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Abstract: In order to effectively respond to floods and water emergencies that result in the drowning
of missing persons, timely and effective search and rescue is a very critical step in underwater
rescue. Due to the complex underwater environment and low visibility, unmanned underwater
vehicles (UUVs) with sonar are more efficient than traditional manual search and rescue methods to
conduct active searches using deep learning algorithms. In this paper, we constructed a sound-based
rescue target dataset that encompasses both the source and target domains using deep transfer
learning techniques. For the underwater acoustic rescue target detection of small targets, which
lack image feature accuracy, this paper proposes a two-branch convolution module and improves
the YOLOv5s algorithm model to design an acoustic rescue small target detection algorithm model.
For an underwater rescue target dataset based on acoustic images with a small sample acoustic
dataset, a direct fine-tuning using optical image pre-training lacks cross-domain adaptability due
to the different statistical properties of optical and acoustic images. This paper therefore proposes
a heterogeneous information hierarchical migration learning method. For the false detection of
acoustic rescue targets in a complex underwater background, the network layer is frozen during the
hierarchical migration of heterogeneous information to improve the detection accuracy. In addition,
in order to be more applicable to the embedded devices carried by underwater UAVs, an underwater
acoustic rescue target detection algorithm based on ShuffleNetv2 is proposed to improve the two-
branch convolutional module and the backbone network of YOLOv5s algorithm, and to create a
lightweight model based on hierarchical migration of heterogeneous information. Through extensive
comparative experiments conducted on various acoustic images, we have thoroughly validated
the feasibility and effectiveness of our method. Our approach has demonstrated state-of-the-art
performance in underwater search and rescue target detection tasks.

Keywords: underwater acoustic rescue target detection; deep learning; deep migration learning;
acoustic small target detection; lightweight network

1. Introduction

With the robust advancement of water transportation, marine resource exploitation,
offshore operations, and the underwater entertainment industry, the frequency of accidents
has also increased significantly, often resulting from natural disasters like floods and
tsunamis. Consequently, the urgent need for rapid underwater rescue operations has
become paramount. However, underwater search and rescue missions are inherently
challenging and hazardous. Autonomous Underwater Vehicles (AUVs) offer a promising
alternative to effectively carry out the search and positioning of underwater rescue targets.

The primary detection methods employed by underwater AUVs are optical and
acoustic. However, given that light is significantly attenuated underwater, optical detection
is primarily suitable for use within a limited underwater range [1]. Currently, sonar
technology has demonstrated effective results in fish searches, wreck detection, underwater
geomorphology mapping, and underwater mineral exploration [2]. Nevertheless, its
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detection capability for weaker targets, such as missing persons, remains inadequate.
Furthermore, the scarcity of authentic underwater acoustic rescue target datasets poses a
considerable challenge in training machine learning-based detection methods.

In order to make AUVs improve the accuracy of rescue target recognition, this paper
targets acoustic rescue small sample training as well as small weak acoustic rescue targets.
Due to the scarcity of real underwater acoustic rescue target datasets, this poses a greater
challenge to model training. Migration learning [3] has long been applied in machine
learning methods in different fields and can effectively alleviate the pressure of a lack of
datasets. Valdenegro-Toro M. et al. [4] studied and analyzed migration learning, finding that
it can effectively improve model recognition when there is a lack of sonar image datasets.
Mckay J. et al. [5] conducted a research study related to the automatic detection of acoustic
images of mine-like objects, and in order to solve the problem of the lack of acoustic image
datasets, the use of migration learning methods, and the combination of Convolutional
Neural Networks (CNN) and Support Vector Machine (SVM), was proposed. Ye et al. [6]
attempted to classify underwater targets in side-scan sonar images using pre-trained
VGG11 and ResNet18 and proposed a training sample pre-processing method with better
implications for the migration learning effect. The transformation from low-complexity
tracking raymaps to real sonar images is learned by training GAN (Generative Adversarial
Networks) to randomly generate sample data with a consistent distribution of the training
dataset [7–14]. Zhang Wenwu et al. [14] used a GAN model and a CycleGAN model to
produce sonar images directly from noisy data in order to expand the acoustic image dataset,
and the generated results were not good due to poor image data. Huo et al. [15] proposed
a semi-synthetic data method mainly for extracting target contours of optical images of
ships and aircraft, using a Weibull probability distribution function for the sonar images
of Barngrover et al. [11], who preprocessed the optical images and combined them with
sonar image features to generate mine-like semisynthetic training data to augment the data
set. The complex characteristics of sonar images, such as blurred edges, strong noise, and
diverse target shapes, make the data difficult to process, and the above is mainly for objects
that are large and distinguishable from their contours and surroundings, such as wrecks,
crashed aircraft, and mines. The generation of semi-synthetic pseudo-data is performed,
which is not only tedious in the generation process, but also not ideal for improving
the detection of drowning victims for underwater rescue targets in real environments.
Cheng et al. [16] proposed a multi-domain collaborative migration learning for side-scan
sonar images of sunken ships and wrecked aircraft in response to the shortcomings of
semi-synthetic data and the inability of pre-trained models based on large optical datasets
to match sonar image feature classification, which mainly considers convolutional layers
near the input layer to improve the ability to extract low-level edge features from the
noisy background of targets in sonar images, which usually have noise-statistical features
similar to synthetic aperture radar (SAR) images. Several fully connected layers near the
output layer enhance the ability to map high-level feature vectors to the semantic space of
sample classes, and optical images with a similar shape as the same target class as sonar
features. Chen et al. [17] embedded a multi-head self-attention mechanism into the acoustic
target detection network, and captured poor acoustic target features by establishing a
global dependency to improve the accuracy of target detection. Li et al. [18] proposed a
transformer feature fusion network based on the transformer stack structure to promote
information fusion. Moreover, they also propose a novel method called ellipse quality
evaluation to improve the reliability of the localization quality estimation, and reduced
the false detection rate caused by low resolution. The sonar images of drowning people
targeted in this paper are not as clearly distinguished from the target shapes of shipwrecks
and wrecked aircraft sonar images, as well as from the surrounding environment, so the
mere consideration of high-level shape features is not applicable to drowning people sonar
image target recognition.

Underwater acoustic rescue target detection is small target detection, and small targets
do not have richer image features like medium and large targets, and the image features
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of small targets are more difficult to be fully extracted by the network model, so small
target detection is vulnerable to interference from noise, background, etc., which makes
the network model unable to accurately detect and locate small targets [19]. To solve the
problem of the poor performance of small target detection in underwater sonar images,
Wang et al. [20] constructed a multi-branch shuttle network and embedded it into YOLOv5s,
and replaced the neck of YOLOv5s with BiFPN to detect and identify small targets such
as plastic bags, fishing nets, and clothes in sonar images, and verified that the deeper
network in the YOLOv5 family is not suitable for the small and weak targets designed
in this experiment. However, the method requires a high sonar image background, and
the recognition results are often unsatisfactory if the image background is complex and
there are more interferences. Yu et al. [21] found that the scale mismatch between the
target size of the dataset used for pre-training and the target size of the dataset used for
target detection through the detection and recognition experiments on the Tinyperson small
target human dataset causes feature representation and detector performance degradation.
However, due to the complex background environment of real underwater acoustic images,
the scale mismatch between the dataset used for migration training and the dataset used
for detector learning can cause false detection of the surroundings of underwater acoustic
images if only the scale mismatch between the dataset used for migration training and the
dataset used for detector learning is considered.

To effectively tackle the challenges in underwater search and rescue target detec-
tion tasks and achieve the visual and auditory detection, recognition, and localization of
submerged missing persons, this paper makes the following primary contributions:

1. An automatic underwater acoustic rescue target detection method combining hetero-
geneous information hierarchical migration learning for the lack of a underwater
acoustic rescue target dataset and a two-way branching convolution module for un-
derwater acoustic rescue targets as small targets is proposed. The heterogeneous
hierarchical migration learning method utilizes the SAR dataset as well as the optical
small target human dataset on land with cross-similar features to the underwater
acoustic rescue target dataset for hierarchical migration.

2. The YOLOv5s network model is improved in combination with the ShuffleNetv2 [22–25]
network module to make the method more applicable to underwater unmanned robotic
embedded devices for underwater acoustic rescue target detection. The code will be
available at https://github.com/Tao-GCPD/Underwater-rescue-target-detection-based-
on-acoustic-image (accessed on 8 February 2024).

2. Materials and Methods
2.1. Lightweight Underwater Acoustic Rescue Target Detection Algorithm

To reduce the storage requirements and improve the detection speed of YOLOV5s
on embedded AUV devices, this paper introduces a novel approach. It utilizes a dou-
ble branch convolutional network module (DbConv) based on the residual network
module [26], widening convolutional layers to enhance feature extraction and improve
detection accuracy for small acoustic targets while minimizing model parameters. Addition-
ally, the ShuffleNetv2 network module is integrated into YOLOv5s, effectively preserving
the detection accuracy for weak targets in acoustic images while significantly reducing
computational requirements.

2.1.1. Db-YOLOv5s Architecture and Db-ShuffleNetv2-YOLOv5s Architecture

We have modified the YOLOv5s backbone network with ShuffleNetv2 and DbConv
modules, as depicted in Figure 1, which includes ShuffleNetV2_1, ShuffleNetV2_2, and
SPPF. ShuffleNetV2_1 omits downsampling (Figure 1, while ShuffleNetV2_2 incorporates
downsampling (Figure 1). In place of the original YOLOv5s layer 0 network, we have
integrated the DbConv module, and for detecting acoustic small targets, we have replaced
the backbone network with a combined downsampling module from ShuffleNetV2_1 and
ShuffleNetV2_2. This reduces the depth of the backbone network, changing the location

https://github.com/Tao-GCPD/Underwater-rescue-target-detection-based-on-acoustic-image
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of network layers for feature fusion with the Neck network. Specifically, we now perform
feature fusion with the layer 2 and layer 4 network image features of the backbone network,
making the fusion process shallower.
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starting with a 1 × 1 convolution, followed by batch normalization (BatchNorm), ReLU 
activation, and, finally, their feature maps are merged using addition. This module is 
primarily intended for small object detection in acoustic rescue scenarios with YOLOv5. 
It replaces the CBS module in the 0th layer of the YOLOv5s model with smaller 
convolution kernels, resulting in a model called Db-YOLOv5s. 
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Figure 1. ShuffleNetv2-Db-YOLOv5 s network model structure.

2.1.2. Double Branch YOLOv5

The method we designed achieves a balance between model lightweighting and
accuracy by minimizing the network depth as much as possible. The double branch
convolution (DbConv) module, designed for YOLOv5s, is depicted in Figure 1. In Figure 1,
the double branch convolution module splits the input feature map into two equally
sized branches along the channel dimension. Each branch undergoes the same operations,
starting with a 1 × 1 convolution, followed by batch normalization (BatchNorm), ReLU
activation, and, finally, their feature maps are merged using addition. This module is
primarily intended for small object detection in acoustic rescue scenarios with YOLOv5. It
replaces the CBS module in the 0th layer of the YOLOv5s model with smaller convolution
kernels, resulting in a model called Db-YOLOv5s.

2.1.3. ShuffleNetv2 Network Module

While large CNN networks have significantly improved image detection and recogni-
tion accuracy, in certain specialized scenarios, large and complex models can slow down
detection speed, particularly in resource-constrained scenarios such as underwater un-
manned vehicles with limited storage and computational resources and high real-time
requirements. To address these challenges, lightweight CNN networks like MobileNet
and ShuffleNet have been introduced to strike a balance between real-time performance
and accuracy.

ShuffleNetv2 [24], proposed by Kuangwei Technology, outperforms ShuffleNet and
MobileNetv2 in terms of accuracy. In Figure 1, to alleviate the burden on the YOLOv5s
model, we designed double branch convolution modules customized for ShuffleNetv2.
It also splits the input feature map into two equally sized branches along the channel
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dimension. Both branches undergo a 3 × 3 convolution with a stride of 2, followed by
batch normalization, ReLU activation, and, finally, their feature maps are merged. The core
operation in ShuffleNetv2 is the channel shuffle, which facilitates information exchange
between branches.

2.2. Heterogeneous Information Hierarchical Transfer Learning

To enhance the detection of underwater acoustic rescue targets, extensive training data
is essential. However, our experiment uses a limited underwater rescue target acoustic
image dataset, which lacks real underwater images and pertains to small targets. Using
only a model-based migration approach, with the optical human dataset from land as the
source domain for pre-training and the underwater rescue target acoustic image dataset for
fine-tuning, lacks adaptability across domains due to differing statistical properties between
optical and acoustic images. Consequently, the trained network becomes overly sensitive
to source domain features and struggles with feature extraction in the target domain. To
overcome these issues, this paper employs cross-domain similarity features for migration
learning, enhancing model training and enabling improved detection performance.

Both the small optical dataset and the acoustic dataset share high-level semantic
features such as shape and contour, and their target sizes match. For our small-sample
acoustic data, we propose a heterogeneous hierarchical transfer learning method based
on model migration. We use the heterogeneous hierarchical migration learning method
to train the ShuffleNetv2-Db-YOLOv5 model, as illustrated in Figure 2. Initially, we train
the SAR dataset and the optical human dataset separately on the Db-YOLOv5s model,
saving the trained weight files. We then extract the trained weights from layer 0 in the SAR
dataset weight file and migrate them to the corresponding target ShuffleNetv2-Db-YOLOv5
network model for retraining in the target domain. Similarly, we extract and migrate
weights from layer 1 to layer 24 from the trained weight file of the optical human dataset to
the target Db-YOLOv5s network model for retraining on the target position image dataset.
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When simulating real rescue scenarios, detecting underwater rescue targets acous-
tically can be challenging due to the complex background in Figure 3. This background
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includes floating docks, small boats, underwater noise, and other objects, leading to false
detections. In the magnified detection results, the green rectangle represents correct de-
tections by the algorithm, while the red rectangle indicates erroneous detections. These
errors often occur when strong reflections from dot-like and bar-like objects in the complex
underwater background interfere with the detection of underwater acoustic rescue targets.
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3. Results
3.1. Data Set Used

In this paper, the acoustic image-based underwater rescue target image data was
acquired in the Qingdao outdoor development sea dock and the Harbin Engineering
University comprehensive experimental pool, the experimental equipment was BlueView
M900-130 multi-beam imaging sonar, and the multi-beam imaging sonar-related parameters
are shown in Table 1.

Table 1. M900-130 multi-beam imaging sonar parameters table.

Parameter Name Maximum Range Resolution Frequency Maximum Viewing Angle Beamwidth

Numerical value 100 m 1.3 cm 900 kHz 130◦ 1 × 20◦

Figure 4a shows a schematic diagram of the acoustic image data acquisition for
underwater rescue targets. Figure 4b displays the experiment conducted in the Harbin
Engineering University’s comprehensive pool, measuring 50 m in length, 30 m in width,
and 10 m in depth. To enable comparative experiments on small target recognition, car tires
filled with weights are placed in the pool for filming. Recognizing that the real underwater
environment is more complex, with added foreign objects and noise, we conducted data
image acquisition in the Qingdao open sea wharf, as shown in Figure 4c. Divers, equipped
with diving gear, mimic drowning scenarios in designated areas, capturing underwater
rescue target acoustic images. We filmed various sea areas around the wharf, capturing
outdoor underwater rescue target acoustic images. Examples of the acquired images is
shown in Figure 5. These images are influenced more significantly by their surrounding
environment compared to the pool’s underwater rescue target acoustic images.
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The target domain is the underwater rescue target acoustic image dataset, where the
training set and test set are divided as shown in Table 2. The purpose of this division
is due to the outdoor underwater rescue target acoustic images having a more complex
background and noise, being more difficult to detect, and more in line with the real rescue
environment, compared to the pool underwater rescue target acoustic images. The training
set having a smaller proportion of outdoor underwater rescue target acoustic images and
the test set having a larger proportion of outdoor underwater rescue target acoustic images
ensure the generalization of the method used in the experiment.

Table 2. Training set and test set division of the target domain data set.

Acoustic Image Training Set Test Set

Rescue targets outdoor 17 192

Rescue targets in pools 1270 51

The source domain data required for the heterogeneous information hierarchical
migration learning method used in this experiment are the SAR (Synthetic Aperture Radar)
dataset, as shown in Figure 6, and the small target human optical image dataset, as shown
in Figure 6a,c, The source is divided into data sets as shown in Table 3.
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Table 3. Training set and test set division of the source domain dataset.

Training Set Test Set

SAR data set 4581 591

Pptical human dataset 5471 648

The SAR dataset is derived from the MSTAR program, providing ground-based
stationary target data obtained by a high-resolution spot-beam synthetic aperture radar
(SAR) sensor with a 0.3 m × 0.3 m subscale. It primarily contains SAR sliced images of
stationary vehicles captured at various azimuth angles.

The optical human dataset (Figure 6b,d) on land is constructed from images within
the VisDrone2019 dataset, collected by Tianjin University’s AISKYEYE team. This exten-
sive dataset includes over 2.6 million manually annotated frames of common targets like
pedestrians, cars, bicycles, and tricycles. The optical human dataset used in this paper
specifically comprises pedestrian data from this source.

3.2. Evaluation Indicators

In this paper, the evaluation metrics for the detection of underwater acoustic rescue
targets are mainly the mean average precision (mAP), as well as the computational volume
of forward inference (GFLOPs) and the number of parameters.

TP represents correctly identified actual targets with correct predictions, while FP
denotes incorrect actual targets detected as correct. TN indicates correct actual targets not
detected, and FN represents incorrect actual targets not detected. Detection is considered
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correct (TP) if the intersection ratio of the true frame and the predicted frame exceeds the
set threshold; conversely, it is deemed incorrect (FN) if it falls below the threshold.

Precision =
TP

TP + FP
(1)

The accuracy rate, as defined by Formula (1), quantifies the ratio of correctly detected
targets (TP) to the total targets detected as correct. Notably, a higher number of correctly
identified actual targets leads to a higher accuracy rate when a certain number of samples
yield correct predictions.

Recall =
TP

TP + FN
(2)

The recall rate, expressed in Formula (2), quantifies the ratio of correctly detected
targets (TP) to the total actual targets detected. When the number of samples correctly
identifying actual targets remains constant, a larger number of samples correctly predicted
as targets results in a higher recall rate. This implies that a higher recall rate indicates
fewer missed correct targets in the network model’s predictions, ultimately yielding more
accurate results.

3.3. Experimental Environment

The following is the host environment information used in the experiments: the
operating system was Ubuntu 18.04, the programming language was Python 3.7, the
GPU model was Nvidia RTX 3090 produced by Nvidia, Santa Clara, CA, USA, and the
deep learning framework was PyTorch 1.8.1. To accelerate the training of neural network
models, we also installed CUDA and CuDNN. More detailed environmental information is
provided in Table 4.

Table 4. Experimental environment configuration.

Operating System Ubuntu 18.04

Programming Languages Python 3.7

Deep Learning Framework PyTorch 1.8.1

Other Environments CUDA11.1, cudnn8.0

CPU Model Intel i9 9900 K 3.6 GHz × 16

GPU Model RTX3090 24 G

RAM 32 G

3.4. Performance Analysis

In this paper, we experimented with the Db-YOLOv5s model, freezing different com-
binations of network module weight parameters; namely, layer 0, layers 0 and 1, layers 0
to 3, and layers 1 to 3. The results are summarized in Table 5. Comparing the outcomes
to not freezing any network module weight parameters, we observed that freezing layer
0 and layers 1 to 3 enhanced the model’s mAP for underwater rescue acoustic target
detection. Notably, freezing layer 0 provided the most significant improvement, raising
the mAP by 0.013 compared to not freezing any layer. This improvement is attributed to
the freezing of weight parameters for both the SAR dataset training migration and the
optical small-target human dataset migration, which subsequently preserves and reinforces
cross-similarity between datasets. Fine-tuning the remaining unfrozen layers with the un-
derwater rescue target acoustic image dataset further enhances detection accuracy. This un-
derscores the feasibility of the proposed heterogeneous information hierarchical migration
learning principle.
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Table 5. Comparison of the effects of different methods.

Model Method Freeze mAP GFLOPs Parameters

YOLOv5s OP/AF - 0.732 15.8 7012,822
Db-YOLOv5s OP/AF - 0.774 60.4 7009,590
Db-YOLOv5s HTL - 0.804 60.4 7009,590
Db-YOLOv5s HTL Level 0 0.817 60.4 7009,590
Db-YOLOv5s HTL Level 0–1 0.745 60.4 7009,590
Db-YOLOv5s HTL Level 0–3 0.775 60.4 7009,590
Db-YOLOv5s HTL Level 1–3 0.809 60.4 7009,590

MobileNetv3-YOLOv5s HTL 0.724 6.1 3524,708
Db-ShuffleNetv2-YOLOv5s HTL Level 0 0.812 5.9 3178,090

We used a training strategy that involved pre-training an acoustic image dataset with
an optical image dataset to compare Db-YOLOv5s, our improved small target detection
algorithm, with the standard YOLOv5s algorithm. Then, we introduced a proposed hetero-
geneous information hierarchical transfer learning strategy to train the Db-YOLOv5s model.
Finally, we conducted a comparison experiment to address background false detections in
acoustic images of underwater rescue targets using the same strategy. We evaluated differ-
ent methods, including freezing various layer network weight parameters, and also trained
the improved lightweight model, Db-ShuffleNetv2-YOLOv5s, using a similar approach.
The results of these experiments are presented in Table 5.

In Table 5, “OP/AF” denotes optical image pre-training and acoustic image fine-tuning,
while “HTL” represents hierarchical transfer learning using heterogeneous information.
Compared to the original YOLOv5s algorithm, our Db-YOLOv5s model, designed for
acoustic small target detection in underwater rescue scenarios, outperforms in terms of
mAP and slightly surpasses it in parameter count. However, it substantially exceeds
the original YOLOv5s model in terms of computational complexity (GFLOPs). Using
our proposed heterogeneous information hierarchical migration learning for training, Db-
YOLOv5s yields a noteworthy mAP improvement of 0.03 compared to the strategy of
pre-training the acoustic image dataset with optical images. The precision–recall (P–R)
plot for this approach is depicted in Figure 7a. Freezing the layer 0 network module
weight parameters and freezing network module weight parameters for layers 1, 2, and 3
both enhance the mAP for underwater rescue acoustic target detection compared to not
freezing any layers. Notably, freezing the layer 0 parameters yields the most substantial
improvement, with an mAP increase of 0.013 compared to not freezing any layer, as
shown in Figure 7b. The improved lightweight model, ShuffleNetv2-YOLOv5s-DbMConv,
proposed in this paper, significantly reduces the computational complexity (GFLOPs) and
parameter count at the expense of a slightly lower mAP compared to the Db-YOLOv5s
model. Its P–R plot is presented in Figure 8.

The described method involves heterogeneous hierarchical migration learning, initially
migrating source domain dataset weight parameters to the target network model and
freezing layer 0 network module weight parameters. Subsequently, a retraining fine-tuning
strategy is employed using the target domain dataset to detect the images with false
detections in Figure 9b. The comparison of detection results is illustrated in Figure 9a,
where Figure 9b highlights the presence of false detections, and Figure 9 demonstrates the
effect of freezing the weight parameters of the first layer network module. This training
strategy effectively reduces false detections in the background when detecting underwater
rescue target acoustic images.
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The training of the Db-ShuffleNetv2-YOLOv5s model, using heterogeneous hierar-
chical transfer learning with a frozen layer 0 network module, involves 300 epochs with a
learning rate of 0.01 and an SGD optimizer for network gradient updates. To assess the de-
tection performance of our algorithms on underwater rescue target acoustic image datasets,
we compare them with commonly used YOLOv3 and SSD target detection algorithms, as
well as the YOLOv5s model trained with official pre-training weights as the source domain.
The comparative results under the same experimental settings are summarized in Table 6.
It is evident that our proposed method in this paper outperforms other models in terms of
mAP for underwater rescue target detection in acoustic images.
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Table 6. The comparative results.

Method mAP

YOLOv3 0.727

BotNet-FPN 0.751

YOLOv4 0.742

SSD(MobileNetv2) 0.458

YOLOv5s (official pre-training weights) 0.768

This paper’s proposed method 0.812

3.5. Ablation Experiments

We compared the metrics mAP, GFLOPs, and Parameters for four cases: original
YOLOv5s, Db-YOLOv5s, ShuffleNetv2-YOLOv5s, and Db-ShuffleNetv2-YOLOv5s, using
YOLOv5s as the base model. The results are summarized in Table 7.
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Table 7. Comparison of the effects of different methods.

DbConv ShuffleNetv2 mAP GFLOPs Parameters

1 - - 0.735 15.8 7,012,822

2
√

- 0.817 60.4 7,009,590

3 -
√

0.786 5.8 3,177,626

4
√ √

0.812 5.9 3,178,090

According to Table 7, the Db-YOLOv5s model achieves the highest mAP. The lightweight
Db-ShuffleNetv2-YOLOv5s improved model follows closely, with only a slight 0.05 mAP
difference but with significantly better GFLOPs and parameter metrics compared to Db-
YOLOv5s. The Db-ShuffleNetv2-YOLOv5s model also improves mAP compared to the
ShuffleNetv2-YOLOv5s model, albeit with minor increases in GFLOPs and parameters.
The lightweight ShuffleNetv2-YOLOv5s-DbConv improved model outperforms the original
YOLOv5s network model in terms of mAP, GFLOPs, and parameters. Therefore, our proposed
lightweight ShuffleNetv2-YOLOv5s-DbMConv model sacrifices a slight mAP accuracy for a
significant reduction in GFLOPs and parameters.

4. Discussion

The main operation scene of our proposed underwater rescue target detection and
recognition algorithm based on acoustic images is single rescue target detection in complex
scenes, and the rescue target is in the underwater suspension state. However, in an
actual underwater rescue situation, there are multiple rescue targets and the rescue target
is sinking. In future research, more attention should be given to the detection in this
case, including the addition of 3D detection. The hierarchical transfer learning method
of heterogeneous information based on model transfer proposed in this paper needs to
train the SAR data set and the optical small target data set in the source domain and
the underwater acoustic rescue target data set in the target domain, respectively, during
training, which will consume more time. In subsequent research, we will further optimize
the training strategy to reduce the training time.

5. Conclusions

This paper introduces an innovative framework for the underwater rescue target
detection and recognition in acoustic images, tailored to address the unique challenges of
complex underwater rescue scenarios. To enhance the detection accuracy, a hierarchical
migration learning method is proposed, leveraging enhanced YOLOv5s with heteroge-
neous information. This approach significantly boosts accuracy by leveraging cross-similar
features from SAR images, optically small target human images, and underwater acoustic
rescue target images, addressing issues related to small dataset sizes and cross-domain
adaptability. To optimize for the real-time deployment on resource-constrained devices, a
two-branch convolutional module combined with ShuffleNetv2 is introduced, reducing
computational requirements and model parameters, while maintaining detection accuracy.
Freeze-and-train strategies are employed to further improve the detection accuracy in
complex underwater settings. Comparative experiments on underwater acoustic tires and
underwater acoustic rescue target datasets demonstrate the method’s ability to correctly
identify these types of underwater acoustic small targets, outperforming traditional de-
tection methods. Overall, this work represents a significant step forward in underwater
rescue target detection, promising to improve the safety and efficiency of underwater rescue
operations in real-world scenarios.
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