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Abstract: Near-infrared (NIR) spectroscopy is widely used as a nondestructive evaluation (NDE)
tool for predicting wood properties. When deploying NIR models, one faces challenges in ensuring
representative training data, which large datasets can mitigate but often at a significant cost. Machine
learning and deep learning NIR models are at an even greater disadvantage because they typically re-
quire higher sample sizes for training. In this study, NIR spectra were collected to predict the modulus
of elasticity (MOE) of southern pine lumber (training set = 573 samples, testing set = 145 samples). To
account for the limited size of the training data, this study employed a generative adversarial network
(GAN) to generate synthetic NIR spectra. The training dataset was fed into a GAN to generate 313,
573, and 1000 synthetic spectra. The original and enhanced datasets were used to train artificial neural
networks (ANNs), convolutional neural networks (CNNs), and light gradient boosting machines
(LGBMs) for MOE prediction. Overall, results showed that data augmentation using GAN improved
the coefficient of determination (R2) by up to 7.02% and reduced the error of predictions by up to
4.29%. ANNs and CNNs benefited more from synthetic spectra than LGBMs, which only yielded
slight improvement. All models showed optimal performance when 313 synthetic spectra were
added to the original training data; further additions did not improve model performance because the
quality of the datapoints generated by GAN beyond a certain threshold is poor, and one of the main
reasons for this can be the size of the initial training data fed into the GAN. LGBMs showed superior
performances than ANNs and CNNs on both the original and enhanced training datasets, which
highlights the significance of selecting an appropriate machine learning or deep learning model for
NIR spectral-data analysis. The results highlighted the positive impact of GAN on the predictive
performance of models utilizing NIR spectroscopy as an NDE technique and monitoring tool for
wood mechanical-property evaluation. Further studies should investigate the impact of the initial
size of training data, the optimal number of generated synthetic spectra, and machine learning or
deep learning models that could benefit more from data augmentation using GANs.

Keywords: convolutional neural network (CNN); data augmentation; deep learning; ensemble
learning; generative adversarial network (GAN); gradient-boosting machines (GBMs); modulus of
elasticity (MOE); wood materials

1. Introduction

The industrial scale characterization and quality control of wood and wood-based
materials require the development of fast and reliable non-destructive evaluation (NDE)
tools. Near-infrared (NIR) spectroscopy (wavelengths ranging from 800 to 2500 nm) is
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one of many NDE methods, and it has been widely investigated for wood-quality control
and characterization purposes [1,2]. A variety of wood-related applications have been
explored and include the prediction of chemical, physical, and mechanical properties, the
classification and identification of wood species, and the performance of wood materials
and timber structures under weathering and photodegradation [3–6]. Typically, NIR
spectroscopy models utilize partial least squares (PLS) regression or principal components
analysis (PCA) regression [7,8] and there has been considerable interest in using these
approaches to predict mechanical properties (modulus of elasticity (MOE), modulus of
rupture (MOR)) of wood [8]. A variety of species have been utilized for this purpose
and include Norway spruce (Picea abies) [9,10], radiata pine (Pinus radiata) [11], loblolly
pine (Pinus taeda) [12,13], longleaf pine (Pinus palustris) [14,15], hybrid larch (Larix gmelinii
var. japonica × Larix kaempferi) [16,17], southern pine (Pinus spp.) [18], and eucalyptus
species [19–21]. Typically, the number of samples utilized in these studies is relatively
limited, with the studies by Thumm and Meder (2001) [11] that utilized 404 visible-NIR
spectra and Dahlen et al. (2017) [18], who developed PLS regression models, with 718 NIR
spectra amongst the largest.

Machine learning models are increasingly being used and can provide better predic-
tive performance compared to traditional modeling frameworks because they are often
more effective at capturing underlying patterns in the data. Datasets that are large and
complex can benefit from machine learning models because they are able to model non-
linear relationships; moreover, some machine learning algorithms have built-in feature
selection capabilities that can identify the most relevant features for predicting the response
variable accurately [22,23]. Research on using machine learning and deep learning applied
to NIR spectra for wood characterization and monitoring is relatively limited. Studies on
small-sized NIR spectral datasets (sample sizes ranging from 172 to 480) showed artificial
neural networks (ANNs) outperformed PLS regression models [24–27]. Specifically, Ayanl-
eye et al. (2021) [26] used 240 samples to train ANN and neuro-fuzzy models to predict
the MOE and MOR of western hemlock (Tsuga heterophylla) and Douglas-fir (Pseudotsuga
menziesii) lumber. Similarly, Nasir et al. (2019) [28] studied the classification of thermally
modified western hemlock wood, using 336 NIR spectra to train ANNs. Relatively small
sample sizes pose a major obstacle for applying deep learning and machine learning to
NIR spectroscopy in wood science and technology because Grinsztajn et al. (2022) [29]
describe medium-sized tabular datasets as having approximately 10,000 samples in the
calibration set for classification and regression problems. For wood science and engineer-
ing, no published literature comes close to these sample sizes. Thus, the performance of
different machine learning and deep learning models when utilizing NIR spectral data may
not provide representative data at the population level.

It is evident that the state-of-the-art models for predicting wood mechanical properties
using NIR spectra are developed using small-sized datasets. One approach is to expand
the number of collected NIR spectra by conducting larger-scale experiments, which is not a
feasible solution in many cases due to the cost and challenges of testing additional samples.
An alternative solution is to practice data augmentation, which involves generating syn-
thetic data using generative models. Generative models are algorithms that generate new
datapoints based on patterns and distributions of the datapoints in an existing dataset [30].
A specific type of generative models are generative adversarial networks (GANs), which
are developed using deep neural networks and are widely used in many tasks including
the generation of text, audio signals, spectral data, tabular data, time series data, and
images [31–37]. Recently, GANs have been applied to spectral data for data augmentation
to improve the performance of machine learning and deep learning models [38,39]. For
example, Teng et al. (2019) [40] applied GAN to a small dataset (N = 500) collected by laser-
induced breakdown spectroscopy and showed that classification accuracy improved when
the original training data was enhanced using synthetic data from GAN. Applying different
classifiers on 480 NIR spectra, Yang et al. (2021) [41] found that the model obtained by GAN
using competitive learning yielded better generalization ability and improved classification
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accuracy when dealing with small-sized high-dimensional spectral data. In a related study,
Zhang et al. (2022) [35] applied GAN to small-sized spectral data (N = 400) to predict the
oil content of a single maize kernel using PLS and support vector regression. The results
showed that GAN improved the predictive performances of the models and addressed
the challenge associated with a limited number of training data. Similar observations
were reported by Li et al. (2022) [42] when applying GAN to spectral data to classify the
quality of wheat kernels using convolutional neural networks (CNNs), decision trees, and
support vector machines (SVMs). Utilizing a different approach, Zheng et al. (2021) [43]
applied bidirectional GAN to NIR spectra for an imbalanced multiclass classification task
with insufficient samples within the class to address the challenges associated with both
imbalanced classification and insufficient sample size.

Despite the proven effectiveness of GAN in different fields, the wood science and
technology literature lacks examples of employing this approach, especially with respect
to the prediction of wood’s mechanical properties. Further, comparative studies between
different machine learning and deep learning models for analyzing NIR spectra collected
from wood materials are limited. This study aimed to address these shortcomings using
NIR spectra collected to predict the MOE of southern pine 2 × 4 lumber (N = 718). Models
were built using ANN, CNN, and a light-gradient-boosting machine (LGBM), and the
predictive performance of developed models was compared. The impact of the dataset size
was analyzed by employing a GAN to generate synthetic spectra to enhance the training
data with different sample sizes of synthetic spectra (N = 313, 573, 1000).

2. Materials and Methods
2.1. Materials

Six packages of No. 2-grade, 2 × 4 sized, kiln-dried southern pine lumber with
dimensions 38 mm × 89 mm × 2438 mm were obtained from commercial mills in Alabama,
Arkansas, Georgia, Mississippi (2 mills sampled), and Texas [44]. From each package,
124 pieces of lumber (a total of 744) were destructively tested in edgewise bending as per
ASTM standards using a Tinius Olsen deflectometer (Tinius Olsen Inc., Horsham, PA, USA)
(Figure 1) [45]. The MOE of the lumber was determined from the measured deflection and
load cell data [18]. Prior to each test, the MC of each piece was measured and the MOE
values were adjusted to 15% MC [46]. After testing, a 38 mm radial × 89 mm tangential ×
51 mm longitudinal block was cut from one end of each lumber piece using a radial arm
saw; however, not every lumber piece yielded a usable block due to testing-related failures
such as splitting in half or excessive cracking. Hence, a total of 718 blocks were available
for spectral-data collection [18].
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2.2. NIR Spectral Data Collection

Diffuse reflectance NIR spectra (1100–2500 nm at 2 nm intervals) were collected
from one transverse face of each block using a FOSS NIRSystems Model 5000 scanning
spectrophotometer (FOSS NIRSystems, Inc., Laurel, MD, USA) in a temperature (20 ◦C)-
and humidity (40% RH)-controlled room (Figure 2). A ceramic standard was used as the
instrument reference. A white Teflon mask with a square window of length 16.5 mm was
fitted to the spectrophotometer to make sure a consistent sample area was scanned each
time. For each block, two separate scans were taken, with each scan being an average
of 32 readings. A single diffuse reflectance spectrum per block was then calculated by
averaging the two separate scans. The diffuse reflectance (R) values were transformed to
pseudo absorbance (A) using A = log10 (1/R). These absorbance values were subjected
to a spectral pretreatment where second derivative spectra were calculated with the left
and right gaps of four points using the Savitzky–Golay approach [47]. This resulted in a
spectral dataset of 692 X-variables, which was used for data augmentation, and to fit the
deep learning and machine learning models. The second derivative absorbance dataset
was split (80/20) into training (N = 573) and testing (N = 145) datasets. The training
dataset was used to train the deep learning and machine learning models and also for data
augmentation using a GAN. The test dataset was kept independent and was only used for
the final evaluation of the trained models.
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Figure 2. Acquisition of diffuse reflectance near-infrared spectral data from a wood sample on a FOSS
NIRSystems Model 5000 scanning spectrophotometer.

2.3. Data Augmentation Using Generative Adversarial Network (GAN)

To enhance the training dataset, deep learning-based synthetic spectra were generated
using a GAN, an approach originally developed for image generation [31]. A GAN is
a type of neural-network architecture consisting of two main components: a generator
and a discriminator. The generator produces new data samples resembling the training
data, while the discriminator is used to distinguish between real and fake data. The
generator network commonly maps samples from a basic noise distribution to the target
data distribution through fully connected layers. The generator and discriminator are
trained together in a feedback loop, where the generator produces increasingly realistic
samples, and the discriminator tries to correctly identify real from fake samples. This is
continued until the data produced by the generator are indistinguishable from the real



Sensors 2024, 24, 1992 5 of 17

data according to the discriminator. A schematic representation of a GAN is shown in
Figure 3. GANs have been successfully used for various tasks besides image generation,
such as text generation [33], time-series-data generation [37], Raman-spectroscopy=data
generation [48], hyperspectral-sample generation [49], and audio-signal generation [34].
Based on the same concept, NIR spectra were generated to augment the experimental
dataset for training and improving the predictive performance of MOE models.

The GAN deployed here had three dense layers with 256, 512, and 692 neurons,
respectively, in the generator. A rectified linear unit (ReLU) as an activation function was
utilized for the first two layers, whereas the third layer used a ‘linear’ activation function.
The first two discriminators of the dense layers consisted of 512 and 256 units with a
ReLU as an activation, while the final output layer employed ‘sigmoid’ as an activation
function. Adaptive moment estimation, ‘Adam’, was used for error backpropagation with
a default learning rate (0.001). A batch size of 128 was used for training over 1000 epochs.
Finally, to enhance the data available for training and the development of machine/deep
learning models, sample sets that were roughly half (N = 313), equivalent (N = 573), and
twice the size of the original data (N = 1000) were created. Therefore, the final enhanced
training sets for the development of machine learning and deep learning models to predict
the stiffness (MOE) of southern pine wood consisted of 886, 1146, and 1573 datapoints,
respectively. Furthermore, during the training process with augmented datasets, the
MOE was approximated by considering the distance between the fake spectra and the
original spectra. To provide more clarity, we specifically calculated the minimum distance
between the spectra of the original samples and the augmented samples. This enabled us
to approximate the original MOE and effectively incorporate it into our analysis.
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2.4. Model Fitting

The original and enhanced datasets were used to train ANNs, CNNs, and LGBMs for
predicting lumber’s MOE. ANNs are biologically inspired mathematical models that can
explain variations in almost any type of dataset with a good degree of accuracy. Therefore,
these are one of the most widely used deep learning neural networks for regression and
classification [27]. ANNs consist of input, hidden, and output layers, with the layers
consisting of neurons that are interconnected by weighted links [50]. The number of hidden
layers and the number of neurons in each of the layers are user defined, or they can be
defined using an optimization algorithm. Increasing the number of hidden layers and the
number of neurons in each of the hidden layers results in more complex models that tend



Sensors 2024, 24, 1992 6 of 17

to overfit to the training dataset, which translates to poor prediction capabilities on the
independent test dataset. Hence, it is necessary to tune the model to an architecture with
the number of hidden layers and neurons within each layer, along with learning rate, as
hyperparameters that are more generalized to the type of dataset being studied.

A CNN is a form of ANN that utilizes convolution, a specialized type of mathematical
operation, in place of general matrix multiplication in a minimum of one of its layers [51,52].
A CNN consists of multiple layers such as convolution layers, pooling layers, activation
layers, and fully connected layers that perform different operations on the input data
(Figure 4). A convolution layer applies a set of filters to the input data, producing a set
of feature maps that capture the local patterns in the data. A pooling layer reduces the
size of the feature maps by applying a function such as maximum or average over a small
region of the individual feature maps. An activation layer applies a nonlinear function
to the feature maps, introducing nonlinearity and increasing the expressive power of the
network. A fully connected layer connects every neuron in one layer to every neuron in
the next layer, allowing the network to learn global features and perform classification or
regression tasks. The convolution operation, weight sharing, and sparse connectivity in the
CNN make it capable of processing images and other types of data with spatial structure. A
convolution 1D (Conv1D) was employed to implement the CNN model for the prediction
of the MOE using NIR spectral data in this study. When creating a model architecture, the
hyperparameters that need tuning include the number of convolution layers, number of
filters, size of filters, size of pooling, number of hidden layers, and number of neurons in
each layer, together with the learning rate of the ‘Adam’ optimizer.
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An effective, scalable, and optimized tree-based learning technique is the LGBM [53].
The LGBM technique employs a histogram-based decision-tree-learning technique that
optimizes memory utilization and reduces communication overhead. Numerous applied
machine learning tasks have used LGBM techniques because of its excellent predictive
power, effectiveness, and capacity for handling complex datasets [27,54]. The algorithm
has several key parameters that control overfitting, complexity, and the optimization
process. The boosting type (boosting_type) parameter specifies the gradient-boosting
decision tree as the boosting framework. This is the main algorithm behind the LGBM. The
num_leaves parameter specifies the maximum number of leaves or terminal nodes per
tree and affects model complexity and overfitting. The learning rate parameter specifies
the shrinkage rate applied to each tree’s contribution and controls optimization speed and
generalization. The feature_fraction parameter specifies the fraction of features sampled
per tree to reduce overfitting. The bagging_fraction parameter specifies the fraction of data
sampled per tree for stochastic bagging. The bagging_freq parameter specifies the frequency
of bagging to perform stochastic bagging. The lambda_l1 and lambda_l2 parameters
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specify L1 and L2 regularization penalties on leaf weights to prevent overfitting. Other
parameters include maximum tree depth, which impacts overfitting and complexity, and
min_child_samples, which specify the minimum number of samples required in leaf nodes
to prevent overfitting. Tuning these parameters is critical to maximizing the predictive
performance of an LGBM model.

2.5. Hyperparameter Tuning, Model Training, and Evaluation

The optimization of hyperparameters has a significant impact on machine learning-
model performance. In this study, the optimum hyperparameters for all the models were
selected using the Python API Optuna. The Bayesian optimization-based sampler in
Optuna, a tree-structured parzen estimator (TPE) which uses a probabilistic model to guide
the search for hyperparameters, was used [55]. Using a tree-structured representation of the
search space, the TPE simulates the probability distribution of the target function. This aids
in the creation of fresh samples in regions that are most likely to produce the best results.
Ten percent of the training data was used for the validation of the ANN and CNN models
during the training process to evaluate model loss at every epoch, and with each iteration
the weights of the models were updated. Early stopping was applied with a patience of 32,
which would stop model training if the validation loss stayed constant or did not improve
over 32 epochs. Finally, a batch size of 32 was employed. All the models were developed
using Python version 3.9.13 (Python Software Foundation, https://www.python.org/
(accessed on 26 July 2023)), and the Keras library (https://keras.io/ required by TensorFlow
version 2.10.0 (Google, Google Brain) (accessed on 26 July 2023)) was utilized for the
development of the GAN, ANN, and CNN models. Figures were made in the R statistical
programming environment version 4.2.2 (accessed on 1 March 2023) [56] using the RStudio
interface version 2022.12.0 (accessed on 1 March 2023) [57] and the ggplot2 package [58].

The models were evaluated by comparing fit statistics such as the coefficient of deter-
mination (R2) and the root mean square error (RMSE) of predictions. R2 is a measure of
how much variation in the dependent variable (MOE, in this study) is explained by the
model using the independent variables (spectral data, in this study) as input. Values for R2

range from 0 to 1. An R2 value of 0 would mean that the model in question (either ANN,
CNN, or LGBM, in this study) was not able to explain any variability in the MOE, whereas
an R2 value of 1 would mean that the model was able to explain all of the variation in
the MOE. Hence, for any model used in this study, it was desirable to have a higher R2

value because it suggests a better fit, as the model in question accounts for most of the
variability in the MOE, using the spectral data provided as inputs. Also, a high R2 value
suggests strong correlation between the independent and the dependent variables, but it
does not confirm that the changes in independent variables cause the dependent variable to
change. RMSE, which provides a measure of the model’s prediction error, is calculated by
taking the square root of the average of the squared differences between the actual and the
model-predicted values. A lower RMSE indicates a better model fit and suggests a higher
accuracy of the model in making predictions.

3. Results and Discussions

A plot showing the mean second derivative NIR spectra of the measured training
dataset (N = 573) and the generated training datapoints (N = 313) is shown in Figure 5. The
two spectra are in very close agreement with each other, highlighting that the GAN was able
to generate very realistic spectral data to augment the original/measured training datasets.
Summary statistics of the MOE (GPa) values in the measured training and testing datasets
along with the three enhanced datasets is provided in Table 1. A visual representation of
the MOE distribution in these four training datasets is given in Figure 6. The boxplots show
that the interquartile range of MOE values in the enhanced datasets is not as wide as that
of the measured dataset, which means that the middle 50% of the data in the enhanced
datasets have a narrow spread compared to the measured data. It is necessary to note
that the datasets shown in Figure 6 are in an ascending order of size, and the shape of

https://www.python.org/
https://keras.io/
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the boxplots give an idea of where the GAN was adding more datapoints to augment the
original training dataset.
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Training and test results for the three types of models used in this study on measured
and three enhanced datasets are provided in Table 2. Overall, the LGBM models outper-
formed both the ANN and CNN models with better prediction statistics on the independent
test dataset. The LGBM models also had superior prediction capabilities when trained on
enhanced datasets as compared to their ANN and CNN counterparts. ANN models had
the worst prediction statistics across all four training datasets with the performance of CNN
models between the ANN and LGBM models. When trained on the measured/original
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training dataset, the LGBM model achieved a test R2 of 0.61, which is 10.90% and 7.02%
higher than that obtained by the ANN (R2 = 0.55) and the CNN (R2 = 0.57), respectively.
The test RMSE for this LGBM model was 2.22 GPa; a 7.88% and 4.72% improvement over
the RMSE values for the ANN (2.41 GPa) and CNN models (2.33 GPa), respectively.

Table 1. Summary statistics of MOE values in the original training (original and enhanced) and
testing datasets.

Dataset Min 1st Quartile Median Mean 3rd Quartile Max

Training dataset MOE (GPa)
(N = 573) 3.577 8.579 10.529 10.920 13.112 21.761

Test dataset MOE (GPa)
(N = 145) 3.211 8.771 10.913 11.129 13.600 22.040

Enhanced Training dataset MOE (GPa) (N = 573 + 313) 3.577 9.259 10.400 10.706 11.864 21.761

Enhanced Training dataset MOE (GPa) (N = 573 + 573) 3.577 9.779 10.614 10.897 12.886 21.761

Enhanced Training dataset MOE (GPa) (N = 573 + 1000) 3.577 8.028 8.473 9.608 10.415 21.761

All models had the best prediction results with training on the dataset enhanced by
313 datapoints (Table 2). The biggest improvement in prediction performance is reported
for the CNN model, which experienced an improvement in test R2 and RMSE by 7.02%
and 4.29%, respectively (Figure 7). The first layer of this Conv1D model consisted of
256 filters, each with a length of 3, and a ReLU-activation function. The second Conv1D
layer had 47 filters each with a length of 2, followed by the MaxPooling1D layer with a
pool size of 2. The extracted features from the convolution and maxpooling layers were
flattened and fed into the dense layers; three fully connected layers were employed, with
23, 81, and 18 neurons, respectively, with the ReLU as an activation function and the L2
regularization of 0.00001. The fully connected layers were followed by another dense layer
with 32 neurons and a ReLU as an activation function. ‘Adam’ was used as an optimizer
with a learning rate of 4.11 × 10−5. This model yielded a test R2 of 0.61 and a test RMSE
of 2.23 GPa (Figure 8). The ANN model had an improvement on the test R2 by 5.45%
and RMSE by 3.32% (Figure 7) when 313 synthetic spectra generated using a GAN were
added to the original training dataset. This particular model consisted of four hidden
layers with 23, 81, 14, and 108 neurons in each of the layers, and the activation function
used was a ReLU. An ‘Adam’ optimizer with a learning rate of 0.018 was used for error
backpropagation. This model gave a test R2 of 0.58 and a test RMSE of 2.33 GPa (Figure 9).
The LGBM model showed the least improvement in prediction statistics on the test dataset
(R2 improved by 1.64% and RMSE by 0.90% (Figure 7)). This slight improvement again
resulted in LGBM outperforming the ANN and CNN, yielding a test R2 of 0.62 and an
RMSE of 2.20 GPa (Figure 10). The optimal LGBM model used the traditional gradient-
boosting decision tree (‘gbdt’) as the boosting type. The optimum learning rate, number
of leaves, feature fraction, and the bagging fraction were found to be 0.066, 30, 0.685, and
0.718, respectively. Also, the bagging frequency, lambda_l1, and lambda_l2 parameters,
maximum tree depth, and min_child_samples were set to 1, 0.015, 1.709 × 10−6, 3, and
12, respectively.

Adding a further number of generated datapoints, 573 and then 1000, did not further
improve the prediction capabilities of the models (Table 2). The ANN model achieved
identical prediction statistics for datasets enhanced by 573 and 1000 GAN-generated dat-
apoints (R2 = 0.56 and RMSE = 2.38 GPa), which is an improvement in R2 by 1.82% and
RMSE by 1.24% compared to just training on the original dataset (Figure 7). A similar case
for the CNN model was observed as it achieved identical prediction statistics for datasets
enhanced by 573 and 1000 GAN-generated datapoints (R2 = 0.58 and RMSE = 2.31 GPa),
which is an improvement in R2 by 1.75% and RMSE by 0.86% compared to just training on
the original dataset with 573 measured datapoints. Effectively, the deep learning models
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had an initial boost in prediction performance when 313 GAN-generated datapoints were
added, but as a higher number of synthetic datapoints were included, the prediction perfor-
mance of those models decreased but still outperformed the model trained on the original
dataset. With LGBMs, adding 573 GAN-generated datapoints did not improve model
training at all, as the test R2 and the RMSE remained identical when compared to model
training done on measured data alone (Table 2). Further adding generated datapoints
(1000 datapoints) showed a reduction in test R2 by 1.64% and an increase in the RMSE by
0.90% when compared to model training done on measured data alone (Figure 7). This
showed that adding a greater number of synthetic datapoints for LGBM models is not
advised beyond a certain point.

Table 2. Training and test results of the three models fitted to the original and enhanced datasets of
different sizes.

Model Property Train
R2

Test
R2 Train RMSE (GPa) Test

RMSE (GPa)

ANN

MOE Original (N = 573) 0.63 0.55 2.03 2.41
MOE Enhanced (N = 573 + 313) 0.65 0.58 1.67 2.33
MOE Enhanced (N = 573 + 573) 0.68 0.56 1.56 2.38
MOE Enhanced (N = 573 + 1000) 0.66 0.56 1.48 2.38

CNN

MOE Original (N = 573) 0.66 0.57 1.95 2.33
MOE Enhanced (N = 573 + 313) 0.63 0.61 1.71 2.23
MOE Enhanced (N = 573 + 573) 0.58 0.58 1.76 2.31
MOE Enhanced (N = 573 + 1000) 0.65 0.58 1.50 2.31

LGBM

MOE Original (N = 573) 0.91 0.61 0.98 2.22
MOE Enhanced (N = 573 + 313) 0.83 0.62 1.39 2.20
MOE Enhanced (N = 573 + 573) 0.72 0.61 1.77 2.22
MOE Enhanced (N = 573 + 1000) 0.74 0.60 1.29 2.24
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Data augmentation effectively contributed to enhancing the performance of ANNs
and CNNs, whereas LGBMs had only a slight improvement using GANs. However, the
predictive performance of LGBMs even without any generation of synthetic spectra was
better than the ANN and almost equal to the optimal performance achieved by the CNN
following data augmentation. The fact that the initial LGBM model on the original dataset
performed better than the GAN-enhanced dataset for the ANN and CNN emphasizes the
importance of choosing the correct type of machine learning or deep learning model for
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analyzing NIR spectral data. Training on tabular data, the general superior performance
of models based on the gradient-boosted decision tree over deep learning methods has
been reported, specifically where machine learning models outperformed deep learning
models in regression [59]. Nasir et al. (2023) [27] showed that tree-based gradient-boosting
machines such as LGBMs, XGBoost, and TreeNet outperformed the ANN and CNN models
when predicting fiber properties using NIR spectral data (with and without applying PCA).
Thus, one might speculate that the LGBM model was so robust on the original training
dataset that it did not experience significant improvement in its performance by changing
the size of the training data. However, the ANN and CNN could capture more complex
relationships between the NIR spectra and the wood’s mechanical properties (here, MOE)
when a larger training dataset was used.

Another important factor affecting the performance is the hyperparameter tuning
performed on all the developed LGBM, CNN, and ANN models using the Bayesian
optimization-based sampler Optuna TPE. In a study by Li et al. (2022) [42] on using GAN
for improving the discrimination of unsound wheat kernels, the authors applied GAN to
NIR spectral data to improve the classification accuracy of CNN, SVM, and decision-tree
models. Their study does not mention performing hyperparameter tuning on the CNN
and decision tree when changing the size of the training data. For the CNN model, Li
et al. (2022) [42] showed an increase in classification accuracy (from 79.17% to 96.67%)
as a result of a GAN, where a CNN could have learned more features as the number of
samples increased. However, the rate of improvement could have been different if the
hyperparameters were tuned every time the training dataset was changed by increasing
the number of synthetic data generated by the GAN. In other words, one might hypothe-
size that the role of GANs in improving the predictive performance of NIR spectra-based
models depends on the type of the selected model (machine learning vs. deep learning),
subsequent hyperparameter tuning, as well as the model structure.

The performance of the models in this study varied depending on the quantity of
synthetic samples added. Adding a larger number of synthetic samples (573 or 1000) did
not consistently improve prediction performance, emphasizing the importance of finding
an optimal balance between the original and synthetic data. Additionally, the quality and
quantity of the experimental data used to train the model strongly affects the quality of
the synthetic data produced by GANs [36]. In this study, all models yielded their best
performances when they had an enhanced (N = 573 + 313) training dataset, and adding
additional synthetic NIR spectra to the training dataset did not further improve the model.
Zhang et al. (2022) [35] reported that PLS and support vector regression models achieved
better statistics when predicting the oil content of a single maize kernel of one variety
as they sequentially added increasing amounts of data generated by a GAN of up to
30 datapoints (in increments of 10). Sequentially adding datapoints beyond 30 resulted
in decreasing model prediction performance, similar to what we observed. However, Li
et al. (2022) [42] showed that CNN, SVM, and decision-tree models reached their optimal
performance with training datasets having different sample sizes. They also showed that
adding some synthetic NIR spectra could result in a local optimum performance of the
model, whereas adding more synthetic NIR spectra may yield a global optimum. Therefore,
finding the optimal size of the training dataset resulting in the best model performance
is a crucial task when using GANs. Finally, our NIR spectral data was collected on one
transverse face of the tested lumber without considering the impact of defects such as knots
on its MOE. An issue with this approach in the NIR data may not accurately represent the
lumber pieces whose mechanical properties are significantly affected by the defects [60].
This could impose a limitation on the maximum predictive performance that a machine
learning or deep learning model could yield. Using hyperspectral imaging systems and
scanning a greater area of the lumber studied may result in more representative NIR spectra
for predicting the MOE of full-size lumber.

Using a GAN to augment datasets for the purpose of training models to enable them
to have better predictive performances for MOE has practical applications. Accurate predic-
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tions of MOE enable structural engineers to select the right materials that meet the specific
requirements for stiffness. This is particularly important in the present context, given that
the demand and popularity of mass timber buildings have reached an unprecedented level.
Using materials with the right stiffness at the right locations during construction will not
only make the structure safer but cheaper to construct, which is important to promote
wood as a sustainable construction material.

4. Conclusions

This study highlights the potential of NIR spectroscopy data augmentation using
GANs to enhance the prediction of southern pine lumber’s MOE. A machine learning-
based model for predicting wood’s MOE using NIR spectral data was proposed. A deep
learning-based data-augmentation technique (a GAN) was utilized for enhancing the num-
ber of limited experimental training data samples, which improved feature-representation
learning from NIR spectra and the predictability of machine learning methods. To achieve
high predictability and solve the constraint of a small set of experimental data for training
machine learning models, a GAN-based model for data augmentation was proposed and
three machine/deep learning-based frameworks were developed using ANNs, CNNs, and
LGBMs for the prediction of lumber’s MOE. The synthetic NIR spectra were in close agree-
ment with those obtained from the original experimental samples. The results indicated
that LGBMs achieved superior prediction performance compared to ANNs and CNNs,
even though the latter both benefited more from data augmentation. This study signifies
that using GAN for data augmentation is an effective approach to address the limitation
of small experimental sample sizes in training machine/deep learning models applied
to wood science and engineering problems. These findings contribute to the advance-
ment of non-destructive testing methods for wood quality assessment and have practical
implications for optimizing lumber-production processes. Future research could explore
the application of other data augmentation techniques. Analyzing machine learning or
deep learning models that could potentially benefit more from GANs and finding the
optimal number of synthetic NIR spectra to be added to a training dataset should be further
investigated. More emphasis should be placed on the impact of size and distribution of
the initial training data on the performance of GAN. Finally, the use of similar techniques
should be explored to predict different properties of wood and wood products.
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