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Abstract: Crop leaf length, perimeter, and area serve as vital phenotypic indicators of crop growth
status, the measurement of which is important for crop monitoring and yield estimation. However,
processing a leaf point cloud is often challenging due to cluttered, fluctuating, and uncertain points,
which culminate in inaccurate measurements of leaf phenotypic parameters. To tackle this issue, the
RKM-D point cloud method for measuring leaf phenotypic parameters is proposed, which is based
on the fusion of improved Random Sample Consensus with a ground point removal (R) algorithm,
the K-means clustering (K) algorithm, the Moving Least Squares (M) method, and the Euclidean
distance (D) algorithm. Pepper leaves were obtained from three growth periods on the 14th, 28th, and
42nd days as experimental subjects, and a stereo camera was employed to capture point clouds. The
experimental results reveal that the RKM-D point cloud method delivers high precision in measuring
leaf phenotypic parameters. (i) For leaf length, the coefficient of determination (R2) surpasses 0.81, the
mean absolute error (MAE) is less than 3.50 mm, the mean relative error (MRE) is less than 5.93%, and
the root mean square error (RMSE) is less than 3.73 mm. (ii) For leaf perimeter, the R2 surpasses 0.82,
the MAE is less than 7.30 mm, the MRE is less than 4.50%, and the RMSE is less than 8.37 mm. (iii) For
leaf area, the R2 surpasses 0.97, the MAE is less than 64.66 mm2, the MRE is less than 4.96%, and the
RMSE is less than 73.06 mm2. The results show that the proposed RKM-D point cloud method offers
a robust solution for the precise measurement of crop leaf phenotypic parameters.

Keywords: point cloud; point cloud processing; phenotype parameter; method of measurement

1. Introduction

Phenotypic parameters such as leaf length, perimeter, and area are crucial indicators
of crop growth dynamics [1]. The leaf length reflects the crop growth status and guides
irrigation strategies, while the leaf perimeter and area correlate with photosynthetic effi-
ciency and yield [2–5]. Across growth stages, leaf phenotypic parameters exhibit distinct
trends. In the initial weeks after germination, leaves experience rapid growth, followed by
a maturation phase with slower growth rates. Eventually, the leaf length, perimeter, and
area reach their maximum values before potential wilting occurs [6].

Variations in leaf phenotypic parameters across growth stages are essential for under-
standing crop growth patterns, management strategies, and yield enhancement opportunities.

(1) Point cloud processing method

Three-dimensional (3D) point clouds facilitate the non-invasive measurement of leaf
phenotypic parameters, offering advantages over manual and two-dimensional (2D) meth-
ods [7–11]. However, original 3D plant point clouds often include irrelevant ground and
noise points, complicating accurate parameter measurements [12].

Ground removal, segmentation, and smoothing are essential for improving measure-
ment precision [12]. Traditional ground point cloud removal methods, such as statistical
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and bilateral filtering, may encounter challenges due to the unpredictable nature of noise
points in pepper growth environments [13,14].

Segmentation methods such as the Mean Shift and the K-means algorithm address
spatial distribution and geometric properties. While the Mean Shift excels in handling
clusters of varying shapes, K-means demonstrates a rapid convergence speed [15,16].

Smoothing techniques such as filtering and Moving Least Squares (MLS) aim to
enhance the point cloud quality. Combining filtering and MLS methods can effectively
mitigate noise and preserve target features [17,18].

Overall, addressing challenges in point cloud processing, segmentation, and smooth-
ing is crucial for robust and adaptive applications.

(2) Methods for measuring phenotypic parameters

Beyond point cloud processing, selecting suitable methods for measuring crop pheno-
typic parameters is crucial for robust analysis.

While traditional manual measurements are simple and do not require complex equip-
ment, their processes are susceptible to human error and are limited in scope. In contrast,
methods based on image processing offer efficiency and scalability for large-scale measure-
ments; however, they demand strict environmental conditions, with lighting and capture
angles potentially affecting the measurement accuracy. Recently, there has been an adop-
tion of deep learning for measuring leaf phenotypic parameters, which exhibits strong
adaptability to complex scenarios. Nonetheless, it comes with notable drawbacks, requiring
extensive annotated data and long model training cycles and posing potential issues with
generalization. Methods utilizing three-dimensional point clouds for phenotypic param-
eter measurements are also prevalent, offering richer spatial information to capture the
three-dimensional structure of leaves; however, their point cloud processing procedures
are intricate.

To be specific, the Oriented Bounding Box (OBB) method is commonly used for length,
width, and height measurements, but it has limitations with small and curved targets
such as leaves [19,20]. UAV remote sensing and structured light projection methods offer
alternatives for three-dimensional structural information extraction but have limitations
such as field of view constraints and sensitivity to environmental factors.

In consideration of the challenges posed by complex three-dimensional pepper leaf
point cloud processing and less precise measurements of phenotypic parameters, in this
paper, a novel leaf phenotypic parameter measurement method based on point clouds
is proposed, termed RKM-D, which integrates point cloud spatial properties, color char-
acteristics, and Euclidean distance. Tailored point cloud processing methods and leaf
phenotypic parameter measurement techniques are proposed to address specific require-
ments. Validation and analysis against manually measured results confirm the effectiveness
of the proposed approach, offering a robust theoretical foundation for related research
and applications.

2. Materials and Methods
2.1. Experimental Design

The experiment focused on three pepper plants, selected as experimental subjects,
across three growth stages: the 14th, 28th, and 42nd days. Seventy-two point clouds were
collected for each leaf. The LenaCV stereo camera system (Wuhan Lina machine Vision
Technology Co., Ltd., Wuhan, China) was employed to comprehensively capture the raw
point cloud data.

As shown in Figure 1, for every pepper plant, the point cloud data were collected at
three heights: above (No. 1), middle (No. 2), and below (No. 3). During the collection
process, the camera rotated relative to the central axis of the pepper plant, collecting a
point cloud dataset every 15 degrees in the circumference of the pepper plant. Therefore,
approximately 72 point cloud sets were collected for each pepper plant in each period.
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Figure 1. Overview of data acquisition.

2.2. Point Cloud Acquisition Method

As shown in Figure 1, after the collection of each point cloud set, all the point cloud
sets were formed into a coarse pepper point cloud using a combination of the wavelet
layered filtering method and the homogeneous feature matching method. The denoising of
point clouds was achieved through the utilization of wavelet transforms. Specifically, the
point cloud data were transformed to generate a series of wavelet coefficients, which were
then used to determine the validity of the point cloud [21]. Subsequently, a uniform feature
matching method was employed to identify similar features within the point cloud, thereby
aggregating multiple point clouds into a rough point cloud, serving as the preliminary
registration result [22]. Finally, the original pepper point cloud was obtained by using the
ICP registration method [23].

2.3. Point Cloud Processing Method
2.3.1. RANSAC-B-Based Ground Points Removal

For the removal of the ground cloud points of the original pepper point cloud, we
propose an enhanced Random Sample Consensus algorithm with ground point removal
(RANSAC-B); the process flow for the RANSAC-B method is listed as follows.

Step 1. Spatial filtering. Firstly, the ground points set is distinguished from the original
point cloud using the proposed spatial filtering with a color threshold. This step helps to
isolate the ground points with colors not associated with the pepper plant, as shown in
Figure 2.
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Step 2. Bounding box. Secondly, the max boundary six directions, front (p f ), back
(pb), left (pl), right (pr), up (pu), and down (pd), are identified by employing the maximum
sorting algorithm. Based on the six directional boundary points, a bounding box can be
formed with all of the ground points enclosed.
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Step 3. Key vertices. Thirdly, the key vertices of the identified bounding box are the
two diagonal vertices that represent its geometric parameters—p1(xmax, ymin, zmin) and
p2(xmin, ymax, zmax), for example.

Step 4. Ground point removal. Finally, the RANSAC algorithm is employed to remove
the invalid ground points within the identified bounding box.

The RANSAC algorithm is applied as follows:
Let Ω represent the point cloud space of the background frame, and let all points

within Ω constitute the point set PR. We randomly select the first group of three sample
points p1, p2, p3 ∈ PR. Subsequently, we determine the plane equation formed by p1, p2, p3
as Aix + Biy + Ciz + Di = 0. Next, we substitute the remaining points from point set
PR (excluding the sampled points) into the plane equation, and calculate the distance dR
from each point to the plane using Equation (1). Following this, we compare dR with the
distance threshold dtR : if dR < dtR , the point is considered an inlier; if dR > dtR , the point
is considered an outlier. This process is repeated, resulting in multiple sets of inlier and
outlier points. The set with the highest number of inlier points is designated as the optimal
point set. Based on the optimal point set, we obtain the optimal plane equation and filter
out points in the point cloud. To determine an appropriate distance threshold dtR , we assess
its impact on the fitting performance. By gradually increasing or decreasing the threshold,
we aim to find a threshold that effectively distinguishes ground points.

dR =
Aix0 + Biy0 + Ciz0 + Di√

Ai
2 + Bi

2 + Ci
2

. (1)

2.3.2. K-Means Based Segmentation

As for the segmentation of the pepper leaves from its point cloud, the K-means
clustering method is employed. The steps and flowchart are depicted as follows.

Step 1. Use the elbow method to determine the optimal value of K as the number of
segments for clustering segmentation [24]. Choose a range for K, run the K-means for each
value, calculate aggregation metrics, and identify the optimal K from the elbow method
graph (see Figure 3).
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Step 2. Initialization. For the determined optimal K, initialize the clustering centers
(dk0) using a random algorithm.

Step 3. Object Assignment. Assign each point cloud object to its nearest clustering center.
Step 4. Compute New Centroids. Calculate new centroid positions (dk) by averaging

the points assigned to each cluster.
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Step 5. Iterative Computation. Repeat Steps 3 and 4 iteratively until the convergence
criteria (dk − dk0 < θ) are met.

Step 6. Algorithm Termination. If the convergence criteria are not met, continue
iterating; otherwise, terminate the algorithm and output the final clustering results.

The initial cluster number is set to 5; the maximum cluster number is set to 30. The
elbow method graph is constructed by plotting the within-cluster sum of squares for each K
value. The horizontal axis represents the range of K values, and the vertical axis denotes the
corresponding within-cluster sum of squares. The elbow position on the graph is identified
as the point where the sharp decline in the aggregation metric transitions to a more gradual
decrease. The K value associated with this elbow position is considered the optimal initial
K value for our clustering analysis.

2.3.3. MLS-Based Point Cloud Smoothing

The MLS method is employed for point cloud smoothing, and the specific process can
be summarized as follows (see Figure 4):
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Step 1. Randomly select a point p from the pepper leaf point cloud.
Step 2. Define a spherical region BM with a radius RM centered at point p.
Step 3. Collect all points within the spherical region BM to form the point set PM.
Step 4. Use the Least Squares Surface Fitting method to fit a surface, CM, to all points

in PM.
Step 5. Divide the point set PM into two groups: inliers (points within the fitted surface

CM, depicted in blue) and outliers (points outside the fitted surface CM, depicted in black).
Step 6. Project all outliers from CM onto the surface of CM using the normal projection

method, thereby smoothing the pepper leaf point cloud.

2.4. Euclidean-Distance-Based Phenotypic Parameter Measurement
2.4.1. Leaf Length

(1) Manual leaf length measurement

The leaf is extended and a vernier caliper with a precision of 0.1 mm is employed to
measure the length from the leaf tip to the leaf base, denoted as leaf length la.

(2) Euclidean-distance-based leaf length measurement

As depicted in Figure 5, the spatial point cloud surface of the leaf is set as S. Then, S is
projected onto the horizontal plane in space, denoted as the xy plane, to obtain S′, and the
starting point p′s is assigned at the leaf base and the ending point p′d at the front end of the
leaf in S′. Next, p′s and p′d are connected to form a straight-line segment lsd. Subsequently,
lsd is divided into n equal segments, with the i-th segment point p′i. After that, the normal
vector

→
n is computed, proceeding from p′s along lsd in the direction perpendicular to

→
n , and the corresponding projection points pi are located within S for p′i. Sequentially
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ps,p1,. . .. . ., pn−1 and pd are connected to form line segments l1, l2,. . .. . .ln. Finally, the real
leaf length lp can be calculated using Equation (2).

lp = µ1

n1

∑
i=1

li (2)

where li is the estimated leaf length, µ1 is the length scale, and n1 is the number of segments.
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2.4.2. Leaf Perimeter

(1) Manual leaf perimeter measurement

Firstly, the obtained images are binarized, which are taken by laying the pepper
leaf flat 30–50 cm below the camera. Secondly, the edge point of each binarized image
is detected, and the pixel distance Ci between adjacent points pi and pi+1 is calculated.
Thirdly, the perimeter measurement Ca is performed.

Ca = µ2

n2

∑
i=1

Ci (3)

where µ2 is the pixel length scale and n2 is the total number of the edge points of the
pepper leaf.

(2) Euclidean-distance-based leaf perimeter measurement

In order to lessen the consumption of computing resources, uniform downsam-
pling [25] is used to downsample the original point cloud S. The downsampled point cloud
is labeled as S1 and is subsequently utilized to apply an edge extraction algorithm [26],
which is used to identify the boundary point set Ω1 (see Figure 6).
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Next, the Euclidean distance Cpi between adjacent points in a clockwise direction
along the set Ω1 is calculated. Finally, the real leaf perimeter Cp can be calculated using
Equation (4).

Cp = µ1

n3

∑
i=1

Cpi (4)

where n3 is the number of boundary point line segments.

2.4.3. Leaf Area

(1) Manual leaf area measurement

Firstly, a two-dimensional image of the leaf is captured from a precise position, 30
cm directly above the leaf’s central point. Subsequently, the image is binarized. Then, the
black pixels representing the leaf area are accurately counted and used to calculate the area
measurement Sa.

Sa = µ3

n4

∑
i=1

Si (5)

where µ3 is the pixel area scale and n4 is the total number of leaf pixels.

(2) Euclidean-distance-based leaf area measurement

For pepper leaf area calculation, surface reconstruction is performed using the point
cloud, employing the Ball Pivoting algorithm [27] for triangular meshing. A starting
triangle is randomly selected as the starting triangle Ts. A sphere BA with a radius RA is
defined, which contacts the three vertices of Ts. Starting from any edge aTs of the starting
triangle Ts, the sphere BA is rotated in space. When BA encounters a new point, a new
triangle is created by connecting the edge aTs with the new point. This process is repeated
until all points in the point cloud have been visited, as illustrated in Figure 7.
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Figure 7. Diagram of the triangulation.

In this method, defining the sphere radius RA is a crucial step in surface reconstruction.
If the RA is too small, the rolling sphere may pass through gaps in the point cloud without
finding new points, resulting in holes in the reconstructed surface, as depicted in Figure 8a.
To address this issue and reduce the occurrence of holes during reconstruction, the number
of input rolling spheres was increased to 4, with radii ranging from 2 to 5. During the
reconstruction process, smaller spheres were employed in dense point cloud regions, while
larger spheres were used in sparse point cloud areas for triangulating the surface. The
results are illustrated in Figure 8b, demonstrating a more complete reconstruction compared
to the situation depicted in Figure 8a.
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In Figure 8c, local triangulation is performed. The area of each triangle is calculated
based on its vertices, denoted as Si. The sum surface area Sp is calculated using Equation (6).

Sp = µ4

n5

∑
i=1

Si (6)

where µ4 is the point cloud area scale and n5 is the total number of triangular meshing.

3. Results and Discussion

In accordance with the previously outlined methodology, the comprehensive proce-
dure is depicted in Figure 9.
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3.1. Point Cloud Acquisition

As described in Section 2.2, the images were captured using a stereo camera, followed
by filtering and stereo matching to obtain the original point cloud. Subsequently, the
point clouds preprocessed at different periods, as illustrated in Figure 10, and underwent
ICP registration [23] and uniform downsampling [25] with a sampling radius of 20. The
respective point cloud numbers were 53,487, 47,356, and 125,690.
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3.2. RKM-B-Based Point Cloud Processing

The point cloud preprocessing method, which incorporates the improved Random
Sample Consensus (RANSAC-B), K-means, and Moving Least Squares techniques, is collec-
tively referred to as RKM-B, in contrast to the unmodified RKM method. Comprehensive
processing using the RKM-B method is illustrated in Figure 11.

In the ground point removal stage, NG represents the total number of point clouds in
the background box, while Nθ denotes the number of stem point clouds in the ground box
and is calculated using Equation (7).

Nθ = πr2hρpoint (7)
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where r is the stem radius, h is the background box height, and ρpoint is the number of stem
point clouds per unit volume.
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In the leaf segmentation stage, the similarity coefficient Ds (Equation (8)) is introduced
to compare the similarity between clustered segmentation results and actual leaves [28]. A
segmentation threshold Dθ is determined based on empirical considerations, and for leaf
quantities ranging from 0 to 10, the coefficient Dθ is assigned a value of 0.88. In the case
of leaf quantities between 11 and 25, Dθ takes a value of 0.84. Furthermore, when the leaf
quantity surpasses 25, Dθ is set to 0.80.

Ds =
2 × (LK ∩ LR)

LK + LR
(8)

where LK is the number of point clouds identified and LR is the number of point clouds in
actual leaves.

Leaf smoothing is determined based on the volume ratio VR of the minimum bounding
box of the leaf point cloud. The maximum volume ratio Vmax is set at 0.9, while the
minimum value Vmin is designated as 0.7.

Utilizing the RANSAC-B algorithm introduced in Section 2.3.1, the results are illus-
trated in Figure 12.
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Continuing from ground point removal, leaf segmentation is implemented using the
method outlined in Section 2.3.2, as depicted in Figure 13. In Figure 13b, the point cloud
is segmented into eight clusters, each representing an individual leaf, while the stem is
divided into two clusters.

Following leaf segmentation, individual leaves display fluctuation errors and uneven
contours in the side view of the point cloud, indicating significant undulations. The out-
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comes, post-application of the smoothing method described in Section 2.3.3, are illustrated
in Figure 14.
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The smoothness ρi of a single leaf is defined according to [29] as Equation (9). An
average angle of 30◦ corresponds to a smoothness value of 0.033, while a 45◦ angle corre-
sponds to a smoothness value of 0.022. The larger the smoothness value, the smaller the
average angle.

ρi =
1

1
m

m
∑

a=1

(
1

20

20
∑

b=1
φ(a, b)

) (9)

where i denotes the i-th leaf, φ(a, b) represents the angle between the normal vectors of point
a and its neighboring 20 points b, and m is the total number of points in the point cloud.

The average smoothness of each leaf is computed using Equation (10).

ρ =
n

∑
i=1

1
n

ρi (10)

where n is the total number of leaves at a specific period.
Considering the results of the aforementioned processing, a comparative analysis was

conducted, examining the RKM-B processing method and the untreated dataset concerning
differences in the point cloud number, leaf smoothness, algorithmic execution time, and other
aspects. Table 1 succinctly presents the comprehensive results of this comparative assessment.

From Table 1, it can be seen that the total time consumption as well as “R” and
“K” are significantly reduced in the three periods. However, for “M”, the changes are
gentle, and in some instances, there is even a time increase, particularly on the 42nd day.
This is because ground point removal has no impact on the quantity and morphological
features of leaf point clouds, resulting in no sharp change in the time consumption for “K.”
Contrarily, for “R,” the time gradually increases with the growth of crops. This is due to
the easier differentiation between ground points and stems as the leaves expand, leading
to a reduction in interference. However, for “K,” the reduction in time diminishes as the
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crops grow. This is due to the increase in the number of points involved in segmentation
as the peppers grow, leading to a decrease in the reduction in processing time. The total
reduction in time stabilizes at around 2 s, but the baseline processing time continues to
increase with crop growth.

Table 1. Comparison of the effects of methods in each period.

Period
Time Consuming (s) Smoothness ρ

R K M Total

14th day
RKM 1.58 1.41 0.52 3.51 0.032

RKM-B 0.96 0.39 0.49 1.84 0.035
Original / / / / 0.029

28th day
RKM 1.73 1.57 0.43 3.73 0.024

RKM-B 0.97 0.56 0.41 1.62 0.028
Original / / / / 0.020

42nd day
RKM 2.28 2.52 1.55 6.35 0.022

RKM-B 0.73 1.79 1.59 4.11 0.024
Original / / / / 0.017

Notes: “Smoothness” is the average smoothness of individual leaf segments within each specified interval; “R” is
RANSAC-B algorithm and RANSAC algorithm; “K” is K-means algorithm; “M” is MLS algorithm; “total” is the
total running time; RKM is a combination of RANSAC, K-means, and MLS algorithms; RKM-B is a combination
of RANSAC-B, K-means, and MLS algorithms; “Original” is the smoothness of the leaf without any treatment.

From the perspective of smoothness, the increases in smoothness for the leaves at the
three growth periods are 0.003, 0.004, and 0.002, corresponding to average angle reductions
of 2.7◦, 6.1◦, and 3.5◦, respectively. Compared to the untreated smoothness, both “RKM-B”
and “RKM” exhibit significant improvements in smoothness. The baseline smoothness
gradually decreases across the three growth periods. This outcome is attributed to the
relatively smaller size and minimal shape changes in the leaves at the 14th day of growth,
resulting in a predominantly flat leaf surface. As the leaves grow, at the 28th day and
42nd day of growth, the leaves become more fully developed, gradually presenting certain
curved angles in space.

3.3. Leaf Length Measurement

Leaf lengths, denoted as la and lp, are presented separately for the 14th, 28th, and
42nd days in Figure 15. It is evident that la and lp exhibit a linear relationship.
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The R2 values for leaf length are all above 0.81 across various pepper growth periods.
Moreover, the R2 tends to increase with both leaf growth and the number of leaves.

The MAE values for leaf length are 2.57 mm, 3.34 mm, and 3.35 mm, showing a slight
increase with leaf growth. After the first measurement period, the MAE stabilizes, with the
maximum value not exceeding 3.50 mm.
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The RMSE values are 2.90 mm, 3.63 mm, and 3.72 mm, respectively.
Throughout the experiment, the obtained MRE remains less than 5.93%, with MRE

values of 5.13%, 5.92%, and 4.65% for different periods.
From Figure 16, it can be observed that the leaf length gradually increases over the

three periods, with average values of 49.12 mm, 57.24 mm, and 74.94 mm. This trend is
attributed to the chosen measurement periods, all of which are in the early stages of pepper
development, where leaf growth is rapid and new leaves are continuously generated. By
examining the growth increment of leaf length, it was found that the increment in the third
period was greater than that in the second period. This phenomenon may be due to an
increase in leaf quantity, intensifying the overall physiological activities of the crop and
resulting in a higher demand for resources. Consequently, a larger increase in leaf length is
observed during the third measurement period.
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3.4. Leaf Perimeter Measurement

The leaf perimeters, denoted as Ca and Cp, for the three periods are illustrated in
Figure 17.
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The R2 values were 0.82, 0.97, and 0.95, respectively. The lower R2 during the first
measurement period is attributed to the smaller number of leaves.

The MAE for the pepper leaf perimeter was 5.04 mm, 6.17 mm, and 7.20 mm, indicating
an increase in the average absolute error with leaf development, with larger errors observed
in the later periods of leaf growth.

The RMSE exhibited a similar trend to the MAE, with values of 5.97 mm, 7.77 mm,
and 8.36 mm, respectively.

Throughout the experiments, the MRE remained less than 4.50%, with values of 4.41%,
4.48%, and 4.30%, respectively.
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The trend in the leaf perimeter and its increment is generally similar to that of the leaf
length. From Figure 18, it can be observed that the average values of the leaf perimeter
over the three periods were 109.5 mm, 132.4 mm, and 171.5 mm. It is noteworthy that the
leaf perimeter increment on the 42nd day exhibits greater fluctuations compared to leaf
length. This could be attributed to different parts experiencing varying growth rates, with
the growth rate at the leaf margin potentially influenced by local environmental conditions,
nutrient distribution, or genetic regulation, leading to uneven leaf perimeter growth.
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3.5. Leaf Area Measurement

Linear regression analyses were conducted using manual measurement values Sa and
RKM-D measured values Sp, as depicted in Figure 19. The results presented are for three
measurement periods.
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Figure 19. Correlation analysis of leaf area across three different growth periods. (a) The 14th day;
(b) the 28th day; (c) the 42nd day.

The R2 values were 0.98, 0.99, and 0.99, all surpassing 0.97. This indicates a signif-
icant correlation between the calculated values from the pepper area point cloud and
manual measurements.

The MAE for the pepper leaf area was 24.59 mm2, 39.35 mm2, and 64.65 mm2, respec-
tively. The MAE increases with leaf development, with larger absolute errors observed in
the later periods of leaf growth. The first measurement period exhibits the smallest average
absolute error in leaf area, while the third measurement period shows the largest, reaching
a maximum value of 64.65 mm2.

The RMSE follows a trend similar to the MAE, with values of 27.07 mm2, 44.94 mm2,
and 73.05 mm2, respectively.

Throughout the experiments, the MRE remained less than 4.96%, with small variations,
at 4.33%, 4.95%, and 4.76%, respectively.
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The overall trend in the leaf area and its increment is similar to the leaf length and
perimeter. Over the three periods, the average values of the leaf area gradually increase
(see Figure 20), measuring 601.4 mm2, 914.5 mm2, and 1358.6 mm2, respectively. However,
unlike the leaf length and perimeter, the measurement of the leaf area shows a relatively
higher correlation coefficient during the first measurement period. This is primarily because,
when dealing with irregularly shaped leaves, the leaf area, as a comprehensive measure of
the overall leaf size, can mitigate the measurement inaccuracies caused by local errors, thus
enhancing the overall measurement correlation.
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4. Conclusions

This paper presents a novel method for measuring crop leaf phenotypic parameters,
named RKM-D. Using peppers as the representative research subject, manual measure-
ments and RKM-D point cloud measurements were conducted on the 14th, 28th, and 42nd
days of pepper growth. The results demonstrate a strong linear relationship between the
proposed RKM-D method and the ground truth, with minimal parameter errors.

The RKM-D method includes preprocessing steps such as ground point removal using
RANSAC-B, leaf segmentation using K-means, and leaf smoothing using MLS. Additionally,
the method incorporates a phenotype measurement approach for the pepper leaf length,
perimeter, and area based on Euclidean distance.

Specifically, for leaf length measurements, the R2 values exceed 0.81, the MAE is less
than 3.50 mm, the MRE is less than 5.93%, and the RMSE is less than 3.92 mm. For the leaf
perimeter, the R2 exceeds 0.82, the MAE is less than 9.10 mm, the MRE is less than 4.50%, and
the RMSE is less than 11.27 mm. Leaf area measurements show R2 values exceeding 0.98, an
MAE less than 85.58 mm2, an MRE less than 4.96%, and an RMSE less than 3.92 mm2.

This method proves effective in achieving accurate phenotypic measurements of pep-
per leaves, providing valuable insights for research on pepper leaf phenotypic parameters.

Furthermore, future research will focus on three main aspects: extending leaf measure-
ments across multiple time points to establish growth curves, investigating environmental
factors’ impact on plant growth for accurate assessments, and implementing advanced agri-
cultural intelligence techniques for automated and intelligent plant monitoring. Through
these efforts, we aim to comprehensively understand plant growth dynamics and contribute
to the advancement of sustainable agriculture.
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