.iso.org/standard/72226.html

	Introduction
	Experimental Setup
	Machine Tool and Instrumentation
	Experimental Procedure
	Mapping Signals to Quality Measurements
	Process Signals
	Quality Measurements

	Neural Network Design
	Data Preparation for Neural Network Training
	Neural Network Architecture
	Model Training Parameters

	Results and Discussion
	K-Fold Cross Validation
	Detailed Performance Metrics
	Sliding Window Parameters
	Reduced Input
	Alternative Definition of Classes
	Datastream Simulation

	Conclusions and Future Work
	References

