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Abstract: The electroencephalogram (EEG) has recently emerged as a pivotal tool in brain imaging
analysis, playing a crucial role in accurately interpreting brain functions and states. To address the
problem that the presence of ocular artifacts in the EEG signals of patients with obstructive sleep apnea
syndrome (OSAS) severely affects the accuracy of sleep staging recognition, we propose a method that
integrates a support vector machine (SVM) with genetic algorithm (GA)-optimized variational mode
decomposition (VMD) and second-order blind identification (SOBI) for the removal of ocular artifacts
from single-channel EEG signals. The SVM is utilized to identify artifact-contaminated segments
within preprocessed single-channel EEG signals. Subsequently, these signals are decomposed into
variational modal components across different frequency bands using the GA-optimized VMD
algorithm. These components undergo further decomposition via the SOBI algorithm, followed by
the computation of their approximate entropy. An approximate entropy threshold is set to identify
and remove components laden with ocular artifacts. Finally, the signal is reconstructed using the
inverse SOBI and VMD algorithms. To validate the efficacy of our proposed method, we conducted
experiments utilizing both simulated data and real OSAS sleep EEG data. The experimental results
demonstrate that our algorithm not only effectively mitigates the presence of ocular artifacts but also
minimizes EEG signal distortion, thereby enhancing the precision of sleep staging recognition based
on the EEG signals of OSAS patients.

Keywords: electroencephalogram; ocular artifact; GAVMD; SOBI; sleep staging

1. Introduction

The electroencephalogram (EEG), a predominant tool in analyzing brain activity and
diagnosing various diseases, facilitates recording the brain’s spontaneous potential activity,
thus illustrating a correlation between brain activity and behavioral cognition. EEG data
acquisition is typically categorized into invasive methods and non-invasive methods [1].
In medical practice, more accurate EEG signals are obtained by implanting electrodes
into specific brain regions using invasive methods. Although this method allows for
the collection of cleaner and more effective EEG signals, it involves certain risks and is
complex [2,3]. Non-invasive EEG signal acquisition methods have partially mitigated this
issue; however, these approaches are prone to interference from physiological artifacts
during signal acquisition. The most common artifacts arise from electrocardiography
(ECG), electromyography (EMG), and electrooculography (EOG) [4]. Among these, the
ocular artifact has the most significant influence on the EEG signal. The ocular artifact has
the characteristics of high amplitude, wide overlap with the EEG spectrum, and strong
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randomness, which significantly increases the difficulty of EEG signal preprocessing [5,6].
Hence, it is crucial to precisely detect and eliminate ocular artifacts before EEG data
analysis [7].

In recent years, researchers have developed numerous ocular artifact removal al-
gorithms for multi-channel EEG signals, achieving significant improvements. However,
as the technology continues to evolve, the use of EEG signal acquisition and processing
technology in healthcare is increasing. To lower computational complexity and enhance
system portability, numerous EEG systems have shifted to using a single EEG channel,
such as sleep monitoring and portable anesthesia depth monitoring [8,9]. Consequently,
researching few-channel, particularly single-channel, automatic ocular artifact removal
algorithms holds significant importance for the application of portable acquisition systems.

Ocular artifact processing methods are primarily categorized into data discarding
and artifact elimination methods [10]. The simplest method, data discarding, involves
manually inspecting acquired EEG signals and discarding segments contaminated with
ocular artifacts. However, this approach may lead to significant loss of EEG information,
potentially introducing more critical issues than those caused by using EEG signals with oc-
ular artifacts [11]. Artifact elimination methods, which identify and remove artifacts while
preserving the original signal’s neural information, fall into two main categories [12]. The
first category involves filtering and regression; since ocular artifacts predominantly exist in
the low-frequency band, they can be addressed with high-pass filtering [13]; regression-
based methods necessitate reference signals that contain features of artifact signals, typically
eliminating artifact interferences mixed within EEG signals through the relationship be-
tween these reference signals and the EEG signals. However, the effectiveness of this
method is contingent on the quality of the reference channel’s data [14] and the poten-
tial for bidirectional contamination between the EEG and reference signals [15]. Linear
filtering methods remove noise by directly limiting the spectral components associated
with artifacts in the frequency domain [16]. However, due to the spectral overlap between
artifacts and EEG signals, removing artifact components may also eliminate important
signal components [17]. The second category involves separating or decomposing EEG
and artifact signals into other domains. Among these methods, the most widely used
is the blind source separation (BSS) [18] algorithm. Its fundamental principle assumes
that signals from all electrodes are produced by specific sources. The observed signal can
generate multiple sources after undergoing linear transformation, and the elimination of
ocular artifacts is achieved by removing the sources associated with the ocular artifacts.
However, given the BSS algorithm’s prerequisite that the number of channels must surpass
the number of sources, this method cannot be directly applied to single-channel EEG signal
processing [19]. Consequently, researchers introduced a signal decomposition approach
wherein the original EEG signal is broken down into multiple components for input into
the BSS, followed by identifying and removing artifact signals.

Mijovic et al. [20] combined EMD with ICA; firstly, EMD was used to decompose
the EEG signal. The ICA algorithm was used to process the decomposed signal, which
effectively removed artifact signals in single-channel EEG signals, but modal aliasing occurs
in signal decomposition using EMD, which can easily lead to incomplete artifact removal
or mistakenly removing the useful information. Subsequently, its improved algorithm,
EEMD [21], was proposed; when using EEMD combined with BSS for the removal of
artifacts in single-channel EEG, there is still the phenomenon of noise residuals. ZY Liu
et al. [22] proposed a single-channel EEG signal ocular artifact removal algorithm based
on wavelet transform, EEMD, and ICA, which effectively removes ocular artifacts and
solves the problem of the artifact removal process of the WT-ICA algorithm. Still, the
removal effect depends on the selection of wavelet bases and decomposition levels, which
can only rely on the empirical selection of wavelet bases. In recent years, the singular
spectrum analysis (SSA) technique has also been successfully used to remove artifacts from
single-channel EEG signals [23]; although it can remove artifacts from EEG signals, this
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method can only be performed under the assumption that the EEG is smooth, and it is not
applicable to longer EEG cycles.

Furthermore, the rapid advancement of machine learning technology has fostered its
application in EEG artifact detection and removal, with automated recognition, multi-task
learning, and flexibility showing great potential for its use. As a supervised learning model
extensively utilized in pattern recognition and classification, SVM exhibits strong general-
ization capabilities, effectively handles high-dimensional data and feature selection issues,
and its robustness confers notable advantages in EEG artifact signal recognition. Ajay
et al. [24] employed an SVM to classify EEG components following source decomposition,
successfully identifying artifact components and achieving high recognition accuracy. Han
et al. [25] achieved artifact recognition in prefrontal EEG signals using an SVM, attaining
an accuracy exceeding 95%, confirming the SVM’s effectiveness in artifact recognition
applications. Yin et al. [26] introduced a deep network denoising technique based on
frequency information enhancement that effectively eliminated ocular artifact components.
However, this deep learning approach necessitates extensive datasets and entails lengthy
training periods.

Given that ocular artifacts predominantly exist in low-frequency bands, we propose a
method integrating an SVM with GA-optimized VMD and SOBI to address the limitations
of existing approaches. The method proposed herein employs a dual-decomposition and
dual-recognition strategy, effectively resolving the issue of incomplete separation between
EEG and ocular components and minimizing information loss in regions not contaminated
by artifacts.

Initially, the SVM is employed to identify artifact-contaminated segments within pre-
processed EEG signals. The artifact-contaminated segments identified are subsequently
decomposed into multiple Variational Mode Functions (VMFs) using a genetic algorithm
(GA)-optimized variational mode decomposition (GA-VMD) algorithm. Introduced by
Dragomiretskiy et al. [27] in 2014, VMD possesses adaptive characteristics, avoiding the
limitations found in EMD and presenting superior noise robustness [28,29]. A previous
study [30] demonstrated VMD’s efficacy in removing baseline drifts in pulse wave signals,
effectively minimizing distortion. Furthermore, another research study [31] amalgamated
variational mode decomposition with wavelet thresholding as an effective approach to
denoise ECG signal myoelectric interference, showcasing promising denoising results. Con-
sidering the advantages of the VMD method in handling complex nonlinear, non-stationary,
and multiscale signals, this study applies it to EEG signal denoising. Nevertheless, given
its numerous parameters, this study further integrates a genetic algorithm for optimization.

Subsequently, the decomposed data were further processed using the SOBI algorithm.
Compared to ICA and most BSS methods, SOBI is considered a superior approach [12,32].
SOBI is a method based on second-order statistics (SOS), utilizing the joint approximate
diagonalization of covariance matrices to achieve blind source separation of observed
signals. The approximate entropy of each component is calculated. Components with
ocular artifacts are identified and removed based on the approximate entropy threshold.
Ultimately, the “clean” EEG signal is reconstructed through inverse SOBI and VMD.

To demonstrate the effectiveness of the proposed method in removing ocular artifacts
from single-channel EEG, experimental evaluations were conducted on both simulated
and real EEG data. Furthermore, the performance of this study’s proposed method was
benchmarked against four established methods.

The structure of this paper is organized as follows: Section 2 outlines the methodology
employed in this study. Section 3 elaborates on the experimental data. Section 4 showcases
the experimental results for simulated and real data, followed by a detailed analysis and
discussion. Finally, the work is summarized.

2. Materials and Methods

Aimed at the problem of ocular artifact removal from single-channel EEG signals, we
propose a method integrating an SVM with GA-optimized VMD and SOBI. Initially, the
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original data undergo preprocessing, and the SVM is used to identify signals contaminated
with artifacts accurately; subsequently, these identified signals are dissected into more
manageable fragments through the refined VMD algorithm, and the SOBI algorithm and
an approximate entropy threshold is used to remove of components correlated with ocular
artifacts; finally, inverse SOBI and inverse VMD algorithms are utilized to reconstruct
“clean” EEG signals. Figure 1 shows a flow chart of the removal of ocular artifacts from
single-channel EEG signals.
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2.1. Identification of Contaminated Signals with Ocular Artifacts

A critical step in removing ocular artifacts is precisely identifying contaminated seg-
ments. In this study, we employ a pre-trained SVM-based classifier to detect and categorize
segments tainted with ocular artifacts. The methodology unfolds as follows: Initially, the
EEG signal is segmented into 10 s segments, and the time domain (including attributes such
as skewness, kurtosis, and the Hjorth parameter [33]) and frequency domain (mainly PSD,
which is analyzed in different frequency bands) features are extracted. Additionally, several
nonlinear features are extracted, encompassing Shannon entropy, composite multiscale
sample entropy [34], dispersion entropy [35], Katz fractal dimension [36], Kolmogorov com-
plexity [37], and the Hurst index [38], among others. Following the extraction phase, feature
selection is undertaken using the mRMR feature selection algorithm [39]. The segments are
labeled, designating interfered EEG signals with a 0 and ocular artifact-contaminated EEG
signals with a 1. A support vector machine classifier is constructed using these labeled
data, which incorporates the computed features and labeling information. For the analysis
of new, unseen EEG data, the pre-trained classifier comes into play. It identifies segments
contaminated with ocular artifacts, marking them as the positive class (+1), while segments
with undisturbed EEG signals are classified as the negative class (0).
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2.2. Variational Modal Decomposition (VMD)
2.2.1. Fundamentals of Variational Modal Decomposition

By constructing a constrained variational problem and optimally solving it, the VMD
technique decomposes the initial signal into numerous modal components, each with
distinct bandwidths and frequency centers, facilitating easier signal identification and
separation [40]. This approach not only achieves a smoother subsequence encapsulating
a variety of frequency scales by mitigating the complexity and nonlinearity of a highly
non-smooth time series, but it also addresses the issues of endpoint effects and modal
component overlap encountered in the EMD method [41]. The solution procedure of this
constrained variational problem is delineated as follows [42]:

(1) Construct the variational problem. Assume that the original signal, f, is broken
down into k components, each having a central frequency within a finite bandwidth. The
objective is to minimize the combined estimated bandwidths of all modes. Meanwhile, the
condition to meet is that the cumulative sum of all modes should match the original signal.

The corresponding expression is

min{uk},{wk}

{
∑
K

2
∥∥∥∥δt[(δ(t) +

j
πt

) ∗ uk(t)]e−jwkt
∥∥∥∥
}

(1)

s.t.∑
k

uk = f (2)

where δ(t) represents the Dirichlet function. The set {uk} enumerates each component
involved in the process, while {wk} denotes the collection of respective central frequencies.
f signifies the EEG signal that has been contaminated with ocular artifacts.

(2) Solve the variational problem. The variational problem transforms an uncon-
strained variational problem, facilitated by utilizing a Lagrange multiplier coupled with a
quadratic penalty term. The expression is as follows:

L({uk}, {wk}, λ) = α ∑
k

∥∥∥δt[(δ(t) +
j

πt )× uk(t)]e−jwkt
∥∥∥2

2
+

∥∥∥∥ f (t)− ∑
k

uk(t)
∥∥∥∥2

2
+ < λ(t), f (t)− ∑

k
uk(t) >

(3)

where α represents the quadratic penalty factor, while λ(t) stands for the Lagrange multi-
plier, the function f (t) corresponds to the EEG signal tainted by ocular artifacts, and < >
denotes the inner product operation.

The saddle point of Equation (3), which corresponds to the minimum value in Equa-
tion (1), is determined by iteratively updating the IMF components, central frequency, and
Lagrange operator using the alternating method of multiplicative operators.

2.2.2. Optimization of VMD Parameters Based on Genetic Algorithm

The VMD decomposition theory [27] posits that before employing VMD for signal
decomposition, one must predefine both the number of modal components, k, and the
quadratic penalty factor, α. Existing research [43] has indicated that variations in the settings
of k and α can significantly influence the outcomes of VMD decomposition. Typically, the
empirical pre-setting of these two parameters serves as the basis when performing VMD
decomposition of signals. However, this approach may not be effective given the complexity
and variability inherent in measured signals, potentially hindering the achievement of
optimal decomposition results. Choosing appropriate values for k and α is critical in
achieving precise VMD signal decomposition. Given that these two parameters influence
each other, optimizing one while holding the other constant can easily result in a local
optimization scenario, preventing the acquisition of the optimal decomposition parameter.
Therefore, it is imperative to consider a method that optimally adjusts both parameters
simultaneously to avoid suboptimal outcomes.
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The genetic algorithm (GA) [44], inspired by the principles of natural selection and
genetic mechanisms in biology, stands as an adaptive global optimization search algorithm.
It offers superior generality, heightened search efficiency, and robust global optimization
capabilities compared to other optimization algorithms, such as the ant colony and particle
swarm [45]. Central to GA represents a problem solution as a binary coded “chromosome”.
Before the algorithm’s execution, a set of “chromosomes” is hypothesized as initial solu-
tions, forming the initial population. This population is progressively optimized through
selection, crossover, and mutation processes, gravitating towards a state harboring the
optimal solution. Considering the principles of VMD decomposition, it is evident that
the modal number k and the penalty factor α, among its input parameters, have a notable
impact on the decomposition results [46]. Due to the GA’s ability to conduct global opti-
mization in the space where the objective function resides, as well as its capacity to address
multiple parameters concurrently, this study leverages the GA to optimize both k and α.

In optimizing VMD parameters using the GA, a sequence of six pivotal steps is
necessitated—coding, population initialization, fitness evaluation, selection, crossover, and
mutation—culminating in the evolution of a more adeptly adapted population. Central
to this optimization process is the third step, “fitness evaluation,” which mandates the
establishment of a fitness function. This function acts as the linchpin in steering the compu-
tational evolutionary progression, embodying the evaluative metric of the evolutionary
computations. The subsequent genetic operations undertaken by all individuals are contin-
gent upon their respective fitness values. In this paper, we construct the fitness function
based on approximate entropy (ApEn), which is defined in Section 2.4.

This study employs the genetic algorithm (GA) to optimize the variational mode
decomposition (VMD) parameters. The parameter configurations are as follows: the modal
number k ranges from 2 to 10; the penalty factor α varies between 100 and 5000, it iterates
30 times, and the population size is 10. Figure 2 illustrates that the fitness value around
the 22nd iteration yields the optimal parameter combination of (k, α) = (120, 4). Thus,
the algorithm identifies (k, α) = (120, 4) as the optimal parameter set through this search
process.
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2.3. Second-Order Blind Identification Algorithm (SOBI)

The SOBI algorithm [47], also known as second-order blind identification, achieves
blind source separation through the joint approximate diagonalization of covariance ma-
trices. Notably, its effectiveness is not contingent upon whether the source signal adheres
to a Gaussian distribution, thus offering a versatile solution for various data types. This
attribute renders it particularly adept at handling EEG signals, as it can robustly separate
signal components while retaining crucial information, promoting more accurate analyses
in neural engineering studies.
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Assume that the m-channel acquired signal is

X(t) = [x1(t), x2(t), x3(t), . . . , xm(t)]
T (4)

where the original n-channel signal is

S(t) = [s1(t), s2(t), s3(t), . . . , sm(t)]
T(m ≥ n) (5)

The mixing matrix is Amxn, the instantaneous mixing model is

X(t) = AS(t) (6)

For the model mentioned above, the fundamental procedures of the SOBI blind source
separation include the following:

1. Perform whitening on the original data to obtain the whitened data S(t) and whitened
matrix Q. The covariance matrix of W(t) is a unit matrix:

W(t) = QX(t) (7)

2. Calculate the sampling covariance matrix of W(t)with a fixed delay ρ ϵ {ρi|i = 1, 2, 3, . . . , n}:

D(ρ) = E[W(t + ρ)WT(t)] = ADW(ρ)AT (8)

3. The joint approximate diagonalization of each D(ρ) is performed to compute the
orthogonal matrix (V ), satisfying

VT D(ρi)V = Ui (9)

where {U} is a set of diagonal arrays.
4. Estimate the mixing matrix (A) and the original signal matrix, S(t):

A = U−1Q (10)

S(t) = CX(t) (11)

where C is the separation matrix, the inverse matrix of A. The source signals associated
with the artifacts in S(t) are processed to obtain a new source signal matrix, Sj(t),
which in turn reconstructs the signal Xj(t) = ASj(t).

2.4. Entropy-Based Identification of Ocular Artifacts

Applying the SOBI algorithm, the components deduced from the results can be con-
ceptualized as distinct signal sources. The process of EEG signal reconstruction involves
nullifying components not pertinent to EEG signals, followed by a subsequent reconstruc-
tion facilitated by the inverse SOBI transform. Within the domain of information theory,
entropy serves as a potent metric in assessing the system’s complexity and the data’s regu-
larity. EEG signals encapsulate the bioelectrical activity occurring intra- and extracellularly
within the brain, offering insights into the cerebral state. Contrarily, ocular artifacts origi-
nate from activities such as blinking or eye movements, exhibiting a higher complexity than
EEG signals. To accurately differentiate between EEG and ocular components, this study
leverages approximate entropy, as referenced in [48], as a critical tool in categorization.

The pseudo code of the approximate entropy is presented in Algorithm 1.
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Algorithm 1. Approximate Entropy (ApEn) Calculation

Input:
S = [s(1), s(2), . . ., s(N)] // Time series data of length N

m // Embedding dimension
r // Similarity threshold, typically a fraction of the standard deviation of S

Output:
ApEn // Calculated Approximate Entropy value

Begin:
1. Compute the standard deviation (SD) of the time series S.
2. Set the similarity threshold r = 0.15 ∗ SD.
3. Initialize the array of similarity counts C to zeros, of length N – m + 1.
4. For each embedding dimension m′ in {m, m + 1}:

a. Construct m′-dimensional vectors X(i), i = 1 to N − m′ + 1, where each X(i) = [s(i), . . ., s(i
+ m′ − 1)].

b. For each vector X(i), i = 1 to N − m′ + 1:
i. Compute the distance d[X(i), X(j)] for all vectors X(j), j = 1 to N − m′ + 1, where

d[X(i), X(j)] = max(|s(i + k − 1) − s(j + k − 1)|) for k = 1 to m′.
ii. If d[X(i), X(j)] < r, increment C(i) by 1.

c. Compute the logarithmic frequency of similar vector pairs for X(i) as:
Phi_m′(r) = (1/(N − m′ + 1)) ∗ sum(ln(C(i)/(N − m′ + 1))) over i = 1 to N − m′ + 1.

5. Calculate the Approximate Entropy ApEn as the difference between the logarithmic frequencies
of the two consecutive embedding dimensions:

ApEn = Phi_m(r) − Phi_m + 1(r).
End

Furthermore, given that experimental data influence the distribution of approximate
entropy values, the chosen threshold setting size holds a direct and significant bearing
on the efficacy of the artifact removal process. Figure 3 shows the randomly selected
500 segments of pure EEG and EOG signals’ approximate entropy distribution curves. The
figure indicates that the approximate entropy of the EEG signals consistently exceeds 0.4.
Consequently, the threshold will be established at 0.4 for subsequent artifact processing,
which aligns with the parameter settings referenced in the literature [15].
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2.5. Materials
2.5.1. Simulated EEG Dataset

This study’s simulated dataset [49] includes 4514 clean EEG segments, 2400 ocular
artifact segments, and 5598 muscle artifact segments. We derived the simulated data by



Sensors 2024, 24, 1642 9 of 19

combining clean EEG signals with ocular artifact signals, as illustrated in the subsequent
equation, which represents the following mixing model:

Xmix = Xpure_EEG + θ ∗ XEOG (12)

where Xmix denotes the simulated data obtained after mixing, Xpure_EEG is the pure EEG
signal, XEOG signifies the ocular artifact signal, and θ is the signal’s weight. By varying θ,
one can modify the signal-to-noise ratio (SNR) of the simulated data, as illustrated in the
upcoming equation:

SNR =
RMS(Xpure_EEG)

RMS(θ ∗ XEOG)
(13)

where RMS denotes the root mean square, defined as shown in the following equation:

RMS(X) =

√
1
T

XXT (14)

where T denotes the number of data points and X is the signal.

2.5.2. Real EEG Dataset

The real dataset was obtained from the ISRUC-Sleep public dataset from the Sleep
Medicine Center University Hospital of Coimbra [50]. Fifteen subjects were chosen from
the sleep apnea syndrome dataset. For every individual, a segment of 3.5 h of sleep data
was extracted from their comprehensive sleep records. Each subject’s recording consisted
of signals from 19 channels, and 6 EEG channels of the 19 channels were used in this study
(F3-A2, C3-A2, O1-A2, F4-A1, C4-A1, and O2-A1), with a sampling frequency of 200 Hz.
Experienced sleep specialists labeled the EEG data according to the AASM rules for each
30 s long segment. The data were segmented according to 30 s/segment, and the total
number of segments was 6300. Noise within the EEG signal significantly impacts staging
accuracy. Therefore, we employed the method proposed in this study to eliminate artifacts
from the sleep EEG data.

3. Performance Metrics

We conducted a quantitative analysis of the data before and after EOG artifact removal.
The primary criteria for evaluation were the extent of effective EEG information retention
and the efficacy of ocular artifact elimination [51]. According to the difference in the data,
this study adopts different evaluation indexes for the simulated dataset and the real data.

3.1. Evaluation of the Simulated EEG Dataset

In this study, we quantitatively analyze the simulated data and the corresponding
pure EEG signals after removing the ocular artifacts and evaluate the effectiveness of the
ocular artifact removal algorithm in this way. Our evaluation criteria encompass two key
aspects: proficiency in effectively eliminating ocular artifacts and the capacity to minimize
the distortion of EEG signals. Our research assesses the efficacy of various artifact removal
methods using four key metrics: relative root-mean-square error, correlation coefficient,
root-mean-square error, and peak signal-to-noise ratio.

(1) Correlation coefficient (CC). The correlation coefficient (CC) serves as a pivotal
indicator to gauge signal distortion in the time domain within our study. It characterizes
the degree of correlation between two variables and is particularly effective in quantifying
the extent of EEG signal loss. A higher CC value indicates a more comprehensive retention
of EEG signal information. The following equation defines the CC:

CC =
Cov(Xpure_EEG,Xclean)√

Var(Xpure_EEG) · Var(Xpure_EEG)
(15)
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In Equation (18), Xpure_EEG is the pure EEG signal and Xclean is the simulated data
after removing the ocular artifacts.

(2) Relative root-mean-squared error (RRMSE). The smaller the value of RRMSE, the
closer the simulation data after removing the ocular artifact is to the pure EEG signal that
constructs the simulation data, and the more completely the ocular artifacts are removed.
The following equation defines the RRMSE:

RRMSE =
RMS(Xpure_EEG − Xclean)

RMS(Xpure_EEG)
(16)

(3) Mean-square error (MSE): MSE evaluates the divergence between the pure EEG
signal and the post-ocular artifact removal signal. A smaller MSE suggests that after ocular
artifact elimination, the signal more closely resembles the pure EEG signal, indicating a
superior denoising result.

MSE =
1
N

N

∑
n=1

(Xpure_EEG(n)− Xclean(n))
2 (17)

(4) Peak signal-to-noise ratio (PSNR): The PSNR is an evaluation metric usually used
to assess signal reconstruction quality in a signal. A higher PSNR value indicates less
distortion, meaning that the signal closely aligns with the pure EEG data, which signifies a
more effective denoising result.

PSNR = 10lg
(2m − 1)2

MSE
(18)

When evaluating the performance of EEG artifact removal, the value of m is typically
set to 8 [52].

3.2. Real Data Evaluation Methodology

(1) Given that pure EEG signals cannot be extracted from real data, it is not feasible to
quantitatively assess the ocular artifact removal effect using the RRMSE and CC. Therefore,
the power variation (∆P) in different frequency bands was used as an index. The effective
removal of ocular artifacts can be visualized by comparing the signal waveforms before
and after the removal of ocular artifacts, and the distortion of EEG signals is compared by
calculating the power spectral density distortion in different frequency bands of the EEG
signals after the removal of ocular artifacts (∆P), as shown in the following equation:

∆P = |Pin − Pout| (19)

where Pin represents the power spectral density of the EEG signal before ocular artifact
removal and Pout signifies the power spectral density of the EEG signal post-ocular artifact
elimination.

(2) In addition, since sleep staging is a classification problem, in this study, sleep EEG
is categorized into five stages (R, N1, N2, N3, W), which are evaluated by using the overall
accuracy (Acc), MF1 (Macro-F1), and WF1 (Weightd-F1), along with the precision (P), recall
(R), and F1 score (F1), as defined by the calculation formulas shown below:

precision =
TP

TP + FP
(20)

recall =
TP

TP + FN
(21)

F1 =
2 ∗ precision ∗ recall

precision + recall
(22)
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where TP represents the count of positive examples accurately classified, TN denotes the
count of correctly identified negative examples, FP indicates the count of positive examples
misclassified, and FN tallies the number of negative examples misidentified.

4. Results
4.1. Experimental Results of Simulated EEG Data

In this study, 500 data segments correspond to each SNR value in the semi-simulated
data. For each segment of data, the ocular artifact removal process was performed us-
ing EEMD-ICA [53], SSA-SOBI [23], CWT-KMEANS-SSA [54], VME-DWT [55], and the
proposed SVM-IVMD-SOBI method. Each algorithm was run several times on different
data for every SNR value, and the effect of the algorithms on ocular artifact removal for
different SNR data was evaluated by calculating the mean and standard deviation of the
four metrics, namely, RRMSE, CC, MSE, and PSNR, for these data.

Figure 4 shows the comparison of the RRMSE, CC, MSE, and PSNR results of EEMD-
ICA, SSA-SOBI, CWT-KMEANS-SSA, VME-DWT, and the SVM-IVMD-SOBI method pro-
posed in this study for experiments performed on simulated data. A higher CC value
indicates that the EEG signal more closely resembles the clean EEG signal once ocular
artifacts are removed. From Figure 4a, it can be seen that with the increase in the SNR
value, the CC of the five algorithms corresponds to a gradual increase; when evaluating
the five algorithms, the EEMD-ICA algorithm demonstrates a notably lower CC compared
to the other four techniques; the SVM-IVMD-SOBI method proposed in this paper is the
most stable, and the effect of removing the artifacts is better than that of the other four
comparative methods under the conditions of different SNR values, i.e., the signals after
removing the electrooculographic artifacts by the approach proposed in this study has the
highest degree of similarity to the clean EEG data used to construct the simulated signal,
and has the smallest degree of distortion. The smaller the RRMSE value, the cleaner the
removal of the ocular artifacts is; based on Figure 4b, as the SNR rises, there is a discernible
reduction in the RRMSE values for all five algorithms; in the condition of different SNR
values, the RRMSE for the SVM-IVMD-SOBI method put forward in this study is lower
than that of the other four methods. The MSE and PSNR results in Figure 4c,d also show
that the proposed method in this paper achieves better results on simulation data with dif-
ferent SNR values. Furthermore, to discern any notable differences in the artifact removal
efficacy between this study’s proposed method and the four other methods, the results are
statistically analyzed using a t-test (p < 0.05) (shown in Figure 4c,d). The results indicate a
notable enhancement in artifact removal using the SVM-IVMD-SOBI method proposed in
this study when juxtaposed with the other four methods.

Figure 5 illustrates the efficacy of the method presented in this study, alongside compar-
ison algorithms, for ocular artifact elimination from simulated data. These data are derived
by integrating pure EEG signals with ocular signals at an SNR of 1.0. Figure 5 illustrates
that EEG signals processed by the SSA-SOBI and SVM-IVMD-SOBI methods demonstrate
similarity to pure EEG signals. Conversely, signals treated by the CWT_KMEANS_SSA
and VME_DWT methods show resemblance to contaminated EEG signals. Furthermore,
EEG signals processed by the EEMD-ICA method do not exhibit similarity to either clean
or contaminated EEG signals. This comparative analysis indicates that compared with the
EEMD-ICA, CWT-KMEANS-SSA, and VME-DWT algorithms, the other two algorithms
are more effective at removing EEG artifacts, and EEMD-ICA is the worst at removing
artifacts. When considering both the CC and RRMSE (CCOur method > CCSSA_SOBI and
RRMSEOur method < RRMSESSA_SOBI), it is evident that this study’s method can remove
ocular artifacts in the simulated EEG data more effectively, and the simulated EEG signals
after removal are more similar to the pure EEG signals used to construct the simulated
data. In other words, our presented approach more efficiently preserves essential signal
information, introducing minimal distortion.
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Figure 4. (a) Comparison of RRMSE results of five algorithms, (b) Comparison of CC results of five
algorithms, (c) Comparison of MSE results of five algorithms, (d) Comparison of PSNR results of five
algorithms (*: p < 0.05, **: p < 0.01).

4.2. Experiment Results of Real EEG Data

In real data experiments, the change in power spectral density before and after artifact
removal (∆PSD) offers a quantitative assessment of how well EEG components are retained.
In addition, due to the high amplitude and low-frequency characteristics of the EOG artifact
itself, the EOG artifact removal effect can also be qualitatively analyzed by observing the
waveform graph. Figure 6 demonstrates the waveform graphs before and after processing
by different methods. From Figure 6a, it can be seen that the collected raw data produce
severe malformed changes in many places due to the influence of EOG artifacts. Figure 6b–f
display the processing outcomes of the four comparison algorithms alongside the SVM-
IVMD-SOBI method proposed in this study, respectively, from which it is evident that
the artifact removal effect of VME-DWT and CWT-KMEANS-SSA is poor, especially the
signal after VME-DWT processing, where the artifacts are not removed; SSA-SOBI and the
proposed method have a relatively good processing effect.
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Figure 5. Comparison of ocular artifact removal from simulated data (red markers indicate that EEG
signals after artifact removal resemble pure EEG signals; green markers indicate that EEG signals
after artifact removal resemble contaminated EEG signals; blue markers indicate that EEG signals
after artifact removal are not similar to either pure EEG or contaminated EEG signals).

Figure 6. Comparison of the artifact removal effect of different methods in the real dataset (taking the
10 s data of subject one as an example, where 1,2,3,4,5,6 represent channels F3-A2, C3-A2, O2-A2,
F4-A1, C4-A1, and O1-A1, respectively; red markers indicate that the presence of artifacts in the
original EEG signal and the EEG signals processed by different methods).
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Previous studies [41,56] assumed that a lower ∆PSD represents a lower level of distor-
tion in the EEG signal after artifact removal. Yet, based on the outcomes from this study’s
proposed method, a higher ∆PSD value in the lower frequency band indicates a more effec-
tive removal of EOG artifacts from EOG-contaminated EEG signals. Visual comparisons in
the graphics further support this observation. Furthermore, examining the ∆PSD results
for each channel presented in Table 1, the effectiveness of the SVM-IVMD-SOBI method
proposed in this study becomes evident. Specifically, it excels in EOG artifact elimination
when contrasted with the PSD variations across frequency bands observed in the SSA-SOBI
algorithms.

Table 1. Variation in power spectral density (∆P) in different frequency bands after removal of ocular
artifacts.

Method F3 C3 O1 F4 C3 O2 Average

EEMD_ICA [53]

∆PSDδ 1.3362 1.0019 0.6521 1.3298 1.0479 1.3362 1.0113 ± 0.2948
∆PSDθ 0.006 0.0206 0.0236 0.0134 0.0150 0.006 0.0165 ± 0.0064
∆PSDα 0.0109 0.0121 0.0190 0.0117 0.0132 0.0109 0.0137 ± 0.0030
∆PSDβ 0.0068 0.0105 0.0050 0.0093 0.0097 0.0068 0.0076 ± 0.0025

SSA_SOBI [23]

∆PSDδ 2.5259 1.7836 1.0070 2.3040 1.7182 1.0555 1.7324 ± 0.6235
∆PSDθ 0.0174 0.0206 0.0233 0.0220 0.0165 0.0247 0.0207 ± 0.0033
∆PSDα 0.0033 0.0043 0.0076 0.0038 0.003 0.0082 0.0050 ± 0.0023
∆PSDβ 0.0032 0.0053 0.0095 0.0019 0.007 0.009 0.0060 ± 0.0031

CWT_KMEANS_SSA
[54]

∆PSDδ 1.7120 1.2567 0.6645 1.6524 1.2114 0.6845 1.1969 ± 0.4522
∆PSDθ 0.1651 0.1575 0.1270 0.1674 0.1451 0.1208 0.1472 ± 0.0197
∆PSDα 0.0320 0.0325 0.0254 0.0341 0.0322 0.028 0.0307 ± 0.0033
∆PSDβ 0.0088 0.0050 0.0023 0.0107 0.0076 0.0029 0.0062 ± 0.0034

VME_DWT [55]

∆PSDδ 0.4991 0.3232 0.1868 0.4589 0.2884 0.1714 0.3213 ± 0.1358
∆PSDθ 0.0091 0.0181 0.0172 0.0124 0.0069 0.0177 0.0136 ± 0.0048
∆PSDα 0.0042 0.0028 0.0017 0.0042 0.0054 0.0067 0.0042 ± 0.0018
∆PSDβ 0.0062 0.0046 0.0015 0.0051 0.0029 0.0017 0.0037 ± 0.0019

SVM-IVMD-SOBI

∆PSDδ 2.5457 1.9539 1.0891 2.5131 1.8873 1.1672 1.8594 ± 0.6293
∆PSDθ 0.0199 0.0291 0.0333 0.0345 0.0181 0.0376 0.0288 ± 0.0081
∆PSDα 0.0036 0.0045 0.0037 0.004 0.0055 0.0033 0.0041 ± 0.0008
∆PSDβ 0.0028 0.0031 0.0054 0.0025 0.0015 0.0061 0.0036 ± 0.0018

The bold values in the table show the best results obtained by the proposed method in comparison with other
methods.

In a final step to corroborate the efficacy of the method introduced in this study, we
applied our proposed methods and methods from EEMD-ICA, SSA-SOBI, and other re-
search to remove ocular artifacts from the ISRUC-Sleep dataset. Subsequently, sleep staging
was conducted using the EEG signals post-artifact removal. From the data presented in
Table 2, it is clear that compared with the sleep staging results of EEG signals processed
by traditional filtering and ICA, removing ocular artifacts can effectively enhance the
precision of sleep staging. From the data in Table 2, the method proposed in this study
exhibits superior performance. Notably, the ACC, MF1, and WF1 metrics show marked
improvement over several other methods. In contrast, the sleep staging outcomes of EEG
data treated by EEMD-ICA are the least favorable, falling short compared to results from
EEG signals processed solely through filtering and ICA.
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Table 2. Comparison of sleep EEG staging effects after ocular artifact processing using different
methods.

Evaluation Index W N1 N2 N3 REM

Filtering, ICA
processing

Precision 0.89 0.60 0.75 0.87 0.84
Recall 0.92 0.52 0.78 0.92 0.75

F1 0.91 0.56 0.77 0.90 0.79

ACC: 0.804, MF1: 0.784, WF1: 0.802

EEMD-ICA [53]

Precision 0.85 0.54 0.68 0.86 0.73
Recall 0.90 0.33 0.77 0.89 0.68

F1 0.87 0.41 0.72 0.87 0.71

ACC: 0.763, MF1: 0.716, WF1: 0.754

SSA-SOBI [23]

Precision 0.90 0.64 0.72 0.86 0.94
Recall 0.97 0.49 0.75 0.91 0.84

F1 0.93 0.55 0.74 0.88 0.89

ACC: 0.820, MF1: 0.798, WF1: 0.816

CWT-KMEANS-
SSA [54]

Precision 0.86 0.62 0.74 0.90 0.85
Recall 0.91 0.43 0.79 0.95 0.81

F1 0.88 0.51 0.76 0. 92 0.83

ACC: 0.815, MF1: 0.781, WF1: 0.809

VME-DWT [55]

Precision 0.85 0.67 0.76 0.91 0.77
Recall 0.87 0.45 0.86 0.93 0.78

F1 0.86 0.54 0.81 0. 92 0.78

ACC: 0.809, MF1: 0.780, WF1: 0.803

SVM-IVMD-SOBI

Precision 0.87 0.68 0.81 0.92 0.91
Recall 0.94 0.53 0.85 0.97 0.81

F1 0.90 0.60 0.83 0.94 0.85

ACC: 0.854, MF1: 0.824, WF1: 0.850

5. Discussion

As the demand for EEG data analysis grows, enhancing the quality of EEG signal
preprocessing has become a focal point of increasing interest [57]. Therefore, a large number
of studies have reported how to accurately and efficiently remove ocular artifacts from
neural signals. Still, among the many artifact removal methods, most have achieved
remarkable results in multi-channel EEG signal processing. How to accurately identify and
remove ocular artifacts and maximally preserve neural information in single-channel EEG
signal-based processing is still a problem worthy of research and exploration. Therefore, in
this paper, we have proposed an automatic recognition and removal algorithm of ocular
artifacts combining an SVM, GAVMD, and BSS, and the conducted simulated and real EEG
data experiments verify the effectiveness of the proposed method.

In our study, we conducted simulated experiments by formulating signals under
various SNR conditions, with the results graphically illustrated in Figure 4. The results
indicate that the method presented excels in the efficiency of artifact removal. Specifically, it
minimizes the deviation between the reconstructed and clean signals. As substantiated by
the upward trend of CC and PSNR alongside the decreasing patterns of MSE and RRMSE
with escalating SNRs, it underscores the robustness of our approach. Furthermore, Figure 5
also visualizes the effect of different methods for artifact removal. The distortion level of
the reconstructed signal hinges on the successful separation of the ocular and electroen-
cephalographic components. Still, contemporary approaches often indiscriminately process
all components during denoising, which can lead to information loss. To address these
prevalent issues, we proposed a new method that enhances source separation by using the
strategy of dual recognition and dual decomposition. As seen from Figure 5, the denoising
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effect of the method proposed in this paper is the best under the same conditions due to
the effective separation of the ocular and electroencephalographic components.

In our experiments with real data, we utilized six EEG channels. Upon completing
artifact removal experiments on single-channel EEG using different methods, we proceeded
to perform sleep staging based on the EEG signals after artifact removal. It was observed
that while the removal of artifacts does indeed enhance the accuracy of sleep staging,
the efficacy of sleep staging predicated on single-channel EEG data remains suboptimal.
We speculate that this may be due to the following reasons: single-channel signals offer
restricted information and possess a relatively low spatial resolution compared to mul-
tichannel signals, potentially insufficient for the intricate requirements of sleep staging.
Therefore, we applied our proposed method and comparative algorithms sequentially
to EEG data from six channels. Following this, sleep staging was conducted using EEG
signals processed through these varied methods. The outcomes of the sleep staging, as
delineated in Table 2, provide additional validation of our method’s efficacy in ocular
artifact elimination.

It was discerned that EOG signals are chiefly found in the low-frequency band, demon-
strating significant low-frequency activity. Consequently, when EEG signals intertwine with
ocular artifacts, there is a perceptible alteration in its low-frequency oscillatory information
due to ocular oscillations, as shown in Figure 6a. Effective removal of these artifacts from
the EEG signals significantly alters the delta and theta frequency bands, with a lesser impact
on the alpha and beta bands, a finding echoed in related studies [14,58]. A comprehensive
analysis of Figure 6 and Table 1 confirms the rationality of the observed modifications
in the power spectral density across different frequency bands post-artifact removal. To
further substantiate the efficacy of the GAVMD-SOBI algorithm, it was compared with four
other algorithms: EEMD-ICA, SSA-SOBI, CWT-KMEANS-SSA, and VME-DWT. Figure 6b
presents the signal reconstructed after artifact removal by the EEMD-ICA method. The
figure shows that the artifact removal effect on Channel 2 is insignificant, and the signal
distortion on Channel 3 is relatively large. The EEMD-ICA algorithm uses EEMD to de-
compose the single-channel signal into several IMFs, which satisfies traditional ICA’s input
and output conditions. However, due to the modal aliasing phenomenon in the EEMD
algorithm and the alteration in signal characteristics instigated by artifact signals, signal
reconstruction is prone to errors, hence the relatively poorer artifact removal performance.
Further examining Figure 6d,e, it is clear that the CWT-KMEANS-SSA and VME-DWT
algorithms fare even worse in removing ocular artifacts, failing to achieve the desired
artifact removal outcome. Although facilitating frequency decomposition at varying scales
in the frequency domain, the wavelet transformation may lack sufficient resolution for
artifacts within a specific frequency range. This inadequacy potentially causes artifact
overlapping with the authentic signal frequency, posing a significant challenge in effective
discrimination [59]. Moreover, the necessity of boundary expansion during the wavelet
transformation to mitigate boundary effects can introduce extra artifacts or compromise the
signal’s real part. Compared with the three algorithms EEMD-ICA, CWT-KMEANS-SSA,
and VME-DWT, the SSA-SOBI algorithm artifact removal is relatively good. However, SSA
is based on the linear combination of signals and matrix decomposition, which may not
match the nonlinearity and complexity of actual EEG signals, affecting the effect of artifact
removal. Additionally, employing the SSA algorithm necessitates the selection of parame-
ters like window length and overlap rate, where varying values significantly influence the
artifact removal effectiveness, coupled with its high computational complexity, requiring
extensive computation time.

6. Conclusions

In this study, we have proposed an algorithm based on SVM-IVMD-SOBI to eliminate
ocular artifacts from single-channel EEG signals. This method combines the robustness
of the support vector machine, a refined variant of the variational mode decomposition
algorithm bolstered by the genetic algorithm, and second-order blind identification. This
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combination efficiently removes single-channel ocular artifacts while preserving the max-
imum possible EEG information. Our empirical analyses underscore the performance
of the proposed method. On simulated data, our algorithm demonstrated better perfor-
mance, evidenced by a smaller root-mean-square error (RRMSE) and a larger correlation
coefficient (CC) when compared with four current algorithms: EEMD-ICA, SSA-SOBI,
CWT-KMEANS-SSA, and VME-DWT. Furthermore, when applied to real datasets, the
algorithm exhibited reduced distortions, particularly in the alpha and beta bands, outper-
forming the comparison algorithms. Moreover, in the experiment of OSA sleep staging
recognition, the proposed method in this paper performs better, achieving a higher overall
recognition accuracy and mean F1 score (MF1), thereby attesting to its effectiveness and
stability.

While our method yielded favorable outcomes, the SSA-SOBI method’s efficacy was
also apparent in our experiments. We believe that further in-depth comparative analysis
with the SSA-SOBI method is necessary and therefore consider it as a direction for future
research. We are committed to gathering more pertinent data and undertaking detailed
evaluations of the various approaches in future studies to provide a more exhaustive
comparison.
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