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Abstract: This study aims to illustrate the design, fabrication, and optimisation of an ultrasonic
welding (UW) machine to join copper wires with non-woven PVC textiles as smart textiles. The
study explicitly evaluates UW parameters’ impact on heat generation, joint strength, and electrical
properties, with a comprehensive understanding of the process dynamics and developing a predictive
model applicable to smart textiles. The methodological approach involved designing and manufac-
turing an ultrasonic piezoelectric transducer using ABAQUS finite element analyses (FEA) software
and constructing a UW machine for the current purpose. The full factorial design (FFD) approach was
employed in experiments to systematically assess the influence of welding time, welding pressure,
and copper wire diameter on the produced joints. Experimental data were meticulously collected,
and a backpropagation neural network (BPNN) model was constructed based on the analysis of
these results. The results of the experimental investigation provided valuable insights into the UW
process, elucidating the intricate relationship between welding parameters and heat generation, joint
strength, and post-welding electrical properties of the copper wires. This dataset served as the basis
for developing a neural network model, showcasing a high level of accuracy in predicting welding
outcomes compared to the FFD model. The neural network model provides a valuable tool for
controlling and optimising the UW process in the realm of smart textile production.

Keywords: ultrasonic welding; smart textiles; copper wire joining; artificial neural network (ANN);
full factorial experimental design (FFD)

1. Introduction

Smart textiles, also known as e-textiles or smart fabrics, are a transformative category
of materials with integrated electronic components that can sense, respond to, and com-
municate data [1]. These textiles have gained increasing importance in various fields due
to their versatility and potential applications [2]. Smart textiles offer many benefits, from
enhancing our daily lives to advancing industries and healthcare [1]. Their applications
encompass wearables that monitor health and fitness, such as heart rate or temperature,
and offer real-time feedback. In the fashion industry, they enable interactive clothing and
accessories that change colour or pattern in response to environmental stimuli. Moreover,
the military and sports industries are adopting smart textiles for improved performance
and safety [3]. In healthcare, smart textiles assist in remote patient monitoring and develop-
ing prosthetics. Furthermore, the automotive and aerospace sectors utilise these materials
to enhance passenger comfort and safety [4]. Smart textiles are also crucial in the Internet
of Things (IoT), facilitating seamless data collection, transmission, and processing in smart
homes, agriculture, and industrial automation [5].

Smart textiles are created through various fabrication methods, each with unique ad-
vantages and disadvantages. Traditional methods include embroidery and weaving, where
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conductive threads are integrated into the textile structure [6,7]. Another method involves
screen printing, where conductive ink is applied to fabric to create conductive patterns [8,9].
Emerging techniques include three-dimensional (3D) knitting and additive manufacturing,
which enable intricate designs and precise integration of electronic components [10,11].
Embroidery and weaving provide durability and flexibility but may lack precision [12].
Screen printing offers cost-effectiveness and scalability but can be limited in conductivity
and washability [13]. At the same time, 3D knitting and additive manufacturing provide
high precision and customisation but may involve complex setups and higher production
costs [10]. The choice of method depends on the specific application requirements, such as
flexibility, conductivity, and production volume.

Therefore, UW stands out as an optimal method for smart textile fabrication due to
its ability to create strong, conductive bonds without the need for adhesives or additional
materials [14]. This technique uses high-frequency vibrations to create localised heat,
securely bonding conductive materials. Unlike traditional methods, UW ensures high
precision and reliability, making it ideal for integrating electronic components into textiles.
Additionally, it offers advantages such as rapid processing, energy efficiency, and minimal
material wastage [15]. UW has emerged as a promising technique for fabricating smart
textiles, offering numerous advantages. However, several challenges exist in applying this
method, which has sparked current research efforts to address these issues.

One primary challenge is achieving strong and reliable bonds between conductive
elements and textile substrates. While UW can provide secure connections, ensuring
consistent conductivity and durability across various textile materials and conductive
elements is non-trivial [16]. Additionally, selecting suitable welding parameters, such as
amplitude, pressure, and time, can be challenging. These parameters greatly affect the
quality of welds, but their optimal values may vary based on the specific materials and
design of the smart textile [17–20]. Another significant challenge is managing the localised
heat generated during the UW process. Excessive heat can damage sensitive electronic
components or the textile substrate itself, reducing the functionality and longevity of the
smart textile. Moreover, ensuring the uniformity of the welds across large textile surfaces
is another pressing challenge, as non-uniformity can lead to weak spots and reduced
performance [21].

Furthermore, achieving flexibility and stretchability in smart textiles while utilising
UW remains an ongoing research endeavour. Smart textiles are intended to conform to the
body or textile structure while retaining functionality. Balancing the demands of strong,
conductive bonds with the need for textile flexibility and comfort presents a challenge and
material optimisation problem [22,23].

The optimisation of UW parameters plays a vital role in achieving high-quality prod-
ucts. It can be optimised through a comprehensive experimental approach, where pressure
and time are systematically tested and analysed to determine the optimal settings for
achieving strong and reliable welds. Backpropagation neural network (BPNN) modelling
is a highly effective method used in artificial intelligence and machine learning for opti-
misation and other objectives [24]. With that approach, one can develop artificial neural
networks whose internal parameters are optimised sequentially by minimising prediction
errors. It starts with an initial model, and then through a process called backpropagation,
the error is calculated and passed backwards; thus, the network can learn itself as a more
complex pattern and predict from the new data [25]. Various fields, such as biomaterials
and manufacturing, have also employed this modelling method [26,27]. This can present
the importance of BPNN as an integral element of most modern machine learning schemes.

From the preceding narratives, it can be concluded that UW offers significant promise
for smart textile fabrication, but several challenges persist in ensuring consistent perfor-
mance, reliability, and comfort. Research efforts are directed toward optimising welding
parameters, developing high-strength wire-fabric connections, and addressing materials
and design challenges. As these challenges are addressed, the potential of smart textiles will
be further unlocked for diverse applications. Therefore, the current investigation attempts
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to fix some previously mentioned barriers concerning optimising the UW parameters to
improve the smart fabrics’ strength and electrical characteristics.

2. Methodology

Firstly, FEA modelling using the ABAQUS 6.14 software package (Dassault Systèmes
Simulia Corp, Johnston, Rhode Island) has been employed to design an ultrasonic piezo-
electric transducer, which acts as the heartbeat of the UW system. The FEA tool enabled the
simulation and optimisation of the transducer’s geometry to ensure efficient and precise
ultrasonic energy generation. Subsequently, the design was fabricated by carefully select-
ing materials that aligned closely with the FEA model. The transducer was designed to
generate consistent ultrasonic vibrations for the experimental work within the study.

After designing the ultrasonic transducer, the effort moved to designing and fabricat-
ing a specialised UW setup. This setup was tailored to the unique requirements of joining
copper wires with non-woven PVC textiles. During the design phase, components such as
the transducer, horn, and fixture were thoughtfully selected and strategically configured
to ensure compatibility with the target materials. Furthermore, the setup was accurately
constructed to allow for precise control of critical welding parameters, including copper
wire diameter in mm, welding time in sec and pressure in bar. Three levels were specified
for each of the three UW parameters as shown in Table 1. This precision became instru-
mental in achieving consistent weld quality and laid the groundwork for the subsequent
comprehensive investigation into the effects of welding process parameters.

Table 1. UW parameters.

Parameters
Levels

−1 0 +1

Wire diameter (mm) 0.2 0.3 0.4
Pressure (bar) 0.4 0.6 0.8

Time (s) 5 8 10

In order to systematically investigate the sophisticated relationship between welding
process parameters and process outcomes, the Design of Experiment (DOE) technique was
utilised to conduct number of experiments using Minitab 16 software (Minitab, LLC, Lock
Haven, PA, US). The full factorial DOE model comprised 3 parameters with 3 levels for each.
A complete combination array consisting of 33 = 27 trials was executed, and the weldability
performance was recorded, as showcased in Table 2. This method proved efficient in
exploring various parameter combinations while minimising the required experimental
runs. The research aimed to collect robust data that could be statistically analysed for
patterns and trends by varying welding parameters such as time, pressure, and copper
wire diameter.

The experimental data obtained from the 27-array design became the foundation
for the next phase. These data were employed to develop an interactive model using
the backpropagation neural network (BPNN) technique. The BPNN model was trained
on the experimental outcomes, transforming it into a predictive tool for process control
and optimisation. Its capacity for learning and generalisation allowed it to offer accurate
predictions regarding the relationships between welding parameters and critical factors,
such as the heat generated (in terms of welding temperature), joint strength (in terms of
peeling force), and post-welding electrical properties (in terms of electrical resistance) of the
copper wires. This methodology, from transducer design to BPNN modelling, forged a path
toward a comprehensive understanding of the UW process, with significant implications
for smart textile applications.
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Table 2. Full 27-parameters array for the main UW input and output responses.

Experiment
No.

Input Welding Parameter Output Response

Diameter Pressure Time Heat
Generation

Joint
Strength

Electrical
Properties

(mm) (bar) (s) (◦C) (N) (Ohm)
1 0.2 0.4 5 68 19.65 0.02
2 0.2 0.4 8 69 23.02 0.021
3 0.2 0.4 10 79 24.08 0.021
4 0.2 0.6 5 79 23.78 0.024
5 0.2 0.6 8 80 25.08 0.0242
6 0.2 0.6 10 80 25.91 0.0245
7 0.2 0.8 5 79 24.02 0.0252
8 0.2 0.8 8 79 26.08 0.0255
9 0.2 0.8 10 80 27.91 0.0256
10 0.3 0.4 5 73 18 0.04
11 0.3 0.4 8 74 19.6 0.041
12 0.3 0.4 10 74 22.4 0.041
13 0.3 0.6 5 73 20.5 0.044
14 0.3 0.6 8 74 22.1 0.045
15 0.3 0.6 10 77 23.8 0.045
16 0.3 0.8 5 76 20.2 0.048
17 0.3 0.8 8 78 21.53 0.048
18 0.3 0.8 10 78 23 0.05
19 0.4 0.4 5 69 16.32 0.06
20 0.4 0.4 8 70 18.25 0.061
21 0.4 0.4 10 70 19.03 0.061
22 0.4 0.6 5 70 18.95 0.062
23 0.4 0.6 8 71 19.05 0.061
24 0.4 0.6 10 73 20.01 0.061
25 0.4 0.8 5 72 19.95 0.064
26 0.4 0.8 8 73 21.03 0.065
27 0.4 0.8 10 74 22.01 0.065

3. Transducer FEA Modelling and Manufacturing

The first step in constructing the FEA model was to build the geometry of the trans-
ducer parts. Dimensions of each part of the transducer were calculated based on the
acoustic wave equation [28]. After that, the ABAQUS package has been used to build the
model geometry shown in Figure 1a. Initially, the front mass geometry was assumed to
be stepped. The stepped horn was distinguished by the high amplification of vibration
amplitude [28].
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Figure 1. Transducer model (a) geometry and (b) boundary conditions.

Based on the literature, proper materials have been assigned to each transducer’s parts.
Aluminium has been used for the front and the back masses. Simultaneously, copper and
piezoelectric materials have been allocated for the electrodes and the rings, respectively.

Table 3 presents material properties for defining the materials in the FEA model.
Afterwards, loads and boundary conditions are assigned. The pre-stressed bolt load, esti-
mated based on the recommended piezoelectric stack compression state (around 30 MPa),
is applied at the bolt cross-section between the back mass and the piezoelectric stack.
Boundary conditions (BC) are also used for piezoelectric elements, facilitating electrical
potential propagation from the base state [29,30]. Figure 1b illustrates these load and
boundary conditions.
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Table 3. Physical properties of transducer component materials.

No. Material Young’s
Modulus (GPa)

Density
(Kg/m3)

Poisson’s
Ratio

Wave Velocity
(m/s)

Characteristic Acoustic
Impedance (×106 Ns/m3)

1 Aluminium
(5083) 70.3 2660 0.33 5140 13.67

2 Steel (AISI
1045) 200 7870 0.3 5040 39.7

3 Piezoelectric
(PZT) 73 7700 - 3080 23.72

4 Copper (99.97%
pure) 115 8900 0.31 3595 31.9

Regarding the FEA model meshing process, the structure meshing technique is pre-
ferred for such an electromechanical system [29,30]. Moreover, suitable elements for the
different parts of the transducer were selected. All metallic parts were 3D stress quadratic
elements (C3D20R), while the piezoelectric rings were a piezoelectric quadratic element
(C3D20RE).

Concerning the FEA results, Figure 2a,b illustrates displacement distribution and
von Mises stress along the transducer’s axial direction for the longitudinal mode shape
observed at 25.87 kHz. The nodal plane position, which supports the transducer during
experiments, is also presented. A welding horn with a calculated length was attached to
the working end to maximise output amplitude. It should be noted that changes in the
transducer mass can influence the system’s resonance frequency.
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Figure 2. Along the axial direction of the transducer are the (a) normalised displacement, (b) von
Mises stress in MPa, (c) normalised displacement transducer with ultrasonic horn, (d) von Mises
stress in MPa transducer with ultrasonic horn, (e) fabricated transducer, and (f) fabricated transducer
with ultrasonic horn.
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Figure 2c,d shows displacement distribution, and von Mises stress along the trans-
ducer’s axial direction for the longitudinal mode shape after adding the welding horn. It
occurred at 28.38 kHz.

4. UW Machine and Experimental Process Design

In the current study, DOE is used to model and analyse the effect of the UW regime
on the heat generation, joint strength, and electrical properties of welded joints for smart
textiles. The general functional relationship can be written as in Equation (1):

Y = f (D, P, t) (1)

where Y represents the dependent variable, while D, P, and t represent the independent
variables of copper wire diameter, welding pressure, and welding time, respectively. The
general functional relationship forms the basis of experimental design, defining factors
and interactions. Analysis of Variance (ANOVA) assesses their significance once data are
collected. Polynomial models, including linear and non-linear components, can be part of
this relationship. This allows for a more flexible and accurate representation of the data,
capturing potential curvature or interaction effects that may exist. ANOVA is crucial for
evaluating these models and identifying statistically significant terms. Together, these tools
enable systematic exploration and optimisation. The general form of the ANOVA model
with polynomial terms can be represented in Equation (2):

Y = β0 + β1X + β2X2 + β3X3 + . . . + βnXn + ε (2)

In this Equation, X represents the independent variable, β0, β1, β2, . . ., βn are the
coefficients associated with each polynomial term, X2, X3, . . ., Xn represent the different
powers of the independent variable, and ε defines the error term.

A prototype vertical UW machine was designed to facilitate the experimental process.
The UW parameters encompass a maximum power rating of 1 kW and a frequency of
28 kHz. To achieve the desired welding of fabric–copper connections, ultrasonic waves are
applied perpendicularly to the surface, transversely engaging with the fabrics. The UW
system comprises essential components, including a power supply, a converter, a booster,
and a horn (Figure 3a).

This system transforms the electrical energy, supplied at a frequency of 50–60 Hz
by the power supply, into mechanical vibration energy oscillating at 28 kHz through the
converter. The resulting frictional heat generated by the vibration is then conveyed to the
junction surface via the horn, facilitating the formation of a bond between the fabric and
copper wire. The welding and holding time can be precisely adjusted within 1.0 s to 10 s,
while the pneumatic pressure applied to the welding area can reach up to 1 MPa.

To make the proper contact point between the fabric and the copper wires, non-woven
fabrics were stripped to about 60 mm in length and 20 mm in width. The polyester fabric
was provided by Kar-tex (Cairo, Egypt) as a material for facemasks, personal protective
clothes, diapers, and medical products in the market. Then, plain annealed stranded copper
wires (99.97% pure) supplied by Elsewedy Electric (New Cairo, Egypt) with different diam-
eters (0.2, 0.3, and 0.4 mm) were inserted, centred, and integrated between the two pieces
of fabric (between 0.05 and 0.08 mm thick each) using an UW machine; the welded sample
is shown in Figure 3b.

After UW, a Scanning Electron Microscope (SEM) model (SU-70), manufactured by
Hitachi High-Tech, Japan, was used to investigate the bonding morphology of the fabric-
copper joint. A peeling test was conducted to determine the mechanical strength of the
joint to analyse the adhesion of electronic interconnectors. Therefore, the self-developed
peeling test is ideal for inspecting joints between copper wires and textiles. The sample
was clamped and fixed on the grips of the Zwick tensile testing machine model (Z010)
manufactured by Zwick\Roell, Germany, with a 10 KN maximum capacity. The force was
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applied to the textile with a 10 mm/min travel speed. The configuration of the peeling test
is illustrated in Figure 4a.
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A four-wire measuring instrument is used to measure the contact electrical resistance,
as illustrated in Figure 4b. Two of the four contacts provided a current of 1 A. A voltmeter
over the two remaining conductors measured the falling voltage at the resistor. Based on
Ohm’s law, it was possible to calculate the electrical resistance of the contact. The contact
electrical resistances were in the range of only a few milliohms. Finally, an infra gun was
used to measure the temperature through welding time.

5. Development of Feed Forward Back Propagation Network (FFBPN) for Prediction of
Smart Textile Connection Quality

An artificial neural network (ANN) is a computational tool inspired by the complex
neural networks of the human brain. It is excellently tuned to discern intricate patterns,
make data-driven predictions, and quickly resolve complex engineering challenges. ANNs
are adept at accurate outcome prediction and find versatile applications in various engi-
neering domains. ANNs, as computational models, require training to learn and make
predictions or classifications. The training process involves adjusting the neural network’s
internal parameters (weights and biases) based on a dataset to minimise prediction errors.

MATLAB R2020a was used to develop the FFBPN model. The FFBPN model was
developed by taking the three parameters (wire diameter, pressure, and time) from the data
and considering them as inputs. Heat generation, joint strength, and electrical properties
were then taken one at a time as outputs. Three phases of model development were con-
ducted, using 70%, 15%, and 15% of the available data for training, testing, and validation,
respectively. If the model meets the performance criteria established during the training
stage, it is considered successfully developed and validated; then, the model proceeds to the
testing stage. Otherwise, it is recalled for retraining in the first stage. It is deemed validated
once the model passes the testing stage and meets the performance criteria. The following
four steps comprise the backpropagation method’s training algorithm: initialisation of
weights, feed-forward, backpropagation of errors, and updating the weights and biases,
respectively. The proposed network architecture involves three input neurons for each
input parameter, an output layer with one neuron corresponding to one output at a time,
and a single hidden layer of neurons.

The Levenberg–Marquardt (LM) backpropagation algorithm will be used if the model
does not meet the expected values [31]. This allows the procedure to be repeated until it
finds the optimal requirement. When determining the architecture of a backpropagation
neural network (BPNN) using a trial-and-error method, several design criteria can guide
the process illustrated in Table 4.

Table 4. The configurations for the BPNN used for the regression problems.

Parameter Value

Network Type Feed-forward backpropagation

Number of neurons in the hidden layer 4:35, used value was 10

Number of hidden layers 1:5, used value was 1

Training function Trainlm

Transfer function sigmoid function Tansig

Learning Rate 0.05

Performance goal 0.0001

After the input layer receives the signals from the other source, the hidden layer
converts them into a form that the output signal can utilise. This study’s suggested neural
network architecture is 3-10-1, as seen in Figure 5.

In the current investigation, experimental data from the DOE emphasises the devel-
opment of an interactive backpropagation neural network (BPNN) model. This BPNN
model was trained on experimental data to provide a predictive tool for process control
and optimisation.
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Figure 5. Proposed network architecture. The colours represent different types of layers or compo-
nents. Turquoise colour represents input/output data and blue colour represents components of each
layer and its functions like summation and transfer functions. Arrows depict the flow of in-formation,
indicating how data moves from one layer to another. The plus symbol could be used to denote the
addition of bias and weights in the equations that govern the calculations within the network.

6. Results and Discussion
6.1. Preliminary Results of the UW Process

The mechanical peeling tests showed a significant relationship between welding
parameters and joint strength, as illustrated in Figure 6. For instance, with a 0.2 mm
diameter copper wire at 0.4 bar pressure, the peeling force increased from 19.6 N to 24 N
as welding time extended from 5 s to 10 s. This trend was consistent across different
pressure levels, with the highest peeling forces of 26 N and 28 N observed at 0.8 bar
pressure for welding times of 8 s and 10 s. Higher pressure levels enhanced bonding
between the non-woven fabric layers by promoting intermolecular contact and improving
adhesion strength.
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The positive correlation between peeling force and welding time underscored that
longer welding times facilitate thorough bonding and material interdiffusion, increasing
joint strength. Conversely, increasing copper wire diameter led to a decrease in peeling force.



Sensors 2024, 24, 1488 10 of 18

This phenomenon was attributed to the wire’s heat dissipation characteristics. A larger wire
diameter resulted in more efficient heat dissipation, weakening the bonding between fibres
due to reduced heat input and diffusion. These findings emphasise the intricate interplay
between welding parameters and joint strength in UW of non-woven fabric. While both
pressure and time are vital, pressure appeared to have a more pronounced impact.

The electrical resistance measurements conducted on the wire joints highlighted the
significant influence of welding parameters on electrical resistance. The electrical resistance
values exhibited variations dependent on both wire diameter and welding conditions.
Specifically, for wire diameters of 0.2, 0.3, and 0.4 mm, the recorded electrical resistance
values were 0.02, 0.04, and 0.06 Ohm, respectively. All measurements were taken on wires
with a fixed length of 60 mm to ensure equitable comparisons.

The electrical resistance data show a slight increase with welding time. For instance,
with a 0.2 mm wire diameter at 0.4 bar pressure, electrical resistance increased from 0.02
to 0.021 Ohm, as depicted in Figure 7. However, a more pronounced rise in electrical
resistance occurred with heightened pressure. At 0.8 bar pressure and a welding duration
of 10 s, electrical resistance reached 0.0256 Ohm. Similar trends materialised with 0.3 and
0.4 mm wire diameters.
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This relationship between wire diameter and electrical resistance can be attributed to
the alterations in cross-sectional area, which led to heightened electrical resistance. While
pressure could potentially deform the wire and influence its cross-section, the predominant
factor affecting electrical resistance was deemed to be the cross-sectional area. These
findings underscore the imperative consideration of welding parameters and wire diameter
concerning electrical resistance measurements. Minimising electrical resistance in welded
joints is critical to avoid electrical losses and inefficiencies.

The observed correlation between wire diameter and electrical resistance can be
attributed to alterations in the weldment area, resulting in elevated electrical resistance. The
increase in electrical resistance is primarily attributed to various defects induced by high
welding pressure as revealed by SEM observation. As expected, the presence of unbonded
regions at the joint interface contributes to an increase in electrical resistance. Consequently,
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during charging cycles, the elevated temperature intensifies the electrical resistance, leading
to overall performance degradation. Furthermore, the diffusion rate of elements appears to
be influenced by welding pressure and time. Previous studies have frequently highlighted
that the excess concentration of vacancies generated through severe plastic deformation
enhances diffusion around the interface during ultrasonic welding [32,33]. As a result, faster
diffusion at the interface with minimal pressure is preferable for achieving a conductive
joint. This interpretation aligns with the observed electrical resistance of the 0.4 mm wire
as both time and pressure increase, as shown in Figure 6c. These findings underscore the
critical importance of considering welding parameters and wire diameter when conducting
electrical resistance measurements. Minimising the electrical resistance of welded joints is
imperative to mitigate electrical losses and enhance overall efficiency.

The temperature measurements during the UW process for a 0.2 mm copper wire
revealed a consistent trend across different time durations and pressures. At a pressure
of 0.4 bar, the temperature increased from 68 ◦C to 79 ◦C as the welding time increased
from 5 s to 10 s, as shown in Figure 8a. This trend was observed consistently across all
tested pressures. The highest temperature recorded was 80 ◦C at a pressure of 0.8 bar and a
welding time of 10 s.
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When considering the effect of wire diameter on temperature, it was observed that the
temperature slightly decreased as the wire diameter increased. The minimum temperature
and the highest pressure were recorded at a welding time of 5 s. This observation suggests
that temperature is primarily influenced by the wire diameter, with larger diameters
dissipating welding heat more rapidly Figure 8. Furthermore, the effects of welding time
and pressure increased the temperature for each independent wire diameter. This indicates
that both time and pressure contribute to generating heat during the welding process.

The observed temperature trends can be attributed to the thermal characteristics of the
copper wire and the energy input during UW. As the welding time increases, more energy
is delivered to the wire, resulting in a higher temperature. Similarly, increased pressure can
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increase temperature due to enhanced energy transfer. However, the effect of wire diameter
on temperature is linked to its ability to dissipate heat efficiently. These findings emphasise
optimising welding parameters to achieve the desired temperature range for effective and
reliable bonding. The results suggest that shorter welding times and lower pressures may
help reduce excessive temperature generation, mainly when working with smaller wire
diameters. Additionally, careful consideration of the wire diameter is necessary to ensure
proper heat dissipation and prevent overheating.

Figure 9 shows an SEM of the welded joint under different parameters. The 0.4 mm
copper wire with the highest pressure and time appeared to have an efficient bonding
interface morphology. With increased welding time and fixing other parameters, the wire
was squeezed into the gap regions of the fabrics. The high-frequency vibration caused
friction and subsequent heat, which softened the copper in the bonding. It was then
squeezed into the arc-like movement path. However, if the time was short, the energy
and temperature produced from friction would not be sufficient, and material plastic flow
became more difficult even if the pressure continued to increase. In addition, the wire
diameter played a vital role in transferring the heat produced by friction, as indicated by
Figure 9a,c.
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As per UW analysis, after ultrasonic vibration was activated, the horn directly con-
tacted the fabric layers, squeezed and rubbed it, and a relative sliding motion occurred,
generating heat and bonding through the acoustic softening effect. Firstly, a virtual bond
is formed quickly between the layer’s interfaces. With the increase in welding time, the
virtual bond would tear firstly and join again under the action of the horn pressure and
shear force, and then produce bonding, interlocking to form a robust bond region, which
leads to the increase in the joint bonding strength. However, since the force and relative
sliding required to create a bond between the fabric layers need to be transferred through
the copper wire, there is a certain hysteresis and attenuation, and this makes the time
increase not always the influential parameter (Figure 9c,d).
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6.2. Statistical Modelling of the UW Process Using the Design of the Experiment (DOE)

Regarding the DOE results, for the current investigation, a 95% level of statistical
significance was selected. The determined correlation coefficients R2 are 80.5%, 95.3%, and
99.37% for heat generation, joint strength, and electrical properties of the welded joints,
respectively, showing that the data match the models very well and can be used to derive it.
The models that resulted from the analysis can be expressed as:

T = 40.7 + 81.1 D + 68.0 P + 0.11 t − 105.6 D2 − 26.4 P2 + 0.122 t2 − 50.0 D P − 2.11 D t − 1.23 P t (3)

S = 14.57 − 47.8 D + 33.5 P + 0.886 t + 65.9 D2 − 17.06 P2 + 0.0314 t2 − 7.8 D P − 1.577 D t − 0.482 P t (4)

Ω = −0.02659 + 0.2019 D + 0.01666 P + 0.000229 t − 0.0096 D P − 0.00030 D t + 0.000024 P t (5)

where D, P, and T represent the independent variables of copper wire diameter, welding
pressure, and welding temperature, where t, S, and Ω represent welding time, peeling
force, and electrical resistance, respectively.

The impact of UW parameters on heat generation, joint strength, and electrical prop-
erties are tested experimentally for 33 = 27 combinations involving three variables, and a
statistical approach is used to clarify the relative effects of different process parameters on
the responses. Thus, a three-factor Analysis of Variance (ANOVA) approach is applied to
the collected dataset using the Minitab program to examine the effects of various factors,
including wire diameter, pressure, and time on the produced joints. ANOVA analysis
results are displayed in Table 5 with a confidence level of 0.95. In this study, the degrees of
freedom for single factors were 2, the degrees of freedom for interaction between factors
were 4, and the error number was 8.

Table 5. Analysis of Variance (ANOVA) Test.

Source Degrees of
Freedom (DF)

Adjusted Sums
of Squares
(Adj SS)

Adjusted Mean
Squares

(Adj MS)
F-Value p-Value

Heat generation

Diameter (mm) 2 151.185 75.593 14.93 0.002
Pressure (bar) 2 109.407 54.704 10.80 0.005

Time (s) 2 38.741 19.370 3.82 0.068
Diameter (mm) × Pressure

(bar) 4 41.481 10.370 2.05 0.180

Diameter (mm) × Time (s) 4 8.148 2.037 0.40 0.802
Pressure (bar) × Time (s) 4 7.259 1.815 0.36 0.832

Error 8 40.519 5.065
Total 26 396.741

Joint strength

Diameter (mm) 2 114.759 57.3797 341.37 0.000
Pressure (bar) 2 38.578 19.2892 114.76 0.000

Time (s) 2 39.914 19.9569 118.73 0.000
Diameter (mm) × Pressure

(bar) 4 5.883 1.4706 8.75 0.005

Diameter (mm) × Time (s) 4 2.953 0.7383 4.39 0.036
Pressure (bar) × Time (s) 4 2.361 0.5902 3.51 0.062

Error 8 1.345 0.1681
Total 26 205.793

Electrical
properties

Diameter (mm) 2 0.006787 0.003393 13,278.70 0.000
Pressure (bar) 2 0.000141 0.000070 275.04 0.000

Time (s) 2 0.000003 0.000001 5.33 0.034
Diameter (mm) × Pressure

(bar) 4 0.000020 0.000005 19.43 0.000

Diameter (mm) × Time (s) 4 0.000001 0.000000 0.81 0.551
Pressure (bar) × Time (s) 4 0.000001 0.000000 1.25 0.364

Error 8 0.000002 0.000000
Total 26 0.006954

For temperature, the wire diameter and pressure significantly influence the experi-
mental results when their contributions to the response are 38.11% and 27.58%, respectively.
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Meanwhile, the interaction between factors has no significant influence on temperature.
The wire diameter, welding time, and pressure are the significant single factors that affect
peeling force. The interaction between wire diameter and pressure follows it. According to
the results of ANOVA, wire diameter and pressure are significant single factors followed
by interaction between wire diameter and pressure that affect electrical properties.

The main effect plots show how each factor affects the response characteristic. As
shown in Figure 10a,b, each temperature and peeling force trend decreased by increasing
the diameter and decreasing pressure and time. However, the electrical resistance of
weldment increased by increasing each diameter and pressure, as shown in Figure 10c.
Meanwhile, the change in levels of time from 5 s to 10 s has a slight, almost negligible
impact on electrical resistance.
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Subplots (a), (b), and (c) show a preponderance of the effect of a diameter of 0.4 mm.
From (a) and (b), it is concluded that the optimum combination of each process parameter
for lower heat generation and joint strength is meeting at wire diameter, 0.4 mm; pressure,
0.4 bar; and time, 10 s. Figure 10c shows that the optimum combination of each process
parameter for higher electrical resistance is meeting at wire diameter, 0.4 mm; pressure,
0.8 bar; and time, 5–10 s; this has the same effect.

6.3. Comparison of Experiment, BPNN and FFD Results

A comparison was conducted with experiment results to evaluate the predictive
performance of BPNN and FFD. The performances of developed models via FFD and ANN
of temperature, mechanical peeling force, and electrical resistance of the welded joints
were evaluated using correlation coefficient (R) as shown in Figure 11a–f. Figure 11a,b
show the correlation coefficient diagrams among predicted values of each approach and
the observed values for measured temperature; the R of the FFD model equals 0.862, while
the R of the ANN model equals 0.955. The correlation value for the overall performance
of ANN for peeling force is very close to that of the FFD model, which equals 0.967 and
0.96, respectively, as shown in Figure 11c,d. The correlation coefficient R for both models
resulting from both methods, FFD and ANN, was approximately the same and very close
to 1 when studying electrical resistance, which is equal to 0.997, as shown in Figure 11e,f.

ANN has been found to perform better than FFD or other techniques for non-linear
systems. Meanwhile, many repeated calculations are required because of the resilience of
the ANN model. This technique also obscures the input factors’ contributions and how they
interact. The performances of FFD and BPNN models are tested by statistical criteria such
as the coefficient of correlation (R), which provides the value of proportionality between the
data from the experiment and the estimation, while the accuracy of the estimation results is
measured by mean absolute percentage error (MAPE) which can be calculated by following
the formula, The results are summarised in Table 6.

MAPE =
1
n

n

∑
i=1

∣∣∣∣ya,i − yp.i

ya.i

∣∣∣∣ (6)

where n is the number of experiments, ya,i is the actual value, and yp,i is the predicted value.

Table 6. Comparison of statistical analysis between FFD and ANN models.

Output

Heat Generation Joint Strength Electrical Properties

FFD ANN FFD ANN FFD ANN

R 0.862 0.955 0.96 0.967 0.997 0.997

MAPE 0.018153 0.0078 0.0297 0.021998 0.0257 0.0231

Finally, according to the developed FFD and ANN models, the percentage of overall
error for ANN and FFD for each heat generation, joint strength, and electrical properties
is approximately 3.91%, 6.84%, and 0.49%, respectively, confirming the high accuracy of
the predictive model. The FFD model results in an average error percentage of 4.69%
and 0.7% for joint strength and electrical properties, respectively, while the rate of overall
error of modelling heat generation is 19.52%, which means there may be other variables
affecting the process that have not yet been taken into account which are responsible for
this amount of variation. The results indicate that both the developed models are highly
accurate in predicting the joint strength and electrical properties; however, ANN is more
accurate than FFD in predicting heat generation model. The analysis shows that wire
diameter mainly contributes 38.11%, 55.76%, and 97.59% to heat generation, joint strength,
and electrical properties, respectively. Although the diameter of the wire is considered
the primary variable affecting all output responses, its relatively small contribution rate of



Sensors 2024, 24, 1488 16 of 18

38.11% in heat generation compared to the other responses, reflects that the levels used in
this experiment were very narrow and reflected in that percentage.
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tion results is measured by mean absolute percentage error (MAPE) which can be calcu-
lated by following the formula, The results are summarised in Table 6. 𝑀𝐴𝑃𝐸 =  1𝑛 𝑦 , − 𝑦 .𝑦 .  (6) 

where n is the number of experiments, 𝑦 ,  is the actual value, and 𝑦 ,  is the predicted 
value. 

Table 6. Comparison of statistical analysis between FFD and ANN models. 

 
Output 

Heat Generation Joint Strength Electrical Properties 
FFD  ANN  FFD  ANN  FFD  ANN  

R 0.862 0.955 0.96 0.967 0.997 0.997 
MAPE 0.018153 0.0078 0.0297 0.021998 0.0257 0.0231 

Figure 11. Graphical comparison of correlation plots for FFD and ANN Models for weldment
proprieties. (a) Correlation plot of FFD for temperature. (b) Correlation plot of ANN for temper-
ature. (c) Correlation plot of FFD for peeling force. (d) Correlation plot of ANN for peeling force.
(e) Correlation plot of FFD for electrical resistance. (f) Correlation plot of ANN for electrical resistance.

7. Conclusions

This work involves the design of a piezoelectric transducer in parallel with the proto-
type development of a UW machine. This integrated approach aims to explore the impact
of welding parameters, such as time, pressure, and wire diameter, on the joint efficiency of
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smart textiles. The experimental results derived from this endeavour were subsequently
employed in the optimisation process, combining full factorial design (FFD) and artificial
neural networks (ANNs) to enhance and control UW processes. The main insights can be
summed up as follows:

Both pressure and time are vital; pressure appeared to have a more pronounced
impact. The results suggest that an optimal combination of pressure and time can be
determined to achieve the desired joint strength, considering specific wire diameter and
material characteristics.

Reducing wire diameter and controlling pressure becomes instrumental in achieving
lower electrical resistance values and enhancing the overall electrical properties of the joints.

According to experimental research, the minimum heat generation, maximum strength,
and maximum electrical resistance of UW of copper wire and non-woven PVC textiles
can reach 68 ◦C, 27.91 N, and 0.065 Ohm. The wire diameter significantly impacts the
joint strength, electrical properties, and heat generation followed by welding pressure, but
the welding time makes a slightly significant difference. Given the interactions between
factors, the interactions between wire diameter and welding pressure slightly affect FFEAct
responses. However, the interaction between the other two groups has no significant impact
on the experimental results.

The proposed FFD and ANN models accurately predict the UW process’s heat gener-
ation, joint strength, and electrical properties to join copper wires with non-woven PVC
textiles. However, the predictive capability of the FFD model shows a high error percentage
of 19.52% only in the case of heat generation. This reflects the necessity of reconsider-
ing the size of the orthogonal array, which plays a critical role in the efficiency of the
predictive model.

The ANN with a 3-10-1 architecture is an optimum network with a high correlation
coefficient obtained on validation datasets. The model accuracy of ANN was found to
be better than FFD, and the former was found to be statistically robust and accurate in
predicting heat generation. At the same time, they are almost identical in robustness and
accuracy in predicting joint strength and electrical properties.
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