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Abstract: Accurate and robust simultaneous localization and mapping (SLAM) systems are crucial for
autonomous underwater vehicles (AUVs) to perform missions in unknown environments. However,
directly applying deep learning-based SLAM methods to underwater environments poses challenges
due to weak textures, image degradation, and the inability to accurately annotate keypoints. In
this paper, a robust deep-learning visual SLAM system is proposed. First, a feature generator
named UWNet is designed to address weak texture and image degradation problems and extract
more accurate keypoint features and their descriptors. Further, the idea of knowledge distillation
is introduced based on an improved underwater imaging physical model to train the network
in a self-supervised manner. Finally, UWNet is integrated into the ORB-SLAM3 to replace the
traditional feature extractor. The extracted local and global features are respectively utilized in the
feature tracking and closed-loop detection modules. Experimental results on public datasets and
self-collected pool datasets verify that the proposed system maintains high accuracy and robustness
in complex scenarios.

Keywords: autonomous underwater vehicle; underwater image; underwater SLAM; deep learning;
local and global features

1. Introduction

In recent years, significant strides have been achieved in the research on Autonomous
Underwater Vehicles (AUVs) with the increasing demand for marine resources. AUVs have
emerged as a pivotal tool in the exploration and development of oceanic resources [1]. To
undertake diverse missions effectively and safely, precise self-positioning is paramount for
AUVs. The current dominant methods for AUV positioning encompass inertial navigation
systems (INSs), acoustic positioning systems, geophysical navigation, and Simultane-
ous Localization and Mapping (SLAM) [2–4]. However, the accuracy of INSs gradually
diminishes over time. Acoustic positioning systems and geophysical navigation suffer
from pre-arranged transponders and pre-existing maps for localization, respectively. In
contrast, SLAM enables AUVs to locate objects in unknown environments without prior
information, which can reduce cumulative errors through back-end optimization and loop
closure detection.

Despite these advantages, achieving robust underwater SLAM remains a formidable
task due to the distinctive characteristics of underwater environments, including turbidity,
dim lighting, and weak textures. These factors pose challenges for SLAM methods based
on hand-crafted features such as SIFT [5], ORB [6], and Shi-Tomasi [7] in terms of ensuring
consistent feature extraction and tracking. To address these issues, methods of image
enhancement on image frames before feature extraction were proposed by scholars [8,9].
For example, an adversarial contrast learning method in [8] was designed for addressing
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underwater image degradation in visual SLAM. Considering the issue of water turbidity,
ref. [9] proposed a model and model-free hybrid image enhancement approach. While
the enhancement feature extraction works to some extent, challenges persist in obtain-
ing accurate keypoint detection and corresponding descriptors due to the weak texture
characteristics of underwater scenes.

On the other hand, scholars have tried to incorporate deep features into SLAM [10–12].
Methods based on deep learning possess the capability to process full-size images and
simultaneously compute pixel-level keypoints and their descriptors. In GCN-SLAM [10],
GCNv2 is integrated into ORB-SLAM2 [13] to predict the location keypoints and descrip-
tions in images. HF-NET [14] is incorporated into ORB-SLAM2, resulting in a robust and
efficient DXSLAM system [11]. To enhance the system stability, ref. [12] introduced a novel
deep learning SLAM system that utilizes self-supervised learning to optimize the network.
While deep learning-based SLAM methods often outperform traditional approaches in
complex environments, they frequently require substantial labeled datasets for training.
However, issues such as degradation of underwater images, such as blue-green bias and
blurring, can affect the precise definition and labeling of keypoints.

Therefore, this paper presents a visual SLAM method named RU-SLAM that is sub-
jected to dim and weakly textured underwater environments. It specifically addresses issues
of weak texture, image degradation, and the difficulty in accurately labeling keypoints.
In this system, an underwater image feature extraction network (UWNet) is integrated
to extract features from input images. UWNet incorporates a channel attention [15] and
a position attention module [16] into the local keypoint extraction branch. Additionally,
it integrates a deformable convolutional module [17] into the local descriptor generation
branch to enhance the accuracy of local keypoints and descriptors. To address the challenge
of inaccurate keypoint labeling, a pseudo underwater image generator is designed based
on a physical model, and UWNet is trained using a self-supervised approach. In summary,
the contributions of this work are as follows:

1. A visual SLAM system, based on a deep feature extractor, demonstrates robust func-
tionality in dimly lit and weakly textured underwater environments. This system
efficiently extracts both local and global features from underwater images, facilitating
tracking and loop closure detection threads, respectively.

2. A pseudo-underwater image generation method, based on a physical model, accu-
rately simulates real underwater scenes. Utilizing this method as an intermediary,
UWNet undergoes training via self-supervised learning. This process involves em-
ploying a teacher model to extract information from aerial images and guide UWNet’s
learning process, enabling it to acquire the necessary knowledge effectively.

3. The experiments conducted on the public EuRoC land dataset [18], the AQUALOC
underwater public dataset [19], and our Pool dataset showcase the exceptional local-
ization performance and robustness of RU-SLAM, especially in challenging conditions
characterized by weak texture and low lighting in underwater environments.

The structure of this paper is as follows: Section 2 provides a concise overview of
the relevant literature. Section 3 presents detailed enhancements made to RU-SLAM.
Experimental results and analysis of the proposed method are presented in Section 4.
Finally, Section 5 concludes the paper.

2. Related Works
2.1. Works Based on Deep Learning for Feature Extraction

The algorithm for extracting features based on deep learning can be broadly catego-
rized as weakly supervised or self-supervised. Weakly supervised methods primarily focus
on optimizing the network using actual image pose information. For instance, CAPS [20]
leverages the camera pose to establish antipodal constraints between image frames, opti-
mizing network weights and demonstrating enhanced performance on various geometric
tasks. Based on CAPS, a decoupled training strategy is proposed that employs a line-to-
window search approach utilizing image pose values to effectively narrow down the search



Sensors 2024, 24, 1937 3 of 17

space for enhanced descriptor learning [21]. However, applying such training methods in
underwater scenarios poses challenges, particularly when the pose accuracy obtained by
sensors falls short of training requirements.

In recent years, self-supervised learning approaches have gained more attention. Su-
perPoint [22] utilized self-supervised learning to simultaneously train the feature extraction
and descriptor generation networks. LF-Net [23] employed attention and asymmetric
gradient backpropagation mechanisms for separate self-supervised learning. R2D2 [24]
proposed a novel loss function based on micro-averageable accuracy for improving the
reliability and repeatability of features, while ASLFeat [25] introduced deformable con-
volution. For computational efficiency, HF-NET [14] incorporated knowledge distillation,
using [22,26] as teacher networks and designing a lightweight MobileNetV2-based [27] stu-
dent network to extract image features. These advancements highlight that self-supervised
learning methods can extract relatively accurate keypoints and descriptors without manual
labeling. Therefore, a novel approach is proposed to tackle the issue of inaccurate image
keypoint feature labels by employing self-supervised learning for both local and global
feature extraction.

2.2. Visual SLAM

Traditional approaches of visual SLAM can be divided into direct and feature-based
methods based on distinct data processing techniques. These methods, like DTAM [28],
SVO [29], and LSD-SLAM [30], directly employ image brightness information to estimate
the current location of the body. The other approach estimates the pose by extracting
and matching keypoint features, where Shi-Tomasi [7] and ORB [6] are the more popular
feature extraction algorithms. For instance, MonoSLAM [31], ORB-SLAM3 [32], and VINS-
Mono [33] have extensively utilized them. The direct method, although efficient, is sensitive
to changes in ambient lighting and is more challenging to initialize compared to the feature-
based method, which exhibits poor performance on less textured or repetitive images.

Considering the challenges, visual SLAM based on deep learning has gradually
emerged as a prominent research focus within the broader SLAM domain. These ap-
proaches typically employ deep learning networks to implement certain functionalities
within traditional SLAM algorithms. For instance, GCNv2-SLAM [10] uses a graph neural
network to generate image keypoint features. DXSLAM [11] leveraged a deep CNN, enhanc-
ing the stability of the SLAM system in intricate environments. RWT-SLAM [34] replaced
the conventional SLAM module with a CNN-based LoFTR [35] network in ORB-SLAM2 to
generate the description sub-module. The proposed study presents a cross-modal knowl-
edge distillation framework, seamlessly integrated into the ORB-SLAM3 architecture [36].
In summary, deep learning-based methods outperform traditional visual SLAM in complex
environments. However, these approaches have not effectively addressed challenges in
underwater scenarios, such as weak texture, image degradation, and inaccurate keypoint
labeling. Consequently, this paper introduces an underwater visual SLAM method based
on deep learning, RU-SLAM.

3. RU-SLAM Method
3.1. Overview

The overall framework of the RU-SLAM is illustrated in Figure 1. This system is
constructed upon ORB-SLAM3 with the underwater image frame (Real Frame) serving as
input. It can be broadly categorized into three main parts based on thread tasks: tracking,
local mapping, and closed-loop detection.
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Figure 1. The overall framework of the RU-SLAM system.

In the tracking thread, UWNet acts as an extractor to obtain local and global features of
Real Frame. The channel attention (CA) and spatial attention modules (SA) are added at the
forefront of the local feature point extraction branch (FPE) to process the input features in
parallel before fusing the features. Furthermore, we introduce two deformable convolution
(DCN) modules at the descriptor generation branch (DG). In the training phase, both the
in-air RGB image (air image) and the pseudo-underwater image are utilized as inputs for
the teacher models and the student mode, respectively. The information extracted from
these teacher models is utilized to train the student model.

Local keypoint features and descriptors play a crucial role in system initialization,
camera pose estimation, and determining keyframes (KFs) and their insertion into the local
mapping thread. Upon receiving new KFs, the local mapping thread updates KFs and
their connection relationships within the local map. Simultaneously, Bundle Adjustment
(BA) is performed to optimize the position and map points of KFs in the current local
map. Redundant KFs and their corresponding map points are then eliminated. The
possibility of loop closure is assessed using a similarity score, which is computed based on
the global descriptors of both the current KF and the KFs stored in the database. Geometric
verification and temporal geometry verification are subsequently employed to determine
whether correction for loop closure is necessary in the present region. Specific details of the
improvement module are elaborated below.

3.2. Local and Global Feature Extraction Module

The approach for local and global feature extraction, based on self-supervised learning,
is depicted in Figure 2. Initially, the proposed pseudo-underwater image generator is
employed to acquire simulated underwater images (pseudo-underwater images). Subse-
quently, both local teacher models, SuperPoint, and global ones, NetVLAD, are utilized
for feature extraction from the air image to guide UWNet in extracting corresponding fea-
tures from the pseudo-underwater image. This process effectively mitigates the challenges
associated with underwater image degradation. In the subsequent sections, the pseudo-
underwater image generator and the UWNet components are described in more detail.
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3.2.1. Pseudo Underwater Image Generator

1 Improved underwater imaging model

A widely employed classical physical model for underwater imaging is the Jaffe–
McGlamery model [37]. Reputable scholars have observed that the limited visible range
in underwater optical imaging often results in the general exclusion of the foreground
scattering component.

The expression is presented in Equation (1).

Mλ(x) = Nλ(x)e−β(λ)d(x) + Aλ(1 − e−β(λ)d(x)), λ ∈ {r, g, b} (1)

tλ(x) = e−β(λ)d(x) (2)

where x represents the pixel coordinate value, λ stands for the color channel, Mλ(x) denotes
the synthesized underwater image, Nλ(x) represents the RGB image in air, Aλ(x) signifies
the global background light, tλ(x) denotes optical medium transmittance, β(λ) is the atten-
uation coefficient of the water body, and d(x) is the distance from the target scene to the
imaging device scene depth. The components of Nλ(x)e−β(λ)d(x) and Aλ(1 − e−β(λ)d(x))
are respectively responsible for direct attenuation and background light scattering. Ad-
ditionally, attenuated atmospheric light and the auxiliary light sources are considered in
underwater scenes. Equation (2) can be refined to Equation (3) following the approach
suggested by [38].

Mλ(x) = AλRλ(x)tλ(x) + Aλ(1 − tλ(x))
= L(x)ηλ(x)Rλ(x)tλ(x) + L(x)ηλ(x)(1 − tλ(x))

(3)

In this Equation (3), Nλ = AλRλ(x), Aλ = Lλ(x)ηλ(x), Rλ(x) represents the reflected light,
L(x) is the illumination intensity, and ηλ(x) is the ambient light color.
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The proposed model considers various factors to create a more realistic underwater
environment. To simulate particulate impurities in the underwater images, Gaussian noise
W is added to the model. Furthermore, image blurring may occur due to the movement of
the AUV. Through the convolution operation, both the point spread function (PSF) and the
direct transmission attenuation component are used to replicate image blurring. Overall,
the modified model as Equation (4).

Mλ(x) =
{

L(x)ηλ(x)Rλ(x)e−β(λ)d(x)
}
∗ PSF + L(x)ηλ(x)(1 − e−β(λ)d(x)) + W (4)

2 Estimation of Aλ and tλ

In general, the ambient illumination varies gently throughout the space except for the
occluded region. Therefore, this paper assumes that Aλ is constant in any localized region
donate Ωi. The value V of Equation (3) in the Ωi can be obtained by Equation (5).

V = max
x∈Ωi

Mλ(x) = max
j∈Ωi

(LΩi (x)ηλ
Ωi
(x)Rλ(x)tλ

Ωi
(x) + LΩi (x)ηλ

Ωi
(x)(1 − tλ

Ωi
(x))) (5)

The transmittance tλ
Ωi
(x) is locally invariant from [39]. According to the priori theory

of maximum reflection proposed in [38], it can be obtained that max
x∈Ωi

Rλ(x) ≈ 1. Thus

Equation (6) can be deduced.

ηλ
Ωi
(x) =

V
LΩi (x)

(6)

based on the above assumption of in-variance in the local region, we can obtain Equation (7).

LΩi (x) = max
x∈{R,G,B}

(max
x∈Ωi

V) (7)

The value of tλ is related to β(λ) and d(x) according to Equation (2). Since the dataset
used for synthesis includes depth data, there is no need for the estimation of d(x). We
employed ten water types proposed by Jerlov [40] to estimate β(λ).

3.2.2. UWNet Method

1 Network architecture

The degradation of underwater images causes extracting local and global features to
be a complex task. We devised the UWNet network based on the inspiration from HF-Net,
as shown in Figure 2. It utilizes MobileNetV2 as a backbone network to extract high-level
features from the input image. The first seven layers of this backbone network serve as
shared features, producing a feature map F1 at 1/8 resolution in the seventh layer and
a feature map F2 at 1/32 resolution in the eighteenth layer. Subsequently, F1 and F2 are
respectively used as inputs for both the local and global feature generators.

In the FPE branch, the feature map F1 is first inputted into both the SA and the CA
to capture dependencies across spatial and channel dimensions. Their outputs from SA
and CA are then fused to enhance the feature representation. Subsequently, the fused
features pass through two consecutive convolutional blocks. The first block involves a
convolution operation, followed by batch normalization (BatchNorm) and ReLU activation.
This is followed by another convolutional operation with a 1 × 1 kernel size, resulting in
65 channels. The resulting features are reshaped using a SoftMax operation to generate the
keypoint score map.

Concurrently, the feature map F1 is processed in the DG branch, where two deformable
convolutional layers are utilized to capture crucial feature information and improve learn-
ing of scale kernel and rotation transformations. Following this, two convolutional op-
erations are performed. The first convolutional block includes a 3 × 3 convolutional
operation, BatchNorm, and ReLU activation. In contrast, the second convolutional block
consists solely of a 1 × 1 convolutional operation with 256 channels. Finally, the output
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features undergo bilinear interpolation and L2-Norm operation to generate the local feature
description subgraph.

The global feature generator is utilized to acquire the image’s global descriptor. F2 is
fed into the NetVLAD layer and then undergoes a dimensionality reduction operation to
obtain a global descriptor of size (4096). NetVLAD is primarily used for re-recognition or
location tasks.

2 Train details

We employ the concept of knowledge distillation to optimize UWNet network param-
eters in a self-supervised multitasking manner, utilizing the RMSProp optimizer with an
initial learning rate set to 0.003, employing a batch size of 16, and conducting training for
150 epochs. Traditional multitask learning typically involves jointly optimizing all losses
and manually adjusting their weights. However, this approach often struggles to produce
models that excel simultaneously across multiple tasks. Following the training strategy
outlined in [14], the automatic selection of weights for different losses in multi-task learning
and self-adjustment during training have been proven effective in enhancing the accuracy
of individual tasks. Hence, we utilized Equation (8) as the loss function.

L = e−αL1 + e−βL2 + 2e−γL3 + α + β + γ (8)

where L1 =
∥∥∥Dg

s − Dg
t1

∥∥∥2

2
, L2 =

∥∥∥Dl
s − Dl

t2

∥∥∥2

2
, and L3 = CE(Ps, Pt2). The values of α,

β and γ are obtained by learning through network training. Furthermore, t1, t2, and s
are respectively the NetVLAD, SuperPoint, and UWNet network. The global and local
descriptors are Dg and Dl , respectively.

3.3. Feature Tracking

The tracking thread utilizes local keypoint features and descriptors extracted by
UWNet in each input image frame to estimate camera motion. To be specific, the system
was initially initialized. Subsequently, the keypoint features from the previous frame were
projected onto the current frame at a constant speed, and matching was performed within a
local window. In case of failure, an attempt was made to match between the current frame
and reference KF. The standard k-nearest neighbor search and subsequent ratio test were
implemented in our system for these two matching strategies. Afterwards, tracking of a
reconstructed local map took place along with pose optimization. Finally, it was determined
whether the current frame satisfies the criteria for being designated as a KF.

3.4. Loop Closing Module

Loop closure is crucial for eliminating cumulative errors in SLAM and establishing
a globally consistent map. The current methodologies predominantly rely on the bag of
words approach. However, this method neglects spatial relationships between features,
potentially leading to false closures. Therefore, a closure detection method based on global
descriptors has been employed in our system, which calculates the similarity between
images based on global feature descriptors to determine whether the AUV revisits a location.
By retrieving KFs with higher scores from the global descriptor database as candidate loops,
the system mitigates the risk of false closures. Similarity judgment is performed using
Euclidean distance calculation, as presented in Equation (9).

score(x, y) = 1 −

√√√√ N

∑
i
(vi(x)− vi(y))

2 (9)

where v(x) and v(y) are the global feature vectors of the query image and the image in the
database, respectively, i represents the elements of the vector, and the size of N is 4096.
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4. Experimental Analysis

The authenticity of the simulated underwater images is first validated, followed
by an assessment of UWNet’s accuracy as a local feature generator compared to other
algorithms. Finally, diverse datasets are used to evaluate the complete RU-SLAM system.
The experiments are conducted on a computer equipped with an Intel Core i9-9900K CPU
(3.60 GHz × 16 cores), 16 GB of RAM, and an NVIDIA RTX 2080Ti GPU.

4.1. Experiments with Pseudo-Underwater Image Generator

A dataset comprising N images with varying degrees of degradation and low texture
was selected from the EUVP dataset [41] to estimate the parameter value Aλ, as illustrated
in Figure 3. Additionally, 200 images were randomly chosen as a test dataset from the
NYU depth V2 dataset [42], which encompasses a total of 1449 RGB-D images. The specific
details are as follows.
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Figure 3. Underwater real image. (a) blue-green (b) turbidity (c) bluish (d) greenish.

P regions of size 8 × 8 are randomly selected for each real underwater image. Equa-
tions (6) and (7) are then employed to calculate Aλ within each region, resulting in Aλ

of N ∗ P denoted as A∗. In this paper, P and N are set to 8 and 10, respectively. For
each image to be synthesized, one region is randomly selected from A∗ as Aλ, and tλ is
obtained using Equation (2). The blur angle and length of the PSF function is 20 degrees
and 10 pixels, while W is random Gaussian noise. The partially synthesized image data
depicted in Figure 4 shows that the pseudo-underwater image exhibits varying background
illumination, along with randomly added noise and different degrees of blurring. The
clarity and contrast of the image progressively deteriorate under different attenuation
coefficients, resembling the visual effect of real underwater images.
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We employ a reference-free metric to evaluate the authenticity of pseudo-underwater
images; it comprises the Underwater Color Image Quality Evaluation (UCIQE), Underwater
Image Quality Measurement (UIQM), and its two attributes: Underwater Image Colori-
metric Measurement (UICM) and Underwater Image Sharpness Measurement (UISM).
The experimental results, as presented in Table 1, indicate that our algorithm can synthe-
size a more realistic underwater image compared to algorithms such as UWCNN [43],
WaterGAN [44], and UGAN-P [45] for underwater image synthesis.

Table 1. Evaluation of reference-free underwater image quality metrics on the same test set using
different image synthesis methods. The best result is shown in the bold numbers.

Method UCIQE UIQM UICM UISM

WaterGAN 0.430 0.514 10.351 1.153
UGAN-P 0.381 0.413 8.490 1.004
UWCNN 0.328 0.234 8.183 0.453

Ours 0.271 0.190 4.809 0.652

4.2. Evaluation of Local Keypoint and Descriptor in UWNet

The performance of the proposed local keypoint and descriptor in UWNet is assessed
based on keypoint repeatability (%Rep.), matching score (%M.S.), and average matching
accuracy (%MMA). Two datasets are utilized for evaluation: the Hpatches dataset [46]
and a self-collected Underwater dataset (Upatches). The Upatches dataset comprises
30 original images obtained from the UIEB underwater public dataset [47], along with their
corresponding homography-transformed images. These images exhibit characteristics of
low-light conditions, turbidity, and low-texture underwater scenarios. It is noteworthy that
the rotation angle does not exceed 180◦.

The experiments were conducted using a dataset resolution of 480 × 640 and a limited
number of feature points (2 k). According to the results presented in Table 2 on the Hpatches,
our algorithm demonstrates competitive performance by outperforming other algorithms
in terms of %M.S. and %MMA. For dataset Upatches, the proposed algorithm consistently
outperforms other algorithms across all metrics. The experimental results based on these
datasets reveals that our algorithm evinces commendable performance in both terrestrial
and underwater datasets. Notably, the comparison of our algorithm’s performance with
and without incorporating attention modules and deformable convolutions (Our w/o AM
DCN) demonstrates a significant improvement in matching accuracy, thereby highlighting
the efficacy of the proposed approach.

Table 2. Quantitative evaluation results on Hpatches and Upatches datasets for image matching. The
best result is shown in the bold numbers.

Method
Hpathes Upatches

%Rep. %M.S. %MMA %Rep. %M.S. %MMA

SIFT 35.80 28.10 65.40 35.99 29.90 70.86
LF-NET 42.44 32.27 62.60 28.68 17.69 30.00

SuperPoint 52.35 45.88 72.11 42.00 46.93 70.00
ASLFeat 62.24 45.10 72.28 52.65 34.76 58.64
HF-NET 54.80 45.32 72.50 55.91 46.49 63.33

Our w/o AM DCN 48.20 38.60 65.90 52.71 41.53 53.33
Ours 56.00 47.00 74.40 57.00 47.28 73.33

The visual results depicted in Figure 5 showcase the keypoint matching outcomes in
selected Upatches data, where the yellow line represents correct correspondences. Even
after RANSAC processing, our method consistently yields denser and more accurate
matches compared with SIFT, LF-NET, and HF-NET, and this is especially evident in
underwater images characterized by weak textures, low contrast, and blurring.
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4.3. SLAM System Evaluation

The performance of RU-SLAM in both underwater and land environments is assessed
using publicly available datasets, namely EuRoC and AQUALOC, as well as our own col-
lected dataset called Pool. The Root Mean Square Error (RMSE) of the Absolute Pose Error
(APE) and Relative Pose Error (RPE) between the estimated trajectory and the provided
ground truth trajectory is computed using the evo tool as performance evaluation metrics,
providing assessments of both global and local accuracy of the system. It should be noted
that during the evaluation analysis, alignment is performed between the experimentally
estimated trajectory and the provided ground truth. Specifically, in stereo vision scenarios,
SE (3) transformation is employed for alignment, while in pure monocular vision, Sim (3)
transformation is used to correct for scale due to a lack of depth information. Additionally,
a relative interval of 0.1 m is set for RPE to enable more precise detection of positional
changes and a thorough analysis of system performance. If the estimated trajectory is too
short or diverges, the results will be marked as a failure (×). Furthermore, the average
(Avg) in the table represents the mean of the sequences wherein all algorithms employed in
the table achieve success.

4.3.1. EuRoC Dataset

The EuRoC dataset comprises two sections, namely Machine Hall and Vicon Room,
which include stereo image and IMU data. The first dataset consists of five sequences:
MH01, MH02, MH03, MH04, and MH05. These sequences are categorized into simple,
medium, and difficult levels based on lighting conditions and scene textures. The Machine
Hall dataset is employed for conducting experiments on stereo visual SLAM. The robustness
of RU-SLAM is evaluated through a comparative analysis with ORB-SLAM3 and DXSLAM,
based on results as presented in Table 3.



Sensors 2024, 24, 1937 11 of 17

Table 3. The RMS of APE (m) obtained from various SLAM methods applied in the Machine Hall.
The best result is shown in the bold numbers.

Sequence ORB-SLAM3 DXSLAM Ours

MH01 0.027 0.022 0.015
MH02 0.037 0.015 0.016
MH03 0.028 0.025 0.022
MH04 0.118 0.121 0.060
MH05 0.072 0.064 0.043
Avg 0.056 0.044 0.031

Where ORB-SLAM3 is the latest visual SLAM based on the ORB, and DXSLAM in-
tegrates the feature extractor based on the CNN deep convolutional network into the
ORB-SLAM2 framework, the RU-SLAM exhibits superior performance compared to other
methods in four sequences of the dataset, as evidenced by the observations in Table 3. Com-
pared to ORB-SLAM3, our algorithm achieves a reduction in error of 44.45% and 49.15% on
the MH01 and MH04 sequences, respectively. This success is primarily attributed to the
simplicity of MH01, featuring a well-lit and textured scene conducive to obtaining more
uniform feature points through the deep learning-based method. Conversely, MH04, being
a challenging sequence with a large viewing angle and low light, exposes the limitations of
traditional SLAM based on visual feature points in such conditions. The trajectory errors
in sequences MH02, MH03, and MU04 are further reduced by our method compared to
the ORB-SLAM3. However, the extent of error reduction in MH02 is not as significant
as that observed in DXSLAM. The above analysis reveals that our algorithm displays
admirable performance in land scenarios characterized by wide viewing angles and low
lighting conditions.

4.3.2. AQUALOC Dataset

The AQUALOC dataset provides monocular, IMU, and depth data for underwater en-
vironments. It is categorized into two sections: harbor and archaeological, based on distinct
acquisition environments. Additionally, it includes a ground truth trajectory that exhibits
relatively high accuracy. To evaluate the performance of RU-SLAM in underwater scenarios,
separate experiments were conducted using these two datasets of monocular data.

1 Archaeological

The archaeological dataset consists of 10 sequences collected on the seafloor at depths
of several hundred meters. However, the propellers of the remotely operated vehicle (ROV)
caused sediment disturbance on the seafloor, thereby introducing disruptions to visual
feature recognition.

Detailed comparison results for the RMSE of ORB-SLAM3, DXSLAM, and RU-SLAM
under APE and RPE are provided in Table 4. Additionally, Figure 6 presents trajectory com-
parisons across different algorithms for selected sequences. The superiority of the proposed
method over others is evident from Table 4. Owing to interference from seafloor sediment
and a lack of sufficient seafloor texture features, ORB-SLAM3 exhibits poor performance in
this dataset. The average APE and RPE of the RU-SLAM algorithm decreased by 69.95%
and 55.50%, respectively, in contrast to DXSLAM, thereby demonstrating the enhanced
accuracy and robustness of our method.
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Table 4. The results are obtained from various SLAM methods applied in the archaeological dataset.
The best result is shown in the bold numbers.

Sequence
ORB-SLAM3 DXSLAM Ours

APE RPE APE RPE APE RPE

01 × 1 × 0.108 0.017 0.065 0.009
02 × × × × × ×
03 × × 0.154 0.095 0.124 0.055
04 1.450 0.507 2.931 0.492 0.763 0.315
05 0.263 0.130 0.135 0.039 0.106 0.047
06 × × × × 0.183 0.020
07 1.468 0.219 0.891 0.197 0.132 0.086
08 0.101 0.049 0.153 0.660 0.114 0.048
09 × × 0.036 0.227 0.027 0.282
10 0.343 0.031 0.550 0.018 0.161 0.012

Avg 0.725 0.187 0.932 0.281 0.255 0.101
1 Represents trace failure.
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2 Harbor

The harbor dataset comprises a total of seven sequences capturing scenarios of coastal
ports at depths of 3–4 m. In this experiment, the study primarily focuses on the first six
sequences, and present comparative test results between the ORB-SLAM3 and HFNET-
SLAM algorithms and the proposed RU-SLAM algorithm. HFNET-SLAM refers to an
algorithm where the unimproved HF-NET is used instead of the feature extraction module
in ORB-SLAM3.

According to Table 5, our algorithm exhibits superior performance in underwater
environments compared to the other two methods. However, the APE differences among
the three algorithms in sequence 03 are minimal. This can be attributed to the clear water
quality and abundant texture of this sequence, which facilitate both deep learning and tra-
ditional methods, enabling the attainment of satisfactory experimental results. In Sequence
04, both ORB-SLAM3 and HFNET-SLAM encounter localization failures due to the pres-
ence of visually poor features, resulting in incomplete positioning trajectories. In contrast,
RU-SLAM successfully extracts features and accurately estimates camera poses in this chal-
lenging visual environment. Additionally, experimental results demonstrate that RU-SLAM
exhibits enhanced robustness and stability compared to the original HFNET-SLAM.

Table 5. The results obtained from various SLAM methods applied in the harbor. The best result is
shown in the bold numbers.

Sequence
ORB-SLAM3 HFNET-SLAM Ours

APE RPE APE RPE APE RPE

01 0.172 0.033 0.108 0.022 0.080 0.018
02 0.932 0.430 0.472 0.418 0.349 0.374
03 0.030 0.022 0.026 0.009 0.028 0.008
04 × × × × 1.440 0.873
05 0.141 0.054 0.093 0.043 0.074 0.041
06 0.040 0.020 0.026 0.014 0.020 0.013

Avg 0.263 0.112 0.145 0.101 0.110 0.090

4.3.3. Pool Dataset

In addition to utilizing the publicly available data set, we conducted our own data
collection to assess the performance of RU-SLAM. Three sequences are captured by an
ROV, as shown in Figure 7a, equipped with a monocular camera in a 30 × 50 × 10 m3 pool
characterized by low illumination and weak textures. It is worth noting that the velocity of
the ROV ranges between 0.3 and 0.5 m/s. There are artificial rock formations of various
sizes strategically positioned at the bottom to function as obstacles. The ROV was remotely
controlled via a console to navigate around obstacles and its movements were recorded
during the experiment. The actual setup is illustrated in Figure 7b. The sequences consisted
of the following: 01 circumnavigating the four sides of the pool with a maximum turn
angle of 90 degrees; 02 maneuvering around obstacles within the pool in a complete circle;
and 03 circumnavigating the large obstacle at the center of the tank bottom and forming a
closed loop.

The estimated trajectory results, obtained by comparing our system with ORB-SLAM3,
are depicted in Figure 8. It is noteworthy that this component serves as a valuable comple-
ment due to the absence of ground truth measurements. As depicted in Figure 8a, when the
texture at the bottom and walls of the pool is weak and repetitive, ORB-SLAM3 provides
an incorrect rotation prediction, resulting in the trajectory deviating from the actual walk-
ing path. In Sequence 02, both ORB-SLAM3 and our algorithm exhibit good localization
performance. This is mainly because Sequence b was recorded in water five to six meters
from the pool bottom and moved around artificial hills under optimal lighting conditions.
As shown in Figure 8c, RU-SLAM demonstrates robust performance in handling images
with weak texture.
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5. Conclusions

A robust visual SLAM system based on depth features is proposed for accurate
positioning in challenging underwater environments with low illumination and weak
texture. We introduce the UWNet network to generate dense local and global features.
Thanks to the diverse receptive field facilitated by the attention mechanism and deformable
convolution, high quality descriptors for scenes with limited texture and image degradation
can be obtained. A pseudo-underwater image generator is presented, and self-supervised
training is employed for UWNet to make the extract features more adaptable to underwater
scenes. Moreover, we seamlessly integrate UWNet into ORB-SLAM3, and our experimental
results on diverse public datasets as well as our data demonstrate the exceptional accuracy
and robustness of our system.
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