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Abstract: Semantic communication technology in the 6G wireless system focuses on semantic ex-
traction in communication, that is, only the inherent meaning of the intention in the information.
Existing technologies still have challenges in extracting emotional perception in the information, high
compression rates, and privacy leakage due to knowledge sharing in communication. Large-scale
generative-model technology could rapidly generate multimodal information according to user
requirements. This paper proposes an approach that leverages large-scale generative models to create
animated short films that are semantically and emotionally similar to real scenes and characters. The
visual content of the data source is converted into text expression through semantic understanding
technology; emotional clues from the data source media are added to the text form through rein-
forcement learning technology; and finally, a large-scale generative model is used to generate visual
media, which is consistent with the semantics of the data source. This paper develops a semantic
communication process with distinct modules and assesses the enhancements garnered from incor-
porating an emotion enhancement module. This approach facilitates the expedited generation of
broad media forms and volumes according to the user’s intention, thereby enabling the creation of
generated multimodal media within applications in the metaverse and in intelligent driving systems.

Keywords: semantic communication; large-scale generative models; reinforcement learning; high
compression rates; metaverse

1. Bridging Human Perception and Multimodal Content Generation

As the commercial scale of content generation technologies such as ChatGPT continues
to expand, the research on AI content generation models is widely conducted among
academic researchers in artificial intelligence and related fields. The emergence of large-
scale generation models represented by ChatGPT and Stable Diffusion represents the
birth of artificial intelligence-driven content generation methods. Large language models
(LLMs) represented by ChatGPT have been used to automate customer service and facilitate
human–machine conversations such as chatbots or virtual text assistants. Moreover, there
are more and more intelligent applications that strive to be integrated into this most widely
used intelligent interaction platform by using text-, voice-, or image-based interactive
functions (using ChatGPT as the entrance). Today, large-scale generative models are being
continuously and innovatively applied in medicine, law, education, and other disciplines
and are increasingly integrated into more industrial and commercial fields [1–6].

As the technology of large-scale generative models continues to develop, there are
more and more interactively generated contents that utilize natural text as the basic medium
for content preservation and dissemination. Language is an important carrier for human
beings to communicate information with each other. Multimodal information (including
text, speech, images, videos, etc.) generated using large-scale generative models greatly
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expands the scope and quantity of existing media. This enhancement not only enriches the
diversity of expression forms but also significantly lowers the user threshold [7–10].

The metaverse is often used to describe the future of the internet, consisting of a
persistent, shared, 3D virtual space linked to a sentient virtual universe [11–14]. One of the
key technologies of the Metaverse is digital twins, that means, digital replicas of a large
number of physical environments in the Metaverse. Digital twins are critical to creating
immersive experiences in the metaverse, as they allow static and dynamic objects to be
replicated and interacted with in virtual environments. The metaverse is characterized by
immersion, interactivity, and persistence. These three characteristics require the support
of immersive media, tactile internet, and wireless communication technologies, that is,
integrating real and virtual domains exchanging multimedia data and natural signals.
Metaverse has strong demands for quality for immersive experiences, which requires
the wireless network it uses to ensure high levels of key performance indicators such as
low latency and high throughput. In order to ensure the continuous increase of diverse
intelligent services and machine-to-machine communications, wireless networks in the
metaverse scenario may have to work on extracting useful communication semantics.

Among the much-discussed metaverse and 6G wireless system technologies, industry
members and researchers have proposed deeply immersive experiences, which require a
significant increase in data transmission volume, requiring data rates of several gigabits
per second. This situation requires the use of holographic-type communication (HTC),
which is known for being data-intensive; it includes not only holograms but also a range
of multisensory media. It is easy to imagine that this technology requires considerable
bandwidth in terms of data complexity and data volume. In order to cope with these
challenges, it is necessary to consider changing the method and format of the transmitted
content. In order to achieve efficient transmission in communications, it is necessary
to perform advanced data compression optimization without affecting the quality of
experience as much as possible, with the purpose of converting data into a more compact
form. By doing so, the burden can be alleviated on network bandwidth and storage, making
it feasible to deliver these rich, multisensory experiences even over limited bandwidth.
This transformation is not just a technical necessity but also a strategic imperative to ensure
the scalability and accessibility of these technologies. For example, point cloud video needs
to be processed during rendering for holograms. Therefore, the substantial increase in data
throughput causes network congestion and storage capacity overload, posing challenges to
existing multimedia technologies. These current situations will inevitably affect the quality
of user experience [15]. If point cloud data, which need to be processed during rendering
for holograms, are compressed or transformed into a more efficient format for transmission
and then decompressed at the receiving end, they can substantially decrease the necessary
bandwidth. The purpose of this approach is not just to reduce data size; it is about smartly
managing the data to maintain the integrity and quality of the immersive experience while
optimizing the data transmission process.

In addition, the use of semantic communication in 6G communication technology is
inevitably challenged by privacy leaks. 6G communications need to consider the trade-
off between data utility and knowledge sharing. These characteristics will damage the
reliability of 6G communication and expose users to privacy risks [16–18]. Therefore,
semantic communication in 6G communication technology also requires more research and
exploration into privacy protection. The main starting points may include optimizing data
usage and maintaining privacy standards.

This paper proposes an approach that leverages large-scale generative models to create
animated short films that are semantically and emotionally similar to real-life scenes and
characters. The data sources for this approach are visual representations from real-world
scenes, such as video interviews with specific people. The first step of this method uses
semantic understanding technology to convert the visual content of the data source into a
text expression. This step is to ensure that the main semantics of the data source media are
retained while converting it into a highly compressed text form for transmission. Emotional
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cues from the data source media are then added to the textual form through reinforcement
learning techniques. In the next step, these enhanced texts are used to generate semantically
consistent visual media, especially in the form of animated short films. This stage is mainly
accomplished using large-scale generative-model generation techniques. The advantages of
the proposed approach are manifold. Initially, this method is beneficial to high compression
rates at the semantic level, which facilitate efficient communication and storage of data;
secondly, this method ensures the preservation of effective semantics of the original media
(such as character interview videos), including emotional perception, which is used to
achieve the goal of maintaining the emotional context of the original media content. Finally,
this approach enhances privacy protection as it allows sensitive or personal scenes to be
depicted in a more abstract animation format, thus protecting tuser identity and privacy to
the greatest extent.

At the same time, within academic research on large-scale generative models, there
is no consensus on the performance metrics used to evaluate these models. This article
compares and analyzes the efficacy of these models in conveying emotional expression
through generated content by examining the quality of emotional expression embodied
in the final visually animated short films produced with different textual prompts. Such
analysis helps us to understand and evaluate the difference in emotional depth that large-
scale generative models can achieve.

In fact, our proposed system for generating animated visual content directly from
real scenes has a wide range of applications in various fields. For example, it enables
users to easily convert their favorite real-world scenes into animated sequences in the
metaverse, which can greatly enhance the digital content available in the metaverse and
lower the technical threshold for users to participate in and interact with this virtual space.
Another example is intelligent assisted transportation. Using this model can assist drivers
in easily understanding traffic information in areas with visual blind spots, allowing them
to make timely and informed decisions to avoid traffic accidents. Finally, in the field of
real-time video broadcasting and video conferencing, our model helps generate emotionally
differentiated animated expressions, an approach that not only makes communication more
vivid but also enriches the overall quality of the interaction.

2. Introduction

As communication technology continues to develop, 5G communication is a transition
platform for artificial intelligence-driven communication methods. In 5G communications,
semantic communication focuses on the intrinsic meaning of information rather than
just accurately transmitting data at the digital level. Semantic communication can be
considered as an intelligent agent between the source of information and the destination of
transmission, at the same time, artificial intelligence algorithms are used to interact with
the outside world. It can be argued that communication technology will place greater
emphasis on context awareness and meaning centering, especially for the understanding
and interpretation of information [19–21].

Semantic communication embodies the major change in the communication technical
paradigm, that is, from the traditional signal transmission to the meaningful data and
information transmission [22]. The adoption of deep learning technology in semantic
communication, which is widely implanted in research and application fields such as NLP
(Natural Language Processing) or CV (computer vision), will conduce to the promotion of
semantic communication capabilities. At the same time, semantic encoders and decoders
are crucial for information processing and transmission at the semantic level. In semantic
communication, it is necessary to quantify the content of semantic information, thereby
measuring the importance and quantity of semantic information. This measurement is
generally achieved by using the definition of semantic entropy based on logical probability
and the application of membership in fuzzy systems. The evaluation of semantic communi-
cation effectiveness adopts unique performance metrics to evaluate the quality of semantic
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communication, including the BLEU [23] score of text and other metrics such as PESQ
and FDSD.

As mentioned above, interdisciplinary research combining deep learning and semantic
communication is increasingly emerging. The advantage is that the computing power of
deep learning and the understanding of semantic information can complement each other.
Three core issues inherent in the intersection of deep learning and semantic communication
include intrinsic meaning in bit data, semantic error quantification, and joint encoding.
In end-to-end physical-layer communication methods, deep learning technology has shown
superior performance to traditional systems, especially in terms of bit error rate (BER)
indicators [24]. A typical example is the DeepSC system, which integrates semantic and
channel encoders and decoders and adopts the transformer model and deep transfer
learning to adapt to various communication scenarios. DeepSC’s loss function is based
on sentence similarity and mutual information, where sentence similarity is defined as an
indicator to evaluate semantic-level performance. The advantage of DeepSC is that the
DeepSC system has good efficiency even at a low signal-to-noise ratio (SNR). Specifically,
DeepSC extracts semantic information from text data to control channel noise and semantic
distortion, so it can demonstrate good robustness in different communication environments.

Semantic extraction and propagation in communication systems are used to emphasize
the importance of semantics/intent in the information transfer process, which is beneficial
to enhancing the service quality and potential capabilities of 6G networks and metaverse
scenarios [25–27]. One example is semantic communication systems in autonomous driving:
the point is to extract and interpret hidden meanings from multimodal data (which can be
real-time data from multiple sensors, such as radar or cameras), improving the efficiency of
autonomous vehicles and Intelligent capabilities.

Currently, this type of intelligent communication mainly uses complex deep learning
algorithms and neural network architectures, and these methods are usually specialized
for certain types of data and therefore lack the ability to manage discrete constraints. Tra-
ditionally, Shannon-based theoretical frameworks consider the semantic dimensions of
communication to be independent of specific technological frameworks. However, the emer-
gence of 6G wireless communication technology has rekindled people’s interest in semantic
communication technology. The researchers propose a so-called “semantic signature”, which
employs a hash-based semantic extraction process, leveraging supervised learning tech-
niques to generate unique, one-time, hash-based signatures. This strategy helps effectively
manage the dynamic nature of semantic communications, ensuring efficiency, security,
and reduced latency in the process. However, achieving reliable semantic communication in
6G communications is still a challenging task.

The technological capabilities of 6G, which are attracting increasing attention, must
surpass 5G, which requires greater attention to the role of semantic communication, es-
pecially in supporting real-time decision-making applications. In order to overcome the
inherent inefficiency problem of traditional “sampling and then compression”, semantic
compressed sensing technology has been researched and applied for a long time, which
could improve data processing efficiency and reduce network traffic. For example, sparse
sampling of source data needs to be exploited in intelligent transportation systems to facili-
tate timely semantic perception and transmission, especially in emergency situations, such
as pedestrians suddenly appearing. Furthermore, semantic communication technology
integrates semantic-based indicators into the communication process, emphasizing the
value-of-information (VoI) concept [28]. This concept is increasingly important in urban
traffic environments, in vehicle-to-everything (V2X) collaboration, and in the field of health-
related wearable devices, for example, in emergency situations where only critical data
flows are considered.

There is another practical application problem in the use of 6G technology, namely,
privacy leakage. A large amount of personal information and sensitive data are constantly
transmitted and stored on mobile internet and IoT devices, leading to personal information
leakage or unauthorized data tampering. The purpose of privacy protection technology is
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to prevent misuse of data or unauthorized access. Semantic communication emphasizes
the importance of data content rather than pure bit-level transmission. Therefore, adopt-
ing semantic communication is effective in preventing misuse of data or unauthorized
access [29]. By leveraging semantic communication technology, it is not only possible to
identify the context in which data are used but also to process and transmit only relevant
and necessary data. By understanding the semantics of data, semantic communication
systems can intelligently decide which data to store or discard. By using semantic com-
munication technology, the amount of sensitive data that edge nodes need to retain can
be reduced and the storage requirements for edge nodes can be reduced. Not only that,
semantic communication can also use technologies such as federated learning, differential
privacy, or homomorphic encryption to further enhance privacy protection capabilities.

Large-scale generative models are reshaping many kind of fields, such as data process-
ing, artificial intelligence, and human-computer interaction. These models are capable of
generating a variety of content types (numeric values, text, images, audio, etc.) with levels
of fidelity and complexity comparable to those generated by humans [1,30].

Under the dual requirements of efficient communication and massive data trans-
mission, the communication industry needs a semantic communication method that can
accurately extract the meaning or intention of the message. As mentioned above, compared
with traditional communication methods that focus on the accurate transmission of bits,
semantic communication emphasizes the understanding and interpretation of the meaning
or intention of the message. It also helps to deal with bandwidth issues in massive data
transmission scenarios.Large-scale generative models hold promise for meeting this require-
ment. Their model comes from training on massive data sets, so the model can distinguish
the differences in context and semantics carried in the data source information. It can there-
fore be argued that the next interesting convergence of large-scale generative models with
industrial applications is semantic communication. Therefore, in semantic communication,
large-scale generative models can be leveraged to ensure that the essence of the message is
conveyed and understood even if the exact words or syntax cannot be transmitted due to
bandwidth limitations or transmission errors. In addition, large-scale generative models
can adapt to different communication environments and user preferences, enhancing the
personalization and effectiveness of the communication process. For example, in scenarios
where a message needs to be compressed for transmission, a generative model can recon-
struct the message to use fewer bits while retaining its core meaning. Additionally, in a
world increasingly reliant on wireless communications, large-scale generative models can
help reduce bandwidth burdens. In particular, in scenarios where bandwidth resources are
scarce, communication efficiency can be greatly improved by focusing on semantic content
rather than raw data.

So far, the purpose of combining large-scale generative models with semantic com-
munication technologies has been to ensure the transmission of semantically important
content and remove redundant data, thereby improving bandwidth efficiency. In other
words, during the transmission process, the total amount of data transmitted should be
minimized and the core information should be fully conveyed. The achievement of this
dual goal therefore relies on evaluating the semantic importance of data frames while
effectively managing the known power distribution. Compared with common semantic
communication strategies, the deep joint source-channel coding (Deep-JSCC) proposed by
the researchers is well compatible with current communication infrastructure [31]. It can
be seamlessly integrated into existing systems by adding a cross-layer manager.

Researchers have also noticed that large-scale generative models can be used to
achieve data compression. In particular, large-scale language models (e.g., GPT-4) have
good practical value in text content compression. In such explorations, a systematic
comparison of the compression ratios and reconstruction losses of these models with those
achieved by traditional compression methods is requested [32]. Preliminary results show
that while GPT-4 may not meet the standards for lossless compression, it performs well
in maintaining semantic consistency. By leveraging advanced generative models such
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as GPT-4 for data compression prior to transmission, the amount of data transmitted
can be effectively reduced, especially in the context of textual content, thereby reducing
bandwidth requirements.The cosine similarity measure is used in the comparative analysis
methodology section, which is a scale used to quantitatively evaluate the retention of
semantic content during compression.

In addition, when adopting large-scale generative models for data compression, re-
searchers have noticed the application of large language models (especially GPT-4) in text
content compression. By performing a systematic comparison of the compression ratios
and reconstruction losses of these models with those achieved by traditional compression
methods (a key aspect of this comparative analysis is the implementation of the cosine
similarity measure, a method used for the quantitative evaluation methods of preserving
semantic content during compression) we learned that although GPT-4 may not meet the
standards of lossless compression, it shows potential in maintaining semantic consistency,
that is, GPT-4 can effectively compress and process information and extract and interpret
data from more compact and simplified inputs.

Large-scale language models also show some potential in text-based sentiment analysis
applications. ChatGPT, for example, shows average proficiency in such tasks, with an
accuracy metric of 69.7 percent [33] in emotion perception. However, in the process of
implementing semantic decoding using large-scale generative models, there are always
errors or gaps in emotional expression. The reason may lie in the lack of human emotion
in the textual expressions generated by semantic encoding, which seriously damages the
authenticity of the subsequent visual media generated. The traditional standard metrics
such as BLEU, ROUGE [34] and perplexity are mainly used to measure the effectiveness
of models such as GPT-4. However, there is still a gap in developing evaluation metrics
specifically for comparing the performance of large-scale generative models (e.g., GPT-4),
especially human emotion representations.

To date, the application potential of combining large-scale generative models with
semantic communication is limitless. For example, in the metaverse scene mentioned
above, if semantic understanding is used to encode actual scenes and characters into
text form, it only takes up a minimum of transmission bandwidth and can reconstruct
virtual scenes and characters that are semantically consistent with the real world on the
decoding end. This reconstruction is performed using a large generative model. Another
example is the above-mentioned intelligent assisted-driving scenario. By using semantic
communication to encode the real visual information of the driver’s blind spot area, it is
decoded on the vehicle side to restore a virtual scene that is semantically consistent with
the blind spot area. The large-scale generative models can be used when reconstructing
information. This method not only alleviates the massive demand for bandwidth but also
enhances privacy protection during communication. These advantages are likely to become
a feature of data transmission in the 6G era. However, to achieve this goal, the best existing
related techniques still suffer from some shortcomings, such as the lack of emotional
expression in scenes and characters and the lack of standardized evaluation metrics to
measure their performance.

We propose a bandwidth-efficient approach for semantic communication through
emotion-aware scene adaptation on the encoding side and generating animated video short
on the decoding side. By including emotional expressions in semantic communication and
establishing standardized evaluation metrics for this purpose, this approach achieves en-
hanced semantic and emotional consistency between original video content and generated
animated short representations.

Our solution is built around a three-step process. Firstly, the original video content
needs to extract key frames and convert them into text description representations.This step
is crucial for the desired bandwidth-efficient nature, since in this step the basic semantic
and emotional content is conveyed in a very compact textual form, which significantly
reduces the data required for transmission. At the same time, as mentioned above, in
addition to reducing bandwidth consumption, this encoding method can also ideally
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protect privacy, because most privacy-related information expressions can be removed
during the encoding process.

In the second step, the text description representations of the first step are obtained at
the decoding end, and specific emotional text clues are added to them. This step serves the
goal of preserving the emotional integrity of the original video, i.e., by embedding these
emotional descriptors into semantic text description representations, the animated short
film generated by the large-scale generative model is not only able to preserve the semantic
context of the original video, but also can retain its emotional tone and nuance.

Finally, the consistency in terms of content and emotional expression between the
generated animated short film and the input original video is defined and evaluated. As
an evaluation metric, this consistency allows the model to be fine-tuned with the goal
of achieving high fidelity while reproducing the semantics and emotional tone of the
original video. Through this evaluation metric, in some specific application scenarios, the
requirements for emotion retention and representation are met.

Our proposed bandwidth-efficient approach hopes to ensure that the transition from
real-world scenes/characters to their digital counterparts is seamless and efficient, as well
as semantically and emotionally consistent. In addition, the proposed metrics will also
better evaluate the performance of large-scale generative models in terms of semantic and
emotional expression, which further explores the potential of semantic communication
combined with large-scale generative models.

3. Methods

In this section, we detail the methodologies employed to transform video content
into animated representations, with a focus on preserving both the semantic integrity
and the emotional context of the original material. As shown in Figure 1, the approach
is founded on a sophisticated encoding system. This system initiates with the metic-
ulous acquisition of visual data, followed by their transformation into a semantically
and emotionally enriched textual format before finally culminating in the generation of
animated shorts. To achieve this, we utilize a semantic communication channel designed
specifically for transmitting semantically converted textual data, rather than relying on
the transmission of raw video footage or images extracted from the videos. This method
significantly reduces the volume of data required for transmission, presenting a stark
reduction in comparison to the volume of the original video data. Crucially, by integrating
emotional descriptions directly into the semantic textual data, we ensure that the resulting
animated shorts not only convey the original video content’s semantic meaning but also
its emotional nuances. This integration allows for a nuanced reflection of the original
video’s emotional undertones in the animated representations, ensuring a faithful and
comprehensive translation of content and emotions.

Video

Visual 
Features Selected 

Frames

Sematic
Analyzer

Key Frame 
Detection

Faces & 
Emotion

Visual 
Description

Visual 
Encoder

Emotional
Encoder

Emotional
Description

Textual
Fusion

Semantic 
Textual Data

Video Encoder

Semantic Communication Channel

Metaverse Decoder

Semantic 
Textual Data

Style 
Adjustment

Adjusted 
Prompts

Frame
Generation

Recovered
Frames

Video
Generation

Animated 
Shorts

Figure 1. The architecture of the proposed method.
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Firstly, the input video is preprocessed, including reading video data, adjusting the
video based on given resolution frame rate and other parameters, and removing noise.
In the subsequent step (Semantic Analysis), visual features are extracted, and the faces
appearing in the video are recognized and analyzed to obtain their representative emotions,
laying the foundation for subsequent processing.

In order to avoid high computational costs and lengthy results, representative key
frames in the video are identified, and only these frames need to be processed in subsequent
conversions (Key Frame Detection). In this step, visual features of the video as well as facial
and emotional information are used.

For the selected key frames, their image information is encoded and processed into
textual descriptions (Visual Encoder). The emotional information of the previously recog-
nized faces is also encoded and recorded in text form for each frame with facial information
(Emotional Encoder). Through this method, the content contained in the video is expressed
and converted into text format (visual description and emotinoal description).

A key step in the method is to integrate visual and emotional descriptions into a
coherent semantic text narrative (Textual Fusion), using reinforcement learning methods to
adjust how the two types of descriptive information should appear in the final fused text.
Afterwards, the fused composite data with rich semantic information can be efficiently
transmitted through semantic communication channels (Semantic Communication Channel).

After receiving the fused text description, it is necessary to generate animation frames
from this semantic encoded data, and then generate animation short films. This includes
adding style information related to animation to the text description (Style Adjustment),
reconstructing corresponding animation video frames from the text (Frame Generation),
and reconstructing the obtained animation video frames into an animation sequence that
reflects the original content (Video Generation).

The methods outlined in this article can completely change the way we interact with
multimedia content in virtual environments by transforming video content and being
applicable to the metaverse environment.

3.1. Preprocessing and Semantic Analysis

After receiving the input raw video, in order to be applicable to subsequent conversion
processes, preprocessing and semantic analysis are required. At this stage, input data
is standardized and processed to address the issue of different input data formats, and
different content obtained from semantic analysis is processed to address its inherent
heterogeneity in format.

3.1.1. Video Standardization

Due to the diversity in format, resolution, frame rate, and content of the input video,
an adaptive scaling algorithm was adopted. This algorithm standardizes all input raw
videos to predefined setting Rs, facilitating the use of a unified method for processing
in subsequent feature extraction and analysis processes. The resolution normalization
function can be mathematically expressed as

Rnormalized = fscale(Vinput, Rs) (1)

where Vinput is the input video and fscale denotes the scaling function that adjusts Rinput to
match Rstd.

3.1.2. Noise Reduction

To counteract the noise prevalent in real-world videos, spatial filtering and temporal
smoothing are implemented. The noise reduction process can be represented as

Vclean = fnoise_reduction(Vraw, α) (2)
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where Vraw is the raw video frame, Vclean is the noise-reduced frame, and α is a parameter
controlling the intensity of the noise-reduction process. fnoise_reduction encapsulates the
combination of spatial and temporal filtering techniques.

3.1.3. Semantic Analysis and Feature Extraction

The cornerstone of our methodology, semantic analysis, involves extracting salient
features carrying substantial semantic weight from the video frames as follows:

• Visual feature extraction : Convolutional neural networks (CNNs) are used to process
image frames in food to extract key visual features, such as object content, environment,
and image style information contained in the image. The feature extraction can be
represented as

Fvisual = CNN(Vclean) (3)

where Fvisual represents the extracted visual features from the noise-reduced video
frame Vclean.

• Facial and emotion recognition: Facial recognition and emotion detection models
recognize facial information (including the number and position of faces) in a given
frame and analyze the facial expressions and emotional states on the recognized faces.
The process can be formulated as

Eemotion = femotion(Ff acial) (4)

where Eemotion denotes the encoded emotional states and Ff acial represents the facial
features extracted from the video frames.

3.1.4. Data Homogenization

To prepare for key frame detection, we integrate the visual features extracted from
key frames and the emotional data recognized in each frame into a unified data struc-
ture. This involves aligning two types of data and storing them in a fixed format for
efficient processing in subsequent stages. Data homogenization can be mathematically
represented as

Dhomogenized = fhomogenize(Fvisual , Eemotion) (5)

where Dhomogenized is the unified data structure and fhomogenize is the function that combines
visual features Fvisual with emotional data Eemotion into a coherent format. These homoge-
nized data lay the foundation for the next stage of our method, ensuring consistency and
efficiency in the processing process.

3.2. Key Frame Detection

Key frame detection is a crucial step in ensuring the selection of the most representative
and emotionally significant moments in the video for further analysis. Our system uses
change detection algorithms to detect frames that exhibit significant changes in scene,
action, or emotional tone. The detection algorithm can be represented as

KF = fdetect({Dhomogenized}, θchange) (6)

where KF is the set of key frames, {Dhomogenized} is the set of all features extracted from
each frame of the input video, θchange is the set of thresholds for changes in scene, action as
well as emotional tone, and fdetect represents the detection function.

3.3. Generating Textual Information

After processing, the input video will form textual content, greatly reducing the
bandwidth required for information transmission.
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3.3.1. Visual Encoder and Emotional Encoder

Previously, visual feature information and facial and emotional information contained
in each frame were obtained, and key frames in the original video were detected. But now
the visual and emotional feature data is still in the form of feature vectors, which can be
transformed into text information that is easy for humans to understand.

For the detected key frames, the visual information contained therein is encoded into
text form for subsequent processing. This involves deep learning techniques that use image
to text conversion, which can preserve the semantic information of the original image as
much as possible during data compression.

For facial information and emotional information, they can be recorded in the form of
text descriptions, making it easier to understand the character and emotional information
in the scene during the subsequent restoration process.

3.3.2. Textual Fusion

The textual fusion algorithm synthesizes visual and emotional text data, creating a
coherent description that represents the semantic and emotional information of the original
content. In this process, the emotional information of the key frame should be integrated
into the visual description of this frame to obtain a complete semantic text description. Due
to the various ways in which two pieces of text information can be fused, reinforcement
learning methods can be applied, and the evaluation of the final generated results promotes
a more reasonable result of text fusion.

The generated semantic text data serves as the blueprint for animation, encoding not
only visual information but also characters and emotional information in the scene, making
it easy to restore the original emotions in the generated animation.

3.4. Semantic Communication Channel

The semantic communication channel is a way for synthesized semantic text data to
be transmitted to animation generation systems, emphasizing security and efficiency.

During the transmission process, the integrity and security of data transmission are
crucial, and the efficiency of data transmission is also a key focus.

In order to achieve efficient data transmission, the fused text information is encoded
and compressed, while preserving the information while reducing bandwidth usage. In
order to protect data during transmission, ensure semantic integrity and confidentiality,
secure transmission protocols are used during the transmission process.

3.5. Adjustments for Animation Generation

Before generating the final animation content, the transmitted text data undergoes a
series of adjustments.

Due to the different animation styles of the input video and output, the fused semantic
text needs to be adjusted to adapt to the expected animation style and tone, ensuring that
the final generated result is consistent with the target requirements.

In addition, in order to ensure the compatibility between text information and anima-
tion generation algorithms, fine-tuning data is involved to lay the foundation for creating
frame sequences in animation.

3.6. Frame Generation and Animated-Shorts Production

In this stage, semantic text is transformed into animated short films that can summarize
the essence of the original video content. The generated animated short film and the original
video remain consistent in content and emotion.

3.6.1. Semantic-to-Visual Frame Generation

By using a text to image generation model based on deep learning, images can be
synthesized from semantically rich text descriptions. In this process, it is necessary to
convert the detailed description in text format into visual elements to ensure that each
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frame accurately presents the expected scene and restores the original content of the input
video. During the generation process, attention should be paid to the consistency between
frames to avoid too many drastic changes and ensure the coherence of the generated
animation sequence.

3.6.2. Animated Short Film Production

Creating animated short films is the final step in the visual transformation process.
Based on synthesized animation frames, it is necessary to serialize and animate them,

use editing tools to fill the gaps between frames, and create a vivid and engaging short film.
This includes adding motion, transitions, and other visual effects to make the story more
vivid. And it is necessary to integrate audio elements such as dialogue, music, and sound
effects into the animation to enhance the overall sensory experience and emotional impact
of the short film.

The animated short films generated in this way not only visually attract the audience,
but also convey the rich emotions and narrative depth of the original content.

3.7. Metaverse Decoder Integration

The method of generating animated short films can ultimately be integrated into the
metaverse environment, making it easier to generate animated short films on demand in
the metaverse and experience the resulting short films.

3.7.1. Adaptation for Metaverse Platforms

We need to adjust the format of the animation content and perform special encoding
to match the technical and experiential requirements of the metaverse platform.

In terms of format and resolution, optimization is needed to ensure that the animation
is presented in a format compatible with the metaverse platform, and to optimize resolution
and frame rate to meet the standards of virtual reality environments.

Embedding interactive features into animation content allows users to participate in
the story plot and characters in a more immersive way.

3.7.2. User Experience and Engagement

Our process of integrating animation into the metaverse focuses on enhancing user
experience and engagement. Animation is placed in the metaverse as an immersive
narrative element, providing users with a new way to experience narrative and connect
content. We study and integrate user interaction dynamics to ensure that animation content
is not only visually appealing, but also positively responsive to user input and behavior
within the metaverse. Through these methods, we have achieved seamless integration
of emotionally rich and semantically profound animation content with the metaverse,
enhancing the narrative depth and interactive engagement of virtual experiences.

4. Experiments

In this section, we succinctly summarize the overall framework of the experiment and
construction of the model. In Section 4.1, we briefly delineate the description of the datasets
utilized in the experiment and the process of dataset preprocessing.

4.1. Dataset and Preprocess

• eRisk 2017: In the process of communication, we specifically focused on depression,
which is a strong emotional state during the emotional detection phase. For this
purpose, we utilized the dataset from the CLEF 2017 public task, which is designed
for the early detection of depression in users. This original dataset, sourced from
Reddit, classifies subjects into two categories: “depressed” and “control”, and con-
tains extensive sequences of user posts. The ground truth of the data originated
from manual annotations by the dataset’s creators. Initially, personal declarations of
confirmed depression diagnoses among users were searched. Subsequently, these
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posts were verified and labeled through a manual review process. Posts without ex-
plicit indications of a diagnosis were not included in the depressed group. Therefore,
the dataset generally possesses high reliability, but it still may contain some noise
due to the absence of explicit diagnostic statements in certain posts. It is important to
note that the original dataset had a substantial imbalance between the positive and
negative samples, with 137 positive and 752 negative samples in the training and
test sets. Therefore, in the data preprocessing stage, we first balanced these samples
by downsampling the negative ones, resulting in an equal number of 137 samples
in both categories. Since the dataset is presented in the form of individual user
post sequences, it aligns well with the process of communication.The final dataset,
after undergoing a series of processes for cleansing missing values and invalid char-
acters, was converted into a more manageable CSV format. The utilization of the
dataset adheres to a set of guidelines based on the data usage agreement signed with
the dataset’s authors.

• SWDD: In our comparative analysis, we selected a dataset comprising sequences of
user-posted content sourced from Weibo. This dataset encompasses a total of 3711
positive samples and 19,526 negative samples.The dataset, being primarily in Chinese,
also presents the challenge of a significant imbalance between positive and negative
samples. Moreover, the Weibo dataset contains numerous extraneous elements such as
forwarded tweets and advertisements. To address these issues, we initially undertook
a preprocessing step. This included a random downsampling of negative samples to
balance the number of positive and negative samples at 3711 each. Furthermore, we
employed the dataset author’s cleansing tools to eliminate irrelevant content, ensuring
that only user-posted content was retained for analysis. It is noteworthy that this
dataset was manually annotated by professional medical students, thereby ensuring
a high degree of authenticity and reliability in the data. In the experiment, SWDD
is included to compare and evaluate the performance of the emotion enhancement
module. In subsequent applications involving Chinese language contexts, further
optimizations will be implemented.

• VideoEmotion-8: In an effort to closely mimic the multifaceted emotional data sources
present in real-world communication scenarios, we selected the VideoEmotion-8
dataset for our test video dataset. This dataset comprises 1101 videos sourced from
YouTube and Flickr, averaging 107 s in duration, and is primarily focused on human
emotion recognition. Building upon this foundation, we randomly selected five videos
from each of the eight distinct emotional labels and two different video sources,
forming a preprocessed dataset. Consequently, our dataset encompassed 80 videos,
ensuring a diverse and balanced representation of emotions. This rich dataset provided
a varied and extensive range of emotional expressions, thereby enhancing the efficacy
and accuracy of our analysis and recognition models.

4.2. Evaluation Metric

• PAD emotional classification: In our experiment, we employed a multistage emotion
recognition pretrained model named EmoCap, which incorporates content recognition
using InceptionV3, to obtain a PAD vector for key frame classification in videos.
The pleasure–arousal–dominance (PAD) emotion scale is an instrumental framework
for the empirical assessment of emotional states. Each dimension of the PAD scale
represents the quantified levels of pleasure, arousal, and dominance dimensions,
providing a unified metric for the embedding of emotions. In the experiment, we
utilized the pretrained EmoCap to convert images into three-dimensional PAD vectors.
Then, by considering the sign of each dimension of the PAD vectors, we mapped
them into the emotional space. The specific mapping relationship can be referred to in
Table 1.
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Table 1. PAD vector to emotion space mapping.

PAD Sign Emotion

+P+A+D Happy
− P−A−D Bored
+P+A−D Dependent
−P−A+D Contemptuous
+P−A+D Relaxed
−P+A−D Anxious
+P−A−D Gentle
−P+A+D Hostile

• Accuracy of depression recognition: In our study, utilizing a Reddit dataset with
ground-truth annotations, we employed three key metrics for the identification within
text sequences: precision, recall, and the F1 score. We conducted extensive training
on the eRisk 2017 and SWDD datasets. The details of this training process, along
with the results, are comprehensively presented in Section 4.4. Given the emphasis on
detecting depressive moods, the accurate identification of positive samples becomes
paramount. Therefore, these three metrics were chosen as the primary indicators of
our model’s training efficacy, particularly in the context of emphasizing the detection
of depressive emotional states:

• Coverage of key scene detection: The key frames extracted from the video should
satisfy two main criteria: the minimal computational cost and the maximum diversity.
Representativeness: The R( fi) of a frame is quantified by averaging the similarity
measures across all other frames, where the similarity could include aspects like image
embedding, text embedding, and the emotional expressiveness of persons within
the frames.
Information richness: The I( fi) is captured by the entropy of the symbols in the frame,
such as pixel intensities or colors.
For a single frame fi, the coverage index can be denoted as M( fi), which combines
representativeness and information richness in the following way:

M( fi) = α

(
1
N

N

∑
j=1

sim( fi, f j)

)
+ β

(
−∑

k
pk log(pk)

)
For multiple frames, the coverage index M(S) for a set of frames S is given by the
maximum similarity sum (MSS) and the collective information richness:

M(S) = α(MSS(S)) + β

(
−∑

k
pk log(pk)

)

MSS(S) = ∑
fi∈F

max
j

sim( fi, f j)

Here, the goal is to maximize M(S), ensuring that the key frames are as representative
and informative of the video content as possible.

• Accuracy of end-to-end communication: In our simulation of semantic communica-
tion, we enhanced the semantics of the transmitted content with emotional attributes.
To evaluate the results of emotion detection, we conducted an end-to-end assessment
of emotional congruence. This involved matching the emotional features of the content
before and after semantic transmission. The matching rate obtained from this process
serves as a metric to assess the impact of communication on emotional stability. This
approach not only evaluates the effectiveness of the emotional enhancement but also
gauges how well the transmitted semantics preserve the intended emotional context
through the communication process.
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• Compression ratio: In our approach, we transformed original video data into seman-
tic data, enabling the reconstruction of key frames and their associated emotional
information, especially in bandwidth-constrained scenarios. Consequently, the data
compression ratio was chosen as a crucial metric for evaluating the communication
process. Due to the substantial magnitude of the final compression ratio data, we
adopted a logarithmic transformation of the compression ratios in our presentation.
This approach enables a clearer and more intuitive visualization of the data.

4.3. Implementation Details

Due to the presence of multiple modules, special attention was needed to address
potential environment conflicts between them. We will detail the specific environmental
configurations in the source code to publish. The final experiment was operable on an
Nvidia 2080 with 12 GB VRAM; however, due to hardware limitations, the model operated
slowly, and many of the finer feature extraction tasks for images can only be further
optimized with more powerful hardware in the future.

The eRisk 2017 dataset used in this experiment involves user privacy and potential
other issues, so access to the dataset can be obtained by applying to the original authors.
On the other hand, the SWDD is a publicly available dataset annotated by professional
medical students. The construction and testing code for the various modules, along
with additional resources, will be made available postpublication of the paper, subject
to application.

4.4. Experiments Details
4.4.1. Experiment Setup

In the context of this experimental study, we employed a sophisticated hardware
configuration, notably featuring an Nvidia 2080 graphics card endowed with 12 GB of
VRAM. This choice was influenced by a commitment to optimizing the utilization efficiency
within real-world systems. Consequently, we opted for a stepwise parallel methodology
over the conventional serial approach for the purpose of channel simulation. This strategic
decision was informed by the imperative to effectively manage the operational capabilities
of the system.

Regarding the organization and accessibility of experimental data, all pertinent in-
formation was meticulously stored and cataloged in CSV format. This approach not only
facilitates efficient segmentation of tasks but also substantially enhances the effectiveness
of data processing and retrieval operations. The experimental setup was intentionally
designed with modularity in mind, allowing for each component to be independently
decoupled and fine-tuned via segmented simulation techniques.

A critical component of our experimental design was the oversight of connections
between modules. We identified a significant risk of data loss during the transfer of identical
objects across different modules. To mitigate this risk, we devised a specialized exit strategy,
explicitly designed for such contingencies within the experimental paradigm.

The culmination of our experiment entailed a comprehensive and multifaceted testing
regime. We executed an exhaustive comparison between our innovative method and
the conventional benchmarks to assess the relative efficacy. Our testing protocol was
extensive, encompassing various aspects of video data analysis, including the examination
of individual video frames, key frames, and an all-encompassing dataset of the complete
video sequence. This rigorous testing framework ensures that our data collection is not
only broad-ranging but also aligns with the objective of garnering objective and thorough
experimental insights.

4.4.2. Depression Identification Module

Based on the refined eRisk 2017 and SWDD datasets, where extraneous information
was removed and a balance between positive and negative samples was achieved, we
conducted semantic detection and enhancement of depressive emotions. Our study in-
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volved comparing an array of model combinations, as detailed in Table 2. Given that our
task centered on using sequences of individual user posts on social media as the dataset,
aggregating all posts of a single user into one sample provided a more objective and com-
prehensive reflection of the semantic emotional characteristics. This approach effectively
minimized the potential confounding variables that might arise from using single posts as
the unit of data.

Table 2. Comparison of different models on Reddit and Weibo datasets.

eRisk 2017 SWDD

F1-Score Precision Recall F1-Score Precision Recall

glove + LR 0.63158 0.60000 0.66667 - - -
FastText + LR 0.74194 0.65714 0.85185 0.65147 0.61871 0.68790
bert + LR 0.65144 0.61871 0.68790 0.91489 0.92275 0.90717
HAN + LR 0.655172 0.63333 0.67857 0.79570 0.75510 0.840909
LIWC + LR 0.69565 0.88889 0.57143 - - -
TF-IDF + XGBoost 0.73469 0.85714 0.64285 0.78483 0.80367 0.76685
MentalRoberta + LR 0.70588 0.78261 0.64286 0.91650 0.93132 0.90160

Results of experiments on this module are enumerated in Table 2, incorporating a
variety of vectorization and model-fitting methods. A unique aspect of this task is the need
to consider the characteristics of both individual sentences and the sequence of user posts.
Consequently, our methodology included several vectorization techniques: some at the
word level, such as GloVe and FastText, and others at the sentence level, like BERT and its
optimized variant, MentalRoberta.

In terms of synthesizing these vectorized data into a comprehensive representation,
we employed different approaches, including simple averaging and more sophisticated
methods like weighted TF-IDF, which factors in term frequency.

For the model-fitting aspect, given that the task closely aligns with binary classification,
we primarily utilized logistic regression. However, we also explored other regression
methods, such as XGBoost 2.0.3, to evaluate their efficacy in this context.

We conducted a final evaluation of the model on three quantified metrics, with a
particular emphasis on the identification of positive samples. Among the methods tested,
the TF-IDFh + XGBoost and MentalRoberta + LR approaches demonstrated commendable
performance in terms of the composite F1 score and recall values. However, it was observed
in our experiments that models based on BERT exhibited a significant drawback in terms
of slower computational speed. Despite the absence of specialized tools for the Chinese
dataset, we decided to implement the MentalRoberta + LR method, which showed optimal
performance on the Chinese dataset as the depression emotion identification module. This
decision was made in anticipation of future tasks that may require specific adaptation to
Chinese linguistic contexts, thereby laying the groundwork for more in-depth Chinese
language-based tasks.

4.4.3. Key Frame Extraction Module

Striking a balance between minimal computational demands and maximal diversity,
we extracted affective key frames for segmentation of the video, which were then relayed
to subsequent modules for further processing.

4.4.4. Semantic Encoding Module

The most critical component of semantic communication is the transformation of
original multimodal data, such as raw video or image data, into meaningful semantic
encoding, as opposed to traditional encoding methods. This module must also prioritize
being sufficiently lightweight and fast while minimizing the need for dense computa-
tions. In our experiment, we utilized CLIP to convert original key frames into a series
of descriptive prompts. This module focuses primarily on content rather than emotional
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information. Consequently, we later integrated emotional information through an emotion
enhancement module.

4.4.5. Semantic Decoding and Recovery Module

This module’s function is to reconstruct the original modal data from the semantic
information received at the communication receiver end, which were transmitted from
the sender. Due to constraints in computational power and processing speed, the primary
focus is initially on the restoration of key frames after their transmission. Considering the
cumulative computational demand generated by the entire system, it is imperative that the
recovery model be as lightweight as possible. Therefore, we ultimately employed Stable
Diffusion as the semantic decoding and recovery module.

4.4.6. PAD Emotion Mapping Module

The primary function of this module is to convert the data from their original modality
into PAD vectors. By processing the data through EmoCap, vectors are obtained for
each of the three dimensions of PAD. In our experiment, by embedding the key frame
images into the emotional space, we acquired three-dimensional vectors. This allows for
a distance measurement in the emotional space between the original images and those
reconstructed post-transmission through the channel. Additionally, the obtained PAD
vectors can be mapped onto the emotional space, resulting in a hard classification into eight
distinct emotional categories. The criteria for these classifications are detailed in Table 1.
The emotional classifications obtained can also be utilized in subsequent semantic emotion
enhancement modules.

4.4.7. Semantic Emotion Enhancement Module

In the original semantic context, the focus is primarily on the content of the original
image, with no additional emphasis on emotional information. Therefore, in this module,
we incorporated the emotional recognition keywords generated by the previous module
into the transmitted semantics to enhance the emotion in semantic context.

5. Results

We constructed a semantic communication process based on four modules and com-
pared the improvements brought about by the integration of an emotion detection enhance-
ment module, resulting in a series of statistical outcomes.

5.1. Recall in Semantic Communication Emotion Detection

A critical aspect of our methodology is the deliberate integration of emotional
information (the emotional enhancement). To quantitatively evaluate the influence of
this integration on the quality of the generated animated shorts, we conduct an ablation
study using the dataset VideoEmotion-8. The primary objective of this study is to
systematically quantify the degree of enhancement in emotional consistency achieved by
our approach, effectively demonstrating the benefits of incorporating emotional data into
the transformation process. We compare our method (termed “Enhanced Algorithm”)
with a comparable baseline method that does not incorporate emotional information
(termed “Naive Algorithm”). The comparative results, illustrating the superiority of
our approach over the baseline, are meticulously tabulated in Table 3. Furthermore, we
present a detailed analysis of the distribution of recall values of all images of the videos
for both methods in Figure 2, which encompasses two histograms corresponding to the
two methods, respectively.

Despite limitations in dataset size and hardware resources, we achieved a significant
average accuracy improvement of 3.19%, as shown in Table 3. The maximum increase in
accuracy is approximately 11.7%. This demonstrates the effectiveness of the method to a
certain extent.
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Table 3. Advancement in accuracy of using emotional enhancement compared to the baseline method
without emotional enhancement. A positive number means improvement over the baseline.

Metric Value

mean 0.031989
std 0.016137

min −0.026315
25% 0.027017
50% 0.033750
75% 0.042941
max 0.117647

Figure 2. This graph compares the recall values for all images in each video with emotional enhance-
ment (“Enhanced Algorithm”) and without emotional enhancement (“Naive Algorithm”) on the
preprocessed dataset.

Additionally, there is a slight improvement in the distribution of recall values, as de-
picted in Figure 2. In the two histograms in Figure 2, we iterate all the videos, calculate the
recall value of all images for each video, then plot the histogram. We find that our approach
(“Enhanced Algorithm”) tends to have higher recall values in the distribution. Therefore,
emotional enhancement is useful for keep the emotional information of raw videos.

In the future, specialized enhancements based on dedicated datasets will be applied
to the other seven emotions, which is expected to yield even greater improvements in
subsequent tasks. Building upon the demonstrated feasibility, further optimization to
enhance accuracy remains a future goal.

5.2. Compression Ratio of Transmitted Semantics Relative to Original Video

We define the “compression ratio” as the quotient obtained by dividing the size of the
textual representation, intended for transmission, by the size of the raw video data. For
example, if a video that is 100 MB in size has a textual representation that is only 0.2 MB,
the compression ratio would be calculated as 0.2/100 = 0.002. Consequently, a diminished
compression ratio directly correlates to a reduced requirement for bandwidth, signifying
increased efficiency in data transmission. In Figure 3, we present the compression ratio per-
formance on our preprocessed dataset. This graph plots the video index on the horizontal
axis against the compression ratio on the vertical axis, showcasing how the efficiency of data
compression varies from one video to another after applying our preprocessing techniques.
Simultaneously, in Table 4, we depict the distribution of compression ratios. It is evident
that the compression ratio is significant, averaging around 0.0005. This demonstrates that
in scenarios with limited bandwidth, a sufficient compression ratio allows our semantic
communication to transmit information effectively.
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Figure 3. This graph depicts the compression ratio of the semantic information relative to the original
video on the preprocessed dataset.

Table 4. Compression ratio statistics.

Metric Value

count 80

mean 0.000599
std 0.000874

min 0.000002
25% 0.000037
50% 0.000280
75% 0.000804
max 0.004325

6. Conclusions

In conclusion, this paper introduces an innovative method leveraging large-scale
generative models to create animated short films based on some input videos, which
accurately reflect the semantics and emotions of original scenes and characters. By convert-
ing the visual content of data sources into semantic textual expressions, the bandwidth
requirements can be significantly reduced because only the compact textual information
rather than bulky original video data should be transmitted. By enriching these textual
expressions with emotional cues via reinforcement learning technology, our methodology
facilitates the generation of visual media that remain faithful to the original data source’s
semantic content.

Furthermore, this research pioneers the development of a comprehensive semantic
communication process, featuring distinct modules including an emotion enhancement
module. The integration of this module not only contributes to the semantic richness of
the media but also plays a crucial role in the transmission efficiency. Empirical evidence
from our studies, particularly utilizing the third-party dataset eRisk 2017, confirms that
the proposed approach successfully integrates emotional information and significantly
reduces the bandwidth requirements for data transmission. This enhancement in both
semantic integrity and bandwidth efficiency not only marks a significant advancement in
our approach but also highlights its capacity to capture and convey crucial information,
such as character emotions, in bandwidth-constrained environments. This capability
ensures the creation of tailored animated shorts that resonate with the original video’s
essence, making it particularly valuable for immersive experiences in the metaverse and
other applications where bandwidth may be limited.

By bridging the gap between semantic understanding and emotional conveyance
and by efficiently managing data transmission, this paper not only sets a new benchmark
for the creation of multimodal media but also ensures the conveyance of critical emotional
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and semantic content in bandwidth-constrained environments. This advancement steers
the future of media generation towards a horizon that is not only more expressive but also
more efficient in bandwidth usage, paving the way for innovative applications in immersive
experiences and beyond. Future work will explore extending this framework to encompass
a broader spectrum of emotions and scenarios, further enhancing the adaptability and
scope of semantic communication in next-generation networks.
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