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Abstract: In this study, a novel flexible ethanol gas sensor was created by the deposition of a CoFe2O4

(CFO) thin film on a thin mica substrate using the pulsed laser deposition technique. Transition
electron microscopy (TEM) investigations clearly demonstrated the successful growth of CFO on the
mica, where a well-defined interface was observed. Ethanol gas-sensing studies showed optimal
performance at 200 ◦C, with the highest response of 19.2 to 100 ppm ethanol. Operating the sensor in
self-heating mode under 7 V applied voltage, which corresponds to a temperature of approximately
200 ◦C, produced a maximal response of 19.2 to 100 ppm ethanol. This aligned with the highest
responses observed during testing at 200 ◦C, confirming the sensor’s accuracy and sensitivity to
ethanol under self-heating conditions. In addition, the sensor exhibited good selectivity to ethanol
and excellent flexibility, maintaining its high performance after bending and tilting up to 5000 times.
As this is the first report on flexible self-heated CFO gas sensors, we believe that this research holds
great promise for the future development of high-quality sensors based on this approach.

Keywords: CoFe2O4; mica; gas sensor; ethanol; sensing mechanism

1. Introduction

Ethanol, as an important member of volatile organic compounds (VOCs), is commonly
used as a raw material, solvent, and thinner in chemical engineering, agriculture, the
pharmaceutical industry, food manufacturing, and clinical and medical applications [1–3].
However, it is flammable with an explosion range of 3.3–19 vol% [4]. In addition, excessive
inhalation, consumption, or similar exposure to ethanol vapor causes drowsiness, irritation
of the eyes, liver damage, breathing difficulties, headache, vertigo, nausea, fatigue, and
even anesthesia and damage to the nervous system [5–7]. Ethanol consumption by drivers
is a major contributor to automotive accidents globally, with impairment and crash risk
rising significantly at blood alcohol concentrations over 425 ppm [8]. Thus, detecting
ethanol in a driver’s exhaled breath can help identify intoxication and reduce or prevent
alcohol-related accidents [9]. Ethanol is also considered a biomarker and measurement
of skin ethanol gas can be used to detect human volatile organic chemicals in blood [10].
Ethanol gas sensing thus has important applications for health monitoring and public
safety by enabling the non-invasive determination of blood alcohol content and impaired
driving. There is a clear need for robust ethanol detection from both an accident prevention
and a diagnostic screening perspective.

Resistive gas sensors are among the most prevalent materials for detecting ethanol
and other gases because of their high sensitivity, high stability, rapid response time, simple
design, simple fabrication, and low cost [11,12]. These sensors are primarily based on
semiconducting metal oxides [13]. However, they exhibit high operating temperatures,
which lead to high power consumption, poor selectivity, which can lead to false alarms in
real applications, and high-humidity interfaces, which can decrease the overall performance
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of the gas sensor [14]. Accordingly, it is necessary to further explore the sensing properties
of the less-studied semiconducting metal oxides to identify new opportunities or to solve
existing challenges in the field of resistive gas sensors.

Cobalt ferrite (CoFe2O4), as a ternary metal oxide, has a spinel crystal structure [15]
and good magnetic properties (hard ferrite), mechanical hardness, and chemical stabil-
ity [16]. Furthermore, it is semiconducting in nature and is therefore used in gas-sensing
applications [17,18]. For example, Wei et al. [19] reported synthesis of CFO nanoparticles
(NPs) for ethanol sensing, where a response of 110 to 100 ppm ethanol was recorded at
200 ◦C. In another study, CFO nanorods (NRs) were prepared for acetone sensing at 350 ◦C,
and a response of 57% to 500 ppm acetone was reported [20]. Rathore et al. reported a
response of 45% to 200 ppm ethanol at 250 ◦C [21]. Xiangfeng et al. [22] reported a response
of 4 to 10 ppm ethanol at 150 ◦C. As shown in the examples above, CFO sensors generally
operate at relatively high temperatures, which can limit their application in remote areas
due to the limited lifetime of batteries and the need to replace them with new ones regularly.
Thus, it is necessary to reduce power consumption using different strategies. Operation of
the sensor in self-heating mode is a feasible strategy to reduce power consumption through
the application of external voltages to the sensor electrodes, where heat is generated via the
Joule heating effect. In fact, upon incident of accelerated electrons to other electrons, atoms,
and ions, their kinetic energy is lost and part of it is converted to heat [23,24].

Furthermore, for new applications, rigid sensors with poor flexibility are not appropri-
ate for universal applications, and sometimes flexibility of the sensor is highly demanded.
Nowadays, highly flexible substrates such as paper, plastic, and polymers are widely used
to realize flexible gas sensors with high performance owing to their high flexibility, low cost,
and high availability. However, they have some shortages and limitations: their thermal
stability is not generally high and they can exhibit high thermal expansion, which makes
them inappropriate for materials with low thermal expansion coefficients [25,26]. Therefore,
in this study, mica sheets were used as flexible substrates because of their high thermal
stability, good mechanical flexibility, and low cost [27,28].

Motivated to address the lack of flexible and self-heating CFO gas sensors in the litera-
ture; herein, we have developed a highly sensitive ethanol sensor with good flexibility and
low-power self-heating mode operation. Initially, CFO thin films were directly deposited
onto a mica substrate using the pulsed laser deposition (PLD) technique, which offers the
advantages of adaptability, good control over the growth rate, and excellent stoichiometric
transfer [29]. After the characterization of CFO thin films, the gas-sensing properties of the
fabricated CFO sensor were measured in the presence of ethanol. Under external heating,
the sensor performed optimally at 200 ◦C. However, to reduce power consumption, the
sensor was operated in self-heating mode under different applied voltages, showing an
enhanced response to ethanol gas at 7 V applied voltage. Furthermore, after bending and
tilting for up to 10,000 cycles, the sensor successfully detected ethanol, confirming its high
flexibility, which is highly important for new applications.

2. Experimental Section
2.1. Sample Preparation

Transparent and flexible fluorophlogopite mica KMg3(AlSi3O10)F2 (referred to as mica
for simplicity) was utilized as the sample substrate. The mica slab was pre-treated with
deionized water and mechanically exfoliated to ensure an atomically smooth surface along
the (001) direction. Subsequently, a CFO thin film was successfully deposited on the mica
surface using the PLD technique, where a Q-switched 4ω Nd:YAG laser (λ = 266 nm, 10 Hz)
was focused on the stoichiometric CFO ceramic target, located 5 cm away from the sample
surface, with a laser fluence of 0.82 J/cm2. During the deposition, the temperature of
the mica substrate was fixed at 650 ◦C, while the oxygen partial pressure was fixed at
0.04 mTorr. The deposited CFO film firmly adhered to the mica without any visible crack or
failure. Based on our previous study [30], the deposition rate was fixed at 0.018 nm/pulse,
and a layer-by-layer growth method was used to apply the CFO thin film.
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2.2. Characterizations

The phase and crystalline structures of the films were characterized by high-resolution
X-ray diffraction (XRD; D8 Discover, Bruker, Seongnam-si 13493, Republic of Korea) using
Cu-Kα1 radiation (λ = 0.15406 nm). The vertical structure of the CFO/mica was inves-
tigated by aberration-corrected scanning transmission electron microscopy (AC-STEM;
JEM-ARM200F, JEOL, Seoul 05355, Republic of Korea) at a beam energy of 200 kV. For the
AC-STEM measurements, cross-sections of the films were prepared using a focused ion
beam. Also, the temperature of the gas sensors in self-heating mode was measured at RT
with an infrared thermometer (IT-480S, Horiba, Yongin-si 16878, Republic of Korea), and
the distance was fixed at 50 mm.

2.3. Gas-Sensing Tests

To fabricate the gas sensors, a double-layer interdigitated electrode composed of Ti
(50 nm) and Pt (200 nm) was sputtered onto the specimens over a mica substrate. The
sensing behavior of CFO on mica was studied using C2H5OH, CH4, NH3, CO, and C3H5OH
gases. Since acetone and ethanol have almost the same nature, it is important to fabricate a
gas sensor to selectively detect ethanol in the presence of acetone. Also, other gases are
representative of reducing gases. CO is emitted from fossil fuels, CH4 is widely used as fuel,
and NH3 is widely used in industrial and agricultural processes. Therefore, acetone, CO,
CH4, and NH3 were selected as interfering gases in this study. Obviously, the selectivity
study can be expanded to other gases. However, currently, we have focused on these
gases. The gas-sensing tests were performed by electrically connecting the gas sensors
to an electrical measuring system (Keithley 2400) interfaced with a computer. During
the measurements, the gas sensors were put in a gas chamber (50 × 50 × 1000 mm3) in
a horizontal-type tube furnace. The target gas concentration was controlled by varying
the mixing ratio of the dry air-balanced target gas and dry air (total flow rate = 500 sccm)
through mass flow controllers. The resistance of the gas sensor was recorded in the presence
of air (Ra) and target gas (Rg), and the gas response was calculated as R = Ra/Rg. The
response and recovery times were defined as the time to reach 90% of the final resistance
after exposure to the target gas and the time to recover 90% of the initial resistance of the
sensor after removing the target gas, respectively. A schematic diagram of the gas-sensing
measuring system is shown in Figure 1. The external heaters of the tubular gas sensor
were used to precisely control the sensing temperature (Figure 1a). In addition, in the
self-heating mode, the external heater was turned off and, by increasing the applied voltage
through the power supply, the temperature of the sensing layer was adjusted (Figure 1b).

Sensors 2024, 24, x FOR PEER REVIEW 4 of 13 
 

 

 
Figure 1. Gas-sensing measurement system (a) with and (b) without external heater. 

3. Results and Discussion 
3.1. Characterization Studies 

Figure 2a shows the XRD pattern of CFO on mica, where peaks related to CFO (blue 
spheres) and mica (red squares) are observed, matching with JCPDS cards No. 22-1086 
and 71-1542 for CFO and fluorophlogopite mica, respectively [31–34]. The high-intensity 
peaks are associated with Bragg reflections produced by various pairs of mica layers, in-
dicating the maintenance of a high-quality layered mica structure during the PLD depo-
sition. This is attributed to the high melting temperature of mica (~1200 ˚C) [31]. However, 
the presence of only CFO(hhh) peaks implies the growth of CFO layers on mica, favoring 
the crystallographic relationship of CFO[111]//mica[001]. As the cubic structure of CFO (a = 
8.394 Å) is different from the monoclinic structure of mica (a = 5.187 Å, b = 9.015 Å, c = 
10.131 Å, and β~100°), conventional epitaxial growth using strong chemical interaction is 
restricted at this exotic hetero-interface. In contrast, van der Waals (vdW) epitaxial (or 
quasi-vdW epitaxial) growth utilizes weak but long-range vdW interactions rather than 
the strong chemical bonds observed in conventional epitaxial growth, enabling a larger 
tolerance of lattice mismatches [35]. Although mica often forms a pseudohexagonal lattice 
with its matching condition to accommodate the large lattice mismatch, it can be advan-
tageous for forming vdW epitaxy in heterogeneous systems [36,37]. 

To further investigate the structure of the CFO/mica, a cross-sectional TEM study was 
performed. The high-resolution TEM image (Figure 2b,c) shows that a CFO film with a 
thickness of approximately 240 nm was successfully deposited on the mica substrate. 
There is a clear interface between the CFO and mica, where a highly crystalline CFO film 
is well synthesized on a flat mica substrate. Additionally, we used fast Fourier transform 
(FFT) images in the insets, each taken individually from the CFO film and mica substrate 
near the interface. The zone axes of CFO and mica were calculated as [110] and [010], 
respectively. The clear dots in the FFT images verify not only the fact that CFO[111] is syn-
thesized on the mica [001] along the vertical direction, but also that CFO [110] is laterally 
formed along the mica[010] surface, maintaining the epitaxial relation. Moreover, the well-
indexed lattice points without any ring patterns or signal blurring in the FFT were con-
sistent with the XRD results, implying the rare presence of defects or granular structures. 
Based on the XRD and TEM results, a schematic of the growth structure of CFO on the 
mica substrate was generated, as shown in Figure 2d. 

Figure 1. Gas-sensing measurement system (a) with and (b) without external heater.



Sensors 2024, 24, 1927 4 of 12

3. Results and Discussion
3.1. Characterization Studies

Figure 2a shows the XRD pattern of CFO on mica, where peaks related to CFO (blue
spheres) and mica (red squares) are observed, matching with JCPDS cards No. 22-1086 and
71-1542 for CFO and fluorophlogopite mica, respectively [31–34]. The high-intensity peaks
are associated with Bragg reflections produced by various pairs of mica layers, indicating
the maintenance of a high-quality layered mica structure during the PLD deposition.
This is attributed to the high melting temperature of mica (~1200 ◦C) [31]. However,
the presence of only CFO(hhh) peaks implies the growth of CFO layers on mica, favoring
the crystallographic relationship of CFO[111]//mica[001]. As the cubic structure of CFO
(a = 8.394 Å) is different from the monoclinic structure of mica (a = 5.187 Å, b = 9.015 Å,
c = 10.131 Å, and β~100◦), conventional epitaxial growth using strong chemical interaction
is restricted at this exotic hetero-interface. In contrast, van der Waals (vdW) epitaxial
(or quasi-vdW epitaxial) growth utilizes weak but long-range vdW interactions rather
than the strong chemical bonds observed in conventional epitaxial growth, enabling a
larger tolerance of lattice mismatches [35]. Although mica often forms a pseudohexagonal
lattice with its matching condition to accommodate the large lattice mismatch, it can be
advantageous for forming vdW epitaxy in heterogeneous systems [36,37].
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Figure 2. (a) XRD pattern of CFO film on a mica substrate. (b) Cross-sectional TEM image of CFO on
mica substrate. (c) False-color TEM image magnified from the interface of (b). Insets in each region
show the corresponding FFT patterns, revealing the high-quality heteroepitaxy between CFO and
mica. (d) Schematic illustration of CFO crystal structure formed on a mica substrate via vdW epitaxy.

To further investigate the structure of the CFO/mica, a cross-sectional TEM study was
performed. The high-resolution TEM image (Figure 2b,c) shows that a CFO film with a
thickness of approximately 240 nm was successfully deposited on the mica substrate. There
is a clear interface between the CFO and mica, where a highly crystalline CFO film is well
synthesized on a flat mica substrate. Additionally, we used fast Fourier transform (FFT)
images in the insets, each taken individually from the CFO film and mica substrate near the
interface. The zone axes of CFO and mica were calculated as [110] and [010], respectively.
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The clear dots in the FFT images verify not only the fact that CFO[111] is synthesized on the
mica [001] along the vertical direction, but also that CFO [110] is laterally formed along
the mica[010] surface, maintaining the epitaxial relation. Moreover, the well-indexed lattice
points without any ring patterns or signal blurring in the FFT were consistent with the XRD
results, implying the rare presence of defects or granular structures. Based on the XRD
and TEM results, a schematic of the growth structure of CFO on the mica substrate was
generated, as shown in Figure 2d.

3.2. Gas-Sensing Studies

Since the working temperature of the gas sensor directly affects its performance,
initially, the fabricated gas sensor was exposed to 100 ppm ethanol at various temperatures
from room temperature to 350 ◦C to find its optimal sensing temperature (Figure 3a).
Obviously, the resistance of the sensor decreased upon exposure to ethanol as a reducing
gas, reflecting its n-type nature. The response was calculated based on variations of the
sensor resistance and by increasing the temperature to 200 ◦C; a response of 19.2 to 100 ppm
ethanol was recorded (Figure 3b). A further increase in the sensing temperature led to
a decrease in the response owing to the dominancy of the desorption rate of ethanol
relative to its adsorption. Also, at lower temperatures, there was not enough energy
provided to ethanol vapor to overcome the adsorption barrier. Also, as presented in
Figure 3b, with increasing temperature, the resistance continuously decreased owing to the
jumping of electrons from the valence band of CFO to the conduction band, resulting in
an increase in electrons as major charge carriers, leading to an increase in conductance at
higher temperatures.
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Next, the sensor was exposed to 100 ppm ethanol gas under various applied voltages
(Figure 4a). The response increased with increasing applied voltage up to a maximum
value of 7 V, and then it decreased (Figure 4b). Under 7 V applied voltage, the sensing
temperature was approximately 200 ◦C, which was in accordance with the external heating
experiments (Figure 3b). Accordingly, the decrease in the response at higher voltages was
due to the generation of a high amount of heat, which increased the sensor temperature
beyond 200 ◦C, where the desorption rate was higher than the adsorption rate. Upon the
application of voltage, heat was generated inside the sensor due to a loss of kinetic energy
of electrons when they incident with other electrons or ions in their pathways. In addition,
increasing the applied voltage causes more electrons to jump into the conduction band,
resulting in a decrease in resistance.
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For practical applications, the sensor should display good selectivity for ethanol gas;
otherwise, false alarms lead to the wrong detection of gas. Therefore, to study the selectivity
of the sensor, it was exposed to various toxic gases. Figure 5a shows the dynamic resistance
curves of the sensor to 100 ppm of various gases at a fixed applied voltage of 7 V, and
Figure 5b shows the corresponding selectivity graph of the sensor. The response values to
100 ppm ethanol, methane (CH4), ammonia (NH3), carbon monoxide (CO), and acetone
(C3H6O) gases were 19.2, 5.4, 2.5, 3.2, and 8.1, respectively. Thus, the sensor exhibited
good selectivity for ethanol gas. Furthermore, the response to ethanol was almost three
times higher than the response to acetone. Figure 5c shows the repeatability of the sensor’s
performance during five sequential cycles to 100 ppm ethanol under an applied voltage of
7 V. The response values during the first, second, third, fourth, and fifth cycles were 19.2,
19.3, 19.1, 19, and 19.3, respectively, indicating good repeatability, which is important from
an application perspective. We also examined the response of the sensor to lower ethanol
concentrations at a fixed applied voltage of 7 V (Figure 5d). Corresponding calibration
curves (Figure 5e) clearly confirm that the sensor is able to detect ethanol gas. Figure 5d
gives the response of the optimized sensor to 1, 5, 10, 50, and 100 ppm C2H5OH at 7 V,
and Figure 5e displays the variations of the sensor response on the ppm concentrations of
C2H5OH. We estimated the detection limit (LOD) of the gas sensor (sensor response = 1.1)
by extrapolation using a log–log scale plot. The LOD was 70 ppb, demonstrating the high
potential of the sensor for C2H5OH gas detection. Also, by the same procedure, LOD
in the presence of 30 and 60% RH were 120 and 400 ppb, respectively. In addition, the
response of the sensor in the presence of various levels of humid air with relative humidity
(RH) levels of 0, 30, and 60% was studied at an applied voltage of 7 V (Figure 5f). The
response in dry air without humidity was 19.2, which decreased to 18.4 and 17.4 at 30
and 60% RH, respectively. Table 1 shows the response, response time, and recovery time
to 100 ppm ethanol in the presence of various levels of RH. Overall, all three parameters
become worse with increasing humidity levels. In fact, not only does the response decrease,
but its response time and recovery time also become longer. Although the response
decreased in the presence of humidity, it was still high enough for practical applications. In
humid environments, water molecules occupy the adsorption sites, decreasing the available
adsorption sites for gas molecules. Thus, a smaller amount of ethanol could be adsorbed
onto the sensor, resulting in a lower response than under dry conditions. In addition, the
baseline resistance increases under humid conditions owing to the dissociation of H2O
molecules from the sensor and the generation of electrons in the n-type sensing layer,
thereby increasing the base resistance of the sensor [38–40].
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Figure 5. (a) Dynamic resistance curves of the sensor for 100 ppm of various gases at 7 V applied
voltage and (b) corresponding selectivity graph. (c) Repeatability of the sensor during five sequential
cycles to 100 ppm ethanol at 7 V applied voltage. (d) Dynamic resistance curve and (e) corresponding
calibration curve for low concentrations of ethanol at 7 V applied voltage. (f) Dynamic resistance
curves for 100 ppm ethanol at 7 V applied voltage under 0, 30, and 60% RH.

Table 1. Response, response time, and recovery time of the sensor in the presence of various levels
of RH.

RH (%) Response (Ra/Rg) Reaction Time (s) Recovery Time (s)

0 19.2 35 170
30 18.8 92 202
60 17.4 194 237

To check the reproducibility of the sensor, we fabricated three gas sensors using the
same procedure and the same materials. Then, they were exposed to 10, 50, and 100 ppm
C2H5OH gas at a fixed 7 V applied voltage (Figure 6a). All three fabricated gas sensors
showed the same sensing behavior, where their resistances decreased to the same value
upon exposure to the same gas concentration. Also, in Figure 6b, the response versus gas
concentration is depicted for three gas sensors, where all fabricated gas sensors show the
same response to gas. This clearly demonstrates the high reproducibility of the gas sensor
in this study.

In Table 2, we compare the ethanol gas-sensing performance of the present sensor with
those reported in the literature. The present sensor shows a response of 19.2 to 100 ppm
ethanol under 7 V applied voltage, which is an acceptable performance considering the
sensing temperature and the gas response of other sensors. Even though some sensors in
Table 2 have higher sensing performance than the present sensor, their operation tempera-
ture is significantly higher. For example, temperatures up to 300 ◦C have been reported for
ethanol sensing, which lead to significant power consumption in real applications.
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Table 2. Comparison of ethanol-sensing performance of present sensor with those reported in the
literature.

Sensing Materials Conc. (ppm) T (◦C) Response
(Ra/Rg or Rg/Ra) Ref.

CFO-400 100 200 110 [19]

CoFe2O4 nano-crystallines 1000 150 71.9 [22]

ZnFe2O4 nanoparticles assembled
nanosheets/RGO 100 210 41.5 [41]

CdFe2O4 calcined at 700 ◦C 100 250 55 [42]

ZnO nanoparticles 100 180 121.5 [43]

ZnO/Co3O4 nanostructures 10 300 34.9 [44]

NiO/ZnO 100 300 5.4 [45]

ZnO@In2O3 core@shell nanofibers 100 225 31.87 [46]

CFO on a flexible mica substrate (this work) 100 20 (7 V) 19.2 This work

Next, we measured the sensing properties under flexible conditions. Digital pho-
tographs of the fabricated flexible gas sensors are presented in Figure 7a,b. In addition to
flexibility, the sensor exhibits good transparency, which is important for some applications.
Figure 7c,d display the apparatus and conditions for bending and tilting the flexible sensors.
The inset in Figure 7c shows an image of the sensor when bent.
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The dynamic resistance curves of the flexible sensor for 10, 50, and 100 ppm of ethanol
gas at an applied voltage of 7 V after various numbers of bending cycles (500, 1000, and
5000 cycles) are shown in Figure 8a. The response values were calculated, and Figure 8b
shows that the response did not change significantly in response to varying numbers of
bending cycles. This demonstrates the high flexibility of the fabricated gas sensors. We
also tested the sensing behavior after tilting the sensor 500, 1000, and 5000 times with
various concentrations of ethanol at a fixed applied voltage of 7 V (Figure 8c). The response
shows no significant changes in performance after these repeated tilting cycles, which again
confirmed the high flexibility of the CFO thin film sensor (Figure 8d).
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3.3. Gas-Sensing Mechanism

The sensor in this study exhibited n-type-sensing behavior, indicating that the sensing
mechanism relies on the formation of an electron depletion layer (EDL) on the sensor
surface, as is commonly accepted for n-type gas sensors. When the sensor is exposed to
air, oxygen molecules with high electron affinity are adsorbed on the sensor surface, and
electrons are extracted. The relevant reactions are as follows [47].

O2(g) → O2(ads) (1)

O2(ads) + e− → O−
2 (ads), T ≤ 150 ◦C (2)

O−
2 (ads)+ e− → 2O− , 150 ◦C ≤ T ≤ 400 ◦C (3)

O− + e− → O2−, T > 400 ◦C (4)

Thus, an EDL was formed on the surface of the sensor, and the concentration of
electrons in this layer was lower than that in the core. Thus, the resistance of the sensor
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was higher relative to vacuum conditions, where there was no oxygen. Upon exposure to
ethanol, the following reaction is believed to occur at the sensing temperature [48].

C2H5OH + 7O− → 2CO2 + 3H2O + 7e− (5)

Therefore, the reaction of the adsorbed oxygen species with the ethanol molecules
leads electrons to be released onto the sensor surface. Thus, the thickness of the EDL and
the resistance decreased. This results in the appearance of a sensing signal. Furthermore,
in the contact areas between the CFO grains, double Schottky barriers initially form in air,
leading to difficulty in the movement of electrons across the grains, and upon exposure to
ethanol vapor, the height of these potential barriers change, resulting in a change in the
sensor resistance. Accordingly, a part of the generated sensing signal is due to the contact
area between CFO grains.

4. Conclusions

In brief, using the PLD deposition technique, a CFO thin film was successfully de-
posited on a thin mica substrate using a solid CFO target to create a flexible ethanol sensor.
AC-STEM analysis confirmed that CFO was successfully deposited on the substrate with
a well-defined interface. At 200 ◦C, the fabricated sensor exhibited the highest response
of 19.2 to 100 ppm ethanol. To reduce power consumption, the sensor was operated in
self-heating mode, where an applied voltage of 7 V resulted in a high sensor response of
19.2. The sensor was able to detect as little as 1 ppm of ethanol, and its response did not
significantly decrease in humid air. The sensor also demonstrated high flexibility, and its
performance did not degrade after bending and tilting up to 5000 times. Thus, this study
realized the creation of a novel flexible, self-heating, selective, and sensitive ethanol sensor
based on CFO on a mica substrate. The results presented in this manuscript pave the way
for future studies in this area.
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