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Abstract: Infrared video target detection is a fundamental technology within infrared warning and
tracking systems. In long-distance infrared remote sensing images, targets often manifest as cir-
cular spots or even single points. Due to the weak and similar characteristics of the target to the
background noise, the intelligent detection of these targets is extremely complex. Existing deep
learning-based methods are affected by the downsampling of image features by convolutional neural
networks, causing the features of small targets to almost disappear. So, we propose a new infrared
video weak-target detection network based on central point regression. We focus on suppressing
the image background by fusing the different features between consecutive frames with the original
image features to eliminate the background’s influence. We also employ high-resolution feature
preservation and incorporate a spatial–temporal attention module into the network to capture as
many target features as possible and improve detection accuracy. Our method achieves superior
results on the infrared image weak aircraft target detection dataset proposed by the National Uni-
versity of Defense Technology, as well as on the simulated dataset generated based on real-world
observation. This demonstrates the efficiency of our approach for detecting weak point targets in
infrared continuous images.

Keywords: infrared video target detection; different maps; spatial–temporal attention module

1. Introduction

Infrared video dim-target detection is one of the key technologies in Infrared Search
and Track (IRST) systems [1]. Due to its high sensitivity and interference resistance, infrared
detection imaging can promptly capture and track targets, enabling the command center to
make comprehensive judgments of target properties. However, due to the high observation
angle and wide range of infrared detectors, weak-target imaging often appears as merely a
small spot or point within the image, making it highly susceptible to being obscured by
intricate backgrounds. Moreover, the imaging of the target is often similar to the infrared
image noise [2], leading to potential confusion.

Currently, mainstream methods of dim target detection in infrared video still rely on
traditional technologies, such as the frame difference method, background modeling, and
the optical flow method. However, these methods have many limitations, poor robustness,
and require extensive computations when changing application scenarios. With the dawn
of the big data era, numerous deep learning-driven approaches have surfaced for detecting
faint targets within infrared images [3]. Most of these methods focus on how to utilize
feature fusion to obtain more target features while overlooking the significant impact of
long-term observations and sequential backgrounds on the detection results of infrared
small targets. As shown in Figure 1, in infrared remote sensing images, the target position
cannot be determined solely based on a single image. It can only be obtained through the
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analysis of sequential images. In the case of distant infrared imaging, weak targets are
often represented as single point-like objects that are small and dark, with very limited
features. Additionally, the background pixels far exceed the target pixels, causing the loss
of target features during the downsampling process. Infrareddim-target detection and
tracking systems require precise positioning of the target due to the long imaging distance.
A deviation of a single pixel can have a significant impact on accurate targeting. Currently,
mainstream methods based on bounding box calculations of centroids or centers of mass
are not suitable for such application scenarios.
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Figure 1. Illustration of consecutive frames in remote infrared long-range infrared remote sensing
imaging (dim targets are marked with red boxes in the figure).

In practical applications, background noise has a significant impact on detection per-
formance. The distribution of these noises is random, and even small circular spots caused
by minor movements or changes in brightness in the original image can be mistakenly
identified as the desired point targets. As shown in Figure 2, these circular noise spots have
almost the same features as our target.
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To address the aforementioned issues, this paper proposes CenterADNet, a keypoint
regression-based method for infrared temporal image target detection. Firstly, this method
utilizes keypoint regression as a baseline to realize the accurate positioning of the target.
Secondly, to further minimize the impact of background noise, a combination of difference
maps and original images is employed to precisely extract features. Additionally, to
optimize the use of small-target features, the feature extraction network incorporates
a method that preserves high-resolution representations. Additionally, spatiotemporal
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information is crucial for target characterization. Therefore, a spatiotemporal attention
module [4] is integrated into the network for comprehensive target analysis. The main
contributions of this paper can be summarized as follows:

• Innovatively incorporating multi-frame difference images into the keypoint regression
baseline network to fuse multi-frame features for reducing background influence,
and integrating difference image-guided spatiotemporal attention modules into the
network structure to fuse multi-frame features.

• For distant infrared imaging with small and dim targets, employing high-resolution
preservation methods to extract target features while maximizing the preservation of
these features.

• A self-made simulated dataset is created to mimic various forms of infrared point
targets in motion. Multiple background abrupt changes are applied to a sequence of
images to simulate scenarios where the target flies out of the observation perspective,
thus verifying the reliability of the algorithm.

Our algorithm demonstrates superior performance on both the infrared image dataset
for weak-aircraft-target detection and tracking [5], proposed by the National University
of Defense Technology in 2020, and a simulated dataset generated based on observations
of real-world scenarios. These results validate the effectiveness of our algorithm in de-
tecting weak point targets in the infrared domain, surpassing the performance of current
mainstream target detection methods.

2. Related Work

Due to dynamic changes in a scene, such as weather conditions, variations in lighting,
shadows, and interference from cluttered backgrounds, video object detection becomes
particularly challenging. One strategy to address this is to enhance the coherence and
stability of detection results through post-processing based on temporal information. These
methods typically employ object detectors based on static images to obtain detection results,
which are then combined. Another approach utilizes temporal information to aggregate
features from adjacent frames or entire clips, thereby enhancing the features of the current
frame and improving detection performance. This helps to mitigate issues such as motion
blur, occlusion, and appearance variations to a certain extent [6]. A third approach involves
using optical flow models to estimate the motion of objects and confirm their positions.

Deep learning-based methods for video object detection using static images have
been widely researched. For the task of detecting static object in images, Girshick et al.
proposed the region CNN (R-CNN) [7]. In their approach, region proposals are extracted
using selective search. The candidate regions are then warped to a fixed size and fed into a
convolutional neural network (CNN) to extract CNN features. Finally, a support vector
machine (SVM) model is trained for object classification. A faster version of R-CNN, called
fast R-CNN, is presented in [8]. Compared to the multi-stage pipeline approach of R-CNN,
fast R-CNN integrates the object classifier into the network and simultaneously trains
the object classifier and bounding box regressor. The introduction of a region-of-interest
pooling layer allows for the extraction of fixed-length feature vectors from bounding boxes
of different sizes. YOLO [9] (You Only Look Once) and SSD [10] (Single-Shot Multibox
Detector) have enhanced the detection efficiency of object detection, aiming to achieve
real-time detection. Notably, SSD achieves a mutually beneficial scenario in terms of
detection accuracy and efficiency by improving detection efficiency while maintaining
detection accuracy. CenterNet [11], representing the anchor-free approach, represents a
way to perform object detection without candidate boxes, utilizing keypoint regression
for object filtering. The results of static image object detection can be further improved
by post-processing based on temporal information, ensuring more coherent and stable
detection results in detection.

Video object detection methods are based on inter-frame feature fusion. Relying
solely on static object detection does not fully utilize the temporal information provided
by video inputs. Inspired by the pioneering work of faster R-CNN [12], a novel approach
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called temporal CNN (T-CNN) was introduced, which better captures the spatiotemporal
information of videos. By incorporating time convolutional networks in [13], the authors
normalized the detection results and demonstrated the effectiveness of this approach
for video object detection tasks. Building upon faster R-CNN as the backbone, Ref. [14]
employed a multi-stage framework to progressively enhance the proposal features of
reference frames using proposals from support frames. This method aims to fuse features
capturing relationships between multiple proposals. The final advanced-stage features
were utilized for classification and regression, with a post-processing method called BLR
(Box Linking with Relations) introduced. Ref. [15] utilized LSTM [16] to effectively learn
temporal information in video sequences. Their approach combined the static image
object detection algorithm SSD with LSTM, fully leveraging the advantages of LSTM
to enhance the robustness of video object detection. Ref. [17] combined RNN with the
current and neighboring frames’ features, which were fed into the STMM module. STMM
aggregates features from previous frames at time t − 1 and the features of the current frame
and neighboring frames at time t. The aggregated features are then used for detection.
Furthermore, a Transformer [18] simplifies the workflow of video object detection by
effectively eliminating many handcrafted feature aggregation components, allowing for
end-to-end training.

Deep learning-based object detection algorithms utilize dynamic information such as
optical flow [19]. The optical flow model calculates the instantaneous velocities of spatially
moving objects on the imaging plane. It utilizes the temporal variations of pixels in an image
sequence and the correlation between adjacent frames to determine the corresponding
relationships between the previous and current frames, thereby extracting the motion
information of objects between neighboring frames. Ref. [20] comprises two modules:
optical flow extraction and feature aggregation. The optical flow is extracted using the
FlowNet [21] network. For each frame, the optical flow between the current frame and
its adjacent frames is computed, and the features of the adjacent frames are combined
with the extracted optical flow. Subsequently, in the feature fusion stage, the current
feature is combined with multiple neighboring features through element-wise summation.
Ref. [22] initially extracted features from frames and used a FlowNet to extract optical flow
information between frames. Calibration was performed at the pixel level, followed by
instance-level calibration using the predicted instance’s movement, which corresponds to
the proposal obtained from R-FCNs (region-based fully convolutional networks). Finally,
the features obtained from both pixel-level and instance-level calibration were fused for
training and testing. Ref. [23] also started by extracting features from frames and using
FlowNet to compute optical flow information between frames. Pixel-level calibration was
conducted, followed by instance-level calibration using the predicted instance’s movement
(similar to the proposal from R-FCN). The resulting features from both pixel-level and
instance-level calibration were then fused for training and testing.

3. Methods
3.1. Overview

As depicted in Figure 3, our network comprises three main components. In the input
stage, we incorporated difference maps generated through frame subtraction as additional
input channels (as detailed in Section 3.2). During the feature extraction stage, we enhanced
the hourglass [24] backbone network of CenterNet. To address the challenge posed by the
low brightness of our point targets, we drew inspiration from an HRNet (high-resolution
network) [25] to facilitate continuous high-resolution representation within the hourglass
framework. Furthermore, we conducted extensive feature fusion across numerous layers
to guarantee the comprehensive extraction of small targets’ features. Notably, guided
by difference maps, we integrated spatial and temporal attention modules to bolster
the connectivity of targets between frames. Finally, a heatmap was generated through
a 1 × 1 convolution. Since our targets are point targets, the resulting keypoint heatmap
indicates the target’s location and reflects the intensity at the central position.
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3.2. Input Layer of Difference Image Data

Compared with single-frame imagery, one of the significant distinctions in video object
detection lies in the utilization of temporal information. Leveraging multiple frames can
greatly enrich target features and enhance detection performance [26]. While numerous
video detection methods primarily focus on multi-frame fusion for target representation,
the challenge lies in effectively fusing features for infrared point targets due to their small
and dim characteristics. Inspired by the field of video classification TDNs (Temporal
Difference Networks) [27], we adopted a different approach, shifting from feature augmen-
tation to background suppression and accentuating the discrepancies between targets and
backgrounds to enhance detection performance.

When the camera is fixed, our method is very effective for suppressing background
noise. At the initial stage of algorithm verification, we aimed at the simulation image of
space-based infrared remote sensing imaging, and the camera angle is fixed. After the
target flies out of the field of view, the lens will switch once and then continue to fix the
current angle. At this time, we can reduce a lot of background noise by using images
subtracted from multiple frames for detection. However, in the case of camera follow-up,
there will be slight differences in background between consecutive frames.

So, we explored the strategy of using frame differencing to extract features by jointly in-
putting the difference images and the original images into the network as distinct channels. Un-
like in TDNs, we performed data subtraction during the image input stage rather than feature
fusion, thus maximizing the preservation of original data and obtaining more accurate results.
Our proposed method is straightforward: assuming the current input image is Ii, with an input
segment length of 2n + 1 and Ii as the central frame, adjacent input data are subtracted to gen-
erate the final dataset {(Ii−n − Ii−n−1), . . . , (Ii − Ii−1), (Ii), (Ii+1 − Ii), . . . , (Ii+n − Ii+n−1)}.
Concatenating these data produces the final input H2n+1, where the length of the tensor is
equal to the total length of the input segment 2n + 1.

Initially, this approach raised doubts because the target of video does not move
regularly; the target often moves continuously in the height direction, which is reflected in
the two-dimensional image; and the position of the target will hardly change. However,
during the method design, we combined the original image as the central channel with
the difference map. This allows for the detection of targets even in scenarios where they
remain almost static, while the other difference images mostly generate feature maps that
are nearly all zeros, minimizing their impact on detection results.

Figure 4 demonstrates the matrix of differencing consecutive data, highlighting the
substantial background suppression achieved by our approach.
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3.3. Feature Extraction Network and Temporal–Spatial Attention Module

As a classical anchor-free network, CenterNet can predict the keypoints of objects
through heatmaps. We chose CenterNet because it does not rely on anchors and only
predicts the center points of objects, eliminating the need for post-processing filtering. This
makes it highly suitable for our infrared point object detection application.

Given the input images, which consist of multiple frames including difference maps
as mentioned in Section 3.2, we define the input image segment length as n, the width of
the image as w, and the height as h, I ∈ Rw×h×n. The network output is a downsampled

heatmap Ŷ ∈ [0, 1]
w
r ×

h
r×C, where r is the output stride and C is the number of classes

(in our case, there is only one class for the observed point object). The keypoint training
network adopts focal-loss [28] normalization, dispersing the ground truth keypoints into the

heatmap Yε[0, 1]
w
r ×

h
r×C using a Gaussian kernel Yx,y,c = exp(−

(
x−∼ρx

)2
−
(

y−∼ρy

)2

2σ2
ρ

), where

ρ represents the true coordinates of the keypoints and
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represents their mapped positions
on the feature map after network processing. Additionally, the network predicts a local

offset (Ô ∈ Rw×h×2), representing the discrete error in object size, through the output stride

and a regression (Ŝ ∈ Rw×h×2).
As shown in Figure 5, the entire network consists of three components: A stan-

dard convolutional network (in this paper, we utilized the hourglass network to main-
tain high-resolution representations), a deformable convolutional network built with
3 × 3 deformable convolutional layers (DCLs) [29] and up-convolutional layers, and three

heads that output the aforementioned heatmap Ŷ, keypoint offset Ô ∈ Rw×h×2, and
size offset Ŝ.
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During the inference stage, we employed the eight-neighbor comparison method to
extract peak points from the heatmap. Let P̂c be the set comprising n detected center points,
each represented as (xi, yi). The final bounding box was generated as follows:

xi + δxi −
wi
2

, yi + δyi −
hi
2

, xi + δxi + wi/2, yi + δyi + hi/2 (1)

where (δxi, δyi) = Ôxi ,yi , (wi, hi) = Ŝxi ,yi

3.3.1. Feature Extraction Network with Stacked High-Resolution Representation

Currently, many feature fusion methods in video target detection are used to fuse the
features of different downsampling layers. However, small-target detection is very sensitive
to location. It needs continuous high-resolution representation. HRNet [25] introduces
the concept of continuous high-resolution representations. In our work, we utilized this
idea for the feature extraction of point targets. However, it is important to note that we
did not fully adopt the parallel structure of HRNet. Instead, we integrated the continuous
high-resolution representation into the densely connected hourglass network. The specific
structure of the backbone mentioned earlier is illustrated in Figure 6.

Sensors 2024, 24, x FOR PEER REVIEW 7 of 20 
 

 

𝑥 + 𝛿𝑥 𝑤2 , 𝑦 + 𝛿𝑦 ℎ2 , 𝑥 + 𝛿𝑥 + 𝑤 /2, 𝑦 + 𝛿𝑦 + ℎ /2  (1) 

where 𝛿𝑥 , 𝛿𝑦 = 𝑂 , , 𝑤 , ℎ = 𝑆 ,  

 
Figure 5. Components of the feature extraction network. 

3.3.1. Feature Extraction Network with Stacked High-Resolution Representation 
Currently, many feature fusion methods in video target detection are used to fuse the 

features of different downsampling layers. However, small-target detection is very sensi-
tive to location. It needs continuous high-resolution representation. HRNet [25] intro-
duces the concept of continuous high-resolution representations. In our work, we utilized 
this idea for the feature extraction of point targets. However, it is important to note that 
we did not fully adopt the parallel structure of HRNet. Instead, we integrated the contin-
uous high-resolution representation into the densely connected hourglass network. The 
specific structure of the backbone mentioned earlier is illustrated in Figure 6. 

In our proposed backbone, on the basis of hourglass, the upsampling and downsam-
pling of the original recursive mode are improved. It keeps high-resolution features on 
one branch and downsamples at different multiples on other branches. These downsam-
pled data with different multiples intensively interact, and finally, the original resolution 
feature map is restored. At the same time, our network was designed as a stackable mode, 
and the number of stacked layers can be changed by simple parameter setting to test the 
influence of different stacking multiples on the network performance. 

 
Figure 6. The specific structure of stackable high-resolution network in this paper. Figure 6. The specific structure of stackable high-resolution network in this paper.

In our proposed backbone, on the basis of hourglass, the upsampling and downsam-
pling of the original recursive mode are improved. It keeps high-resolution features on one
branch and downsamples at different multiples on other branches. These downsampled
data with different multiples intensively interact, and finally, the original resolution feature
map is restored. At the same time, our network was designed as a stackable mode, and the
number of stacked layers can be changed by simple parameter setting to test the influence
of different stacking multiples on the network performance.

3.3.2. Spatial–Temporal Attention Module

We added the attention module [30] to the feature extraction network, as shown
in Figure 7.
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Spatial attention module: The input features were first passed through the spatial
attention module. It is important to note that we did not feed all the data into the spatial
attention module. Instead, we focused on the most relevant parts by applying spatial
attention to the feature maps generated from the difference maps. This is because we
believe that the difference maps eliminate a significant amount of background influence
and provide more accurate weights for the target.

The spatial attention module primarily focuses on determining which parts of the fea-
tures are meaningful. Given an H ×W × C feature Fi(i ∈ {0, 1, . . . , I} and I represents the
length of the feature containing both the original data and the input difference images), we
first extracted the differential feature map Fi from Fj. Then, we applied average pooling and
max pooling separately to this differential feature map to obtain two H ×W × 1 channels.
These two channels were concatenated and passed through a 7 × 7 convolutional layer
to derive the weight coefficients Ms. Finally, we multiplied the weight coefficients Ms by
the full feature map Fi(i ∈ {0, 1, . . . , I} to obtain the scaled new features. The process is
presented in the following equation, where ⊗ denotes element-wise multiplication and
σ represents the sigmoid function:

Ms(Fj) = σ
(

f 7×7([AvgPool(Fj), MaxPool(Fj)])
)
= σ( f 7×7

([
Fs

avg, Fs
max

])
) (2)

Fi ′ = Ms(Fj)⊗ Fi (3)

Temporal attention module: In our work, the input feature channels contain temporal
information about targets. By calculating attention on these channels, we can obtain the
combination of spatial and temporal features.

First, we performed global average pooling and max pooling on the spatial dimension
to obtain two 1× 1× C features. These two channels were then passed through a two-layer
neural network (MLP), and the resulting features were summed and passed through a
sigmoid function to obtain the weight coefficients Mc. Finally, we multiplied the weight
coefficients by the output of the spatial attention module Fi ′.

This process can be mathematically represented as follows, where MLP represents the
two-layer neural network with the activation function set to ReLU:

Mc

(
Fi ′
)
= σ(MLP

(
AvgPool

(
Fi ′
))

+ MLP
(

MaxPool
(

Fi ′
))

) (4)

Fi ′′ = Mc

(
Fi ′
)
⊗ Fi ′ (5)

In principle, the introduction of the temporal attention module achieves weight alloca-
tion for temporal information within the channel, thereby optimizing the representational
power of features. By precisely assigning temporal weights, the temporal attention module
effectively extracts the temporal features that contribute most significantly to target state
changes during the analysis process, serving as the focus of attention in the temporal
dimension. Subsequently, these weighted features in the temporal dimension are integrated
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into their corresponding spatial features, forming a comprehensive, spatial–temporally
jointly weighted feature representation. Through this approach, the model can capture and
understand the spatial–temporal dynamic behavior of the target more profoundly.

The channel attention module further combines with the spatial attention mechanism
to adjust the feature responses at each spatial location accordingly. This collaborative
weighted processing of spatial–temporal information not only enhances sensitivity to
dynamic targets but also reinforces the network’s ability to ignore background noise and
focus on meaningful spatial–temporal patterns.

4. Experiment
4.1. Dataset and Setup

The Small Aircraft Detection and Tracking Dataset in Ground/Air Infrared Back-
ground of the National University of Defense Technology: This dataset is the first com-
prehensive publicly available dataset specifically designed for detection and recognition
purposes in infrared imagery, filling the data gap in the field of infrared object detection
and recognition. The dataset consists of 22 data segments collected using unmanned aerial
vehicles. Given that our target focuses on the distant infrared imaging of point targets in
long-range strike operations, we conducted experiments using only data5, data10, and
data21. The details of data 5, data 10 and data 21 are shown in Table 1. These specific
datasets feature long-range imaging, single targets, and ground backgrounds. Data5 encom-
passes long-term observations with a continuous sequence of three thousand frames, while
the other two datasets capture short-term observations with only a few hundred frames.
All the images are infrared medium-wave imaging with an image size of 256 × 256.

Table 1. Detailed description of the dataset.

Data Frames Scene

Data5 3000 Long-distance, single target, long-term observation

Data10 401 Long-distance, single target

Data21 500 Long-distance, single target

Self-made Infrared Point Target Detection and Tracking Simulation Dataset (MIRPT,
Multi-frame InfraRed Point Target): As Infrared Search and Track (IRST) systems are mostly
applied to military targets, capturing and tracking targets through high-angle satellite ob-
servations, there will be changes in target shape and speed during the movement of military
targets due to target ignition or stage separation. However, the target size and speed of the
infrared image dataset for small aircraft target detection and tracking mentioned above are
very stable. Therefore, in order to test the performance of the algorithm when the target’s
shape and speed change, we generated a series of simulated datasets by observing real-time
satellite observation data of the ground. These datasets simulate distant observations of
targets, which manifest as progressively changing point targets in size within the images.
Point target simulation mainly depends on Gaussian kernel generation. The targets are
fused with the background, simulating various flight trajectories. Figure 8 shows the main
flow of adding the simulation target to the background image. The simulated data include
targets with different velocities, such as cases where vertical ascent does not result in obvi-
ous displacement in the image, as well as targets exhibiting acceleration, deceleration, and
sudden shifts in position due to abrupt changes in observation angles. Figure 9 showcases
a partial view of the dataset.
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There were six data segments in our experiment, among which the infrared image
target detection and tracking dataset contains three data segments, and the simulation
dataset contains three data segments. Among them, a group of data21 in the infrared
image dim and small aircraft target detection and tracking dataset was used as separate
test data to verify the robustness of the algorithm in different backgrounds. The other
two groups were divided into 2800 training sets and 600 verification sets in proportion.
The three sets of data of MIRPT include 5120 training sets and 1020 verification sets. Our
network training was conducted using the PyTorch framework on an NVIDIA GTX 2080ti
GPU. The experimental settings included a batch size of 16 and 20 epochs. We employed
the Adam optimizer with an initial learning rate of 0.01, which decayed by a factor of
10−1 every 30 epochs. The network parameters and evaluation metrics were referenced
from CenterNet.

GT: GT is the abbreviation of ground truth, which is the verified real label provided in
the dataset.

TP: the number of detection boxes with IoU > 0.5 (counted only once for each ground
truth).

FP: The number of detection boxes with IoU ≤ 0.5 or redundant detection boxes for
the same ground truth. AP (average precision): area under the precision–recall (PR) curve.

AR (average recall): The maximum recall of detecting a fixed number of detections
per image. In our experiments, the specific value chosen was maxDets = 10.

mAP (mean average precision): this represents the average AP across different cate-
gories. Since we only have one category, mAP is equivalent to AP in our case.
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Among them, TN and FN are generally not mentioned, because negative samples are
not displayed, and there is no problem of distinguishing between true and false. IoU is
the abbreviation of Intersection over Union, also known as the overlapping joint ratio. It
is a measure used to evaluate the degree of overlap between the bounding box and the
real labeling box in a target detection task. IoU measures their overlapping degree by
calculating the ratio between the intersection area between the prediction box and the real
annotation box and their union area. The value range of IoU is between 0 and 1, and the
specific calculation formula is as follows:

IoU = (intersection area)/(area of predicted bounding box +
area of real dimension bounding box-intersection area)

TP and FP were used to evaluate each algorithm in our experiment.

precision =
TP

TP + FP
(6)

recall =
TP
GT

(7)

In addition, we devised a novel evaluation metric. As our objective involved point
target localization, the precise positioning of target keypoints became more crucial than de-
tecting bounding boxes. The new evaluation metric replaced IoU with distance calculation
between predicted keypoints and ground truth keypoints. A threshold of 1 was set in this
evaluation, yielding more accurate results. In subsequent experiments, we will evaluate
the detection performance using both evaluation metrics.

4.2. Ablation Study
4.2.1. The Combination Performance of the Model

We compared our proposed network model with the original baseline network and
validated that our model exhibits significant improvements in infrared point target de-
tection. To assess the effectiveness of the strategies we proposed in enhancing detection
performance, we added or removed these modules on top of the baseline network to evalu-
ate the role and importance of each component. The experimental results are presented in
the table below (the experimental data present the average test results of the two mentioned
datasets in Section 4.1).

Table 2 demonstrates that all three strategies we proposed resulted in improved multi-
frame detection accuracy for the two infrared point target datasets. Compared with the
calculation results of IoU, the evaluation index based on the distance between the center
point was slightly decreased. This is due to the stricter restriction imposed by the center
point threshold of 1 compared to the IoU > 0.5 calculation. Importantly, the addition
of multi-frame difference input significantly outperformed the use of CenterNet alone,
demonstrating the effectiveness of the strategies applied to infrared multi-frame point
target detection. The incorporation of the improved high-resolution stacked hourglass
feature extraction network effectively extracted features for small and weak point targets.
Additionally, the temporal–spatial attention module leveraged the information between
consecutive frames, leading to improved detection performance.

Table 2. The specific contribution of the three strategies we proposed to the combined detection
accuracy (bold in the table shows the best performance of the algorithm).

Method AP (IOU) AR (IOU) AP (Distance) AR (Distance)

CenterNet 0.9529 0.945 0.864 0.76

CenterNet + difference maps 0.9746 0.966 0.873 0.79

CenterNet + Stacked High-Resolution Hourglass 0.9552 0.946 0.868 0.77
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Table 2. Cont.

Method AP (IOU) AR (IOU) AP (Distance) AR (Distance)

CenterNet (Multi-Frame) + (STAM) 0.9806 0.968 0.875 0.82

CenterADNet 0.9895 0.974 0.878 0.82

4.2.2. Multi-Frame Difference Map Input

In Table 3, we present the specific performance improvements of the network when in-
corporating the multi-frame difference images as channel inputs (as proposed in Section 3.2).
We compared the differences between the original data input and the inclusion of different
numbers of difference maps into the network. The results demonstrate that our multi-frame
difference image input strategy is effective for multi-frame consecutive object detection.
However, as the number of difference map inputs increases, the performance of the network
reaches a saturated state. It is crucial to set a highly reasonable and effective duration
for the data segments. Through our experimental validation, we found that controlling
the number of difference maps at three is a reasonable approach for our dataset. While
using more difference map inputs may result in some performance changes, it significantly
increases the computational burden of the network, making it an impractical solution.

Table 3. Influence of different difference maps input on detection performance (bold in the table
shows the best performance of the algorithm).

Method AP (IOU) AR (IOU) AP (Distance) AR (Distance)

CenterNet 0.9529 0.945 0.864 0.76

CenterNet + (2 difference images) 0.9746 0.966 0.872 0.74

CenterNet + (4 difference images) 0.972 0.967 0.873 0.79

CenterNet + (6 difference images) 0.965 0.957 0.864 0.69

4.2.3. Effect of Stacked High-Resolution Feature Extraction Network

Table 4 presents the performance of our proposed feature extraction network. We com-
pared the experimental performance of the original hourglass feature extraction network
with our newly proposed stacked high-resolution hourglass. Additionally, we conducted
a detailed experimental validation by modifying the number of stacked layers and the
downsampling factor of the network’s feature extraction process.

Table 4. Influence of different downsampling multiples and stacking multiples on detection perfor-
mance (bold in the table shows the best performance of the algorithm).

Method AP (IOU) AR (IOU) AP (Distance) AR (Distance)

CenterNet 0.9529 0.945 0.864 0.76

CenterNet Stacked (2) + Max Downsample (2) 0.9552 0.946 0.862 0.78

CenterNet Stacked (3) + Max Downsample (2) 0.9543 0.945 0.868 0.77

CenterNet Stacked (2) + Max Downsample (3) 0.9545 0.945 0.853 0.73

CenterNet Stacked (2) + Max Downsample (4) 0.9524 0.93 0.855 0.69

Different numbers of stacked layers and downsampling factors had varying impacts
on the network’s performance. Through the experiments, we discovered that more stacked
layers in the feature extraction network did not necessarily lead to better performance.
This result may be attributed to the accumulation of errors during the stacking process,
gradually weakening the features of small and weak point targets.
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4.2.4. Effect of TSAM (Temporal–Spatial Attention Module)

In this section, we investigated the impact of incorporating TSAM (temporal–spatial
attention module) into the network on the network’s performance. Enhancing network per-
formance by integrating attention modules into the network is a commonly used approach.
The inclusion of attention modules aims to examine whether the attention mechanism has a
noticeable effect on our specific objectives. As shown in Table 5, it is evident that the incor-
poration of attention modules has a positive impact on both single-frame and multi-frame
detection. Our TSAM is an improvement based on CSAM (Channel–Spatial Attention), and
we validated the effectiveness of combining CenterNet and CSAM in single-frame detec-
tion. Since our data consist of consecutive multi-frame data, temporal information can be
utilized. Our TSAM incorporated temporal information into the attention module, leading
to a partial improvement in detection performance, as indicated by the data in Table 5.

Table 5. Influence of temporal–spatial attention module (TSAM) on detection performance (bold in
the table shows the best performance of the algorithm).

Method AP (IOU) AR (IOU) AP (Distance) AR (Distance)

CenterNet (Single-Frame) 0.9529 0.945 0.864 0.76

CenterNet (Single-Frame) + CSAM 0.9597 0.952 0.869 0.76

CenterNet (Multi-Frame) 0.9746 0.966 0.873 0.79

CenterNet (Multi-Frame) + TSAM 0.9806 0.968 0.875 0.82

4.3. Comparison with Other Static Detectors

In this section, we present a comparative analysis of our proposed method with
other detectors. We evaluate the performance differences between our network and other
classic or state-of-the-art object detectors. These methods, both classic and relatively
new, include the YOLO series (YOLOv7 [31], YOLOv8 [32]), Faster R-CNN [8], Cascade
R-CNN [33], and infrared-dim and small-target detector with excellent performance. It is
worth noting that YOLOv8, similar to our algorithm, is an anchor-free approach. The table
below illustrates the comparison between our algorithm, CenterADNet, which incorporates
multiple strategic integrations, and these classic and newer object detection algorithms.

It should be mentioned that LESPS [34] and iSmallnet [35] need to utilize mask data for
training. Our simulated dataset can generate masks independently. Since the infrared small
aircraft dataset we used does not have mask annotations, we designed a 3 × 3 boundingbox
based on the given point target location coordinates to select the target, and then performed
threshold segmentation on the local area. After processing, manual verification was conducted.
We annotated a total of 3901 images. The mask images are shown in Figure 10.
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Figure 10. Mask image of MIRST (first line) and mask image of infrared-weak aircraft dataset
(second line).
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From the Table 6, it can be observed that these algorithms demonstrated relatively
high detection accuracy on our simulated dataset. This might be attributed to the high
quality of our simulated data, where the targets are comparatively clear. Our baseline
algorithm, CenterNet, also exhibited superior performance compared to these algorithms.
The performance of our approach was similar to that of the LESPS algorithm in CVPR2023,
and our algorithm performed slightly better than LESPS on the simulated dataset.

Table 6. Comparison with other advanced static detectors (bold in the table shows the best perfor-
mance of the algorithm).

Method Reference Parameters (M)

Small Aircraft Detection
and Tracking Dataset Simulation Dataset (MIRPT)

AP (IOU) AR (IOU) AP (IOU) AR (IOU)

YoloV5 [36] Ultralytics’20 7.2 (YoloV5s) 0.977 0.974 0.983 0.855

YoloV7 [31] Ultralytics’22 36.49 0.646 0.586 0.964 0.797

YoloV8 [32] Ultralytics’23 11.2 (YoloV8s) 0.712 0.262 0.971 0.843

faster-RCNN [8] arXiv’15 278 (VGG) 0.685 0.564 0.969 0.826

cascade-RCNN [33] arXiv’17 704 (VGG) 0.713 0.589 0.973 0.835

Yolov8-spd [37] ECML PKDD’22 12.8 0.935 0.881 0.967 0.804

LESPS [34] CVPR’23 4.7 0.987 0.990 0.99 0.932

ISmallnet [35] arXiv’23 9.69 0.938 0.982 0.963 0.945

CenterNet [11] CVPR’19 104.8
(Hourglass-52) 0.9258 0.968 0.98 0.922

CenterADNet OURS 129.46 0.989 0.994 0.99 0.954

The third column in the Table 6 displays a comparison of these algorithms in terms of
the number of parameters. It is evident that many excellent algorithms have a significantly
lower model complexity compared to our algorithm, and an increase in model complexity
can lead to a decrease in computational speed. However, in this paper, to adapt to point
targets and use CenterNet to obtain the network’s response to the centrality of point targets,
we chose CenterNet as the benchmark network for experiments. As can be seen, our
algorithm increased the amount of computation by about 20 M compared to the benchmark
network but improved accuracy by more than 5%. Since our algorithm is based on an
improvement in CenterNet, the addition of densely connected networks and differential
image input layers inevitably led to an increase in the number of parameters and a decrease
in inference speed. Nevertheless, in practice, our model can complete calculations for
256 × 256 images in about 1 s during the inference process, making it suitable for most
object detection tasks in real-world applications. However, reducing model complexity
and integrating lightweight models into hardware remain areas for improvement in our
future work.

4.4. Other Experiments

In order to compare with the general infrared-weak small-target detection algorithm,
we conducted relevant supplementary experiments using the NUAA-SIRST (SIRST) dataset,
which is a general dataset for infrared-weak small targets. Due to the fact that most infrared-
weak small-target detection is based on target segmentation, the dataset’s bbox annotation
files are somewhat lacking. Therefore, we spent some time re-annotating the dataset with
bbox annotations, and the specific modifications to the images are shown in the following
Figure 11: the blue part represents the original data annotation, while the orange part
represents the images re-annotated by us.
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Figure 11. The annotation box of SIRST dataset is partially modified.

The SIRST dataset contains a total of 427 images. We divided the dataset into a training
set of 341 images and a test set of 86 images according to the data splitting method used in
the original dataset, and conducted relevant experiments. We incorporated our method into
the experimental results based on those used in iSmallnet. In the Table 7, the red portion
represents the best-performing model, and the bold blue part represents our proposed
model. However, since our model requires the use of inter-frame difference images, it does
not perform optimally on single-frame small-target detection datasets. Nevertheless, it
can be observed that our model achieved performance very close to the optimal model,
demonstrating that the network structure we proposed is suitable for feature extraction in
the detection of infrared-weak small targets.

Table 7. Performance of each algorithm on NUAA-SIRST dataset (the red portion represents the
best-performing model, and the bold blue part represents our proposed model).

Method Reference
NUAA-SIRST

Precision Recall

Filtering-Based: Top-Hat [38] OE’96 67.23 44.47

Filtering-Based: Max-Median [39] SPIE’99 57.35 60.48

Local Contrast-Based: LCM [40] TGRS’13 64.23 27.81

Local Contrast-Based: TLLCM [41] TGRS’19 67.68 31.58

Low Rank-Based: IPI [42] TIP’13 69.29 64.47

Low Rank-Based: RIPT [43] J-STARS’17 75.48 69.71

CNN-Based: TBCNet [44] arXiv’19 78.37 48.76

CNN-Based: MDvsFA-cGAN [45] ICCV’19 83.47 52.47

CNN-Based: ACMNet [46] WACV’21 87.58 69.61

CNN-Based: ALCNet [47] TGRS’21 88.16 56.43

iSmallNet [35] arXiv’23 88.74 90.79

Yolov8-spd [37] arXiv’22 88.13 91.82
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Table 7. Cont.

Method Reference
NUAA-SIRST

Precision Recall

CenterNet [11] arXiv’19 86.72 88.33

CenterADnet (part model) ours 87.93 90.84

4.5. Visualization of Results

In this section, we present specific visualizations of the detection results achieved by
our proposed method. Figure 12 shows the heatmap visualizations of selected data samples.
From the images, it is apparent that our proposed method significantly reduced false
positives compared to the original approach. The original method still exhibited numerous
instances of missed detections, often mistaking the changing speckles between trees as
potential targets, leading to a significant decrease in the probability of correctly identifying
true targets as keypoints. In contrast, our proposed method exhibited greater stability,
although there is a certain degree of positional displacement. However, the majority of
these displacements fell within the centroid distance verification metric we proposed.
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Figure 12. Visualization results of detection keypoints of CenterNet and CenterADNet.

Figure 13 illustrates the performance of our method compared to the original approach
in terms of accuracy. These experimental results represent the average performance ob-
tained from the five datasets we used. The graph clearly shows that our method not only
achieved higher accuracy but also demonstrated greater stability compared to the original
algorithm. The original algorithm exhibited some sudden fluctuations in the numerical
values. Despite conducting multiple experiments, this issue persisted. We hypothesize that
this is because the original detector does not leverage temporal information from multiple
frames. As a result, it is susceptible to slight variations in single-frame images, which can
significantly impact detection results.
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In addition, to validate the robustness of our algorithm, we conducted a separate set
of tests on images with a completely new background. The dataset is data21, mentioned
in Section 4.1. This set of data contains 500 test images. The target in the picture is still a
point target, but the brightness of the target is quite different, and the imaging is blurred.
Previous tests involved splitting a complete dataset into training and testing sets, where
the backgrounds were relatively consistent, making the detection task less challenging. To
assess our algorithm’s performance, we introduced a new set of data with a completely
different background.

Figure 14 showcases the detection results of our algorithm on the images with the
new background. It is evident from the graph that both algorithms generate numerous
false positives when facing a new background. However, our algorithm significantly
reduces the number of false positives compared to the original algorithm. Additionally, the
original algorithm tends to lose track of the targets in many frames, while our algorithm
demonstrates the ability to track the targets over a longer period.
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5. Conclusions

In this paper, we proposed a novel algorithm called CenterADNet for infrared video
object detection. In our work, we compared several advanced static detectors with our
proposed method. We explored various approaches and ultimately adopted center point
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regression as the foundation of our algorithm. This method can determine the key positions
of small and weak targets more accurately, and we further improved this method. The
main enhancements include performing multi-frame diffusion on the input data of the
algorithm, so as to minimize the influence of background on the detection results by
using the similarity of backgrounds in video images. Additionally, we modified the
network structure to cater to the characteristics of small and weak targets. We employed
a high-resolution feature preservation in the feature extraction network and integrated a
spatial–temporal attention module into the network to maximize the utilization of temporal
information in video images. Extensive experiments confirmed that our algorithm achieved
superior performance in infrared point target video detection. We compared this with
baseline methods and visualized the results to demonstrate the outstanding performance
and robust anomaly scoring of our algorithm model.

However, our algorithm still has limitations. Despite yielding better results than
the baseline algorithm and most static detectors, a few false alarms remain unresolved.
Moreover, due to the addition of more input and high-resolution networks, the calculation
speed will also decrease to some extent. In addition, infrared point targets encounter
numerous complex backgrounds in real-world scenarios, and our dataset cannot cover
all possible situations. This highlights the need for continuous data accumulation and
algorithm improvement in the future.
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