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Abstract: The adoption of Industry 4.0 technologies in manufacturing systems has accelerated in
recent years, with a shift towards understanding operators’ well-being and resilience within the
context of creating a human-centric manufacturing environment. In addition to measuring physical
workload, monitoring operators’ cognitive workload is becoming a key element in maintaining a
healthy and high-performing working environment in future digitalized manufacturing systems.
The current approaches to the measurement of cognitive workload may be inadequate when human
operators are faced with a series of new digitalized technologies, where their impact on operators’
mental workload and performance needs to be better understood. Therefore, a new method for
measuring and determining the cognitive workload is required. Here, we propose a new method for
determining cognitive-workload indices in a human-centric environment. The approach provides
a method to define and verify the relationships between the factors of task complexity, cognitive
workload, operators’ level of expertise, and indirectly, the operator performance level in a highly
digitalized manufacturing environment. Our strategy is tested in a series of experiments where
operators perform assembly tasks on a Wankel Engine block. The physiological signals from heart-
rate variability and pupillometry bio-markers of 17 operators were captured and analysed using
eye-tracking and electrocardiogram sensors. The experimental results demonstrate statistically
significant differences in both cardiac and pupillometry-based cognitive load indices across the four
task complexity levels (rest, low, medium, and high). Notably, these developed indices also provide
better indications of cognitive load responding to changes in complexity compared to other measures.
Additionally, while experts appear to exhibit lower cognitive loads across all complexity levels,
further analysis is required to confirm statistically significant differences. In conclusion, the results
from both measurement sensors are found to be compatible and in support of the proposed new
approach. Our strategy should be useful for designing and optimizing workplace environments
based on the cognitive load experienced by operators.

Keywords: cognitive workload; task performance; pupillometry; heart-rate variability; cognitive-
workload index

1. Introduction

The growing complexity and digitalization of the manufacturing sector have driven
a disruptive change that may impose varying cognitive workloads on operators [1]. This
transformation has also led to a new emphasis on monitoring cognitive workloads among
manufacturing operators. This is typically accomplished through the application of engi-
neering principles, such as assessing and improving human–machine systems, operators
in the control room, maritime operators, and pilot and vehicle drivers [2–5]. Cognitive
workload refers to the mental effort needed to perform the task, and can be influenced by a
range of factors, including attention and capacity of information processing, working mem-
ory, and decision making [6,7]. An international survey has shown that workload-related
stress is detrimental to the occupational health of European workers. This high-stress
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status can lead to decreased work performance, despite recent improvements in working
environments and health care [8].

The Industry 5.0 paradigm [9] is using new technologies to shift the industrial man-
agement objectives from focusing solely on efficiency and productivity to putting the
well-being of operators at the centre of production and boosting productivity between
human workers, machines, and robots, which leads to digital and sustainable transitions.
This approach builds on the acceptance of the existing Industry 4.0 standards and encour-
ages the transition to a sustainable, human-centric, and resilient industry. The Industry
4.0 approach introduced cloud-based data connectivity, advanced artificial intelligence
analytics, human interaction with robotics, automation systems, smart sensors, and virtual
and augmented reality digital technologies [10,11]. In the context of emerging digitalized
work environments, operators are required to upskill or reskill to accommodate the digi-
tally transformed manufacturing sector. These requirements may challenge the operator’s
information-processing capabilities and occupy an increased amount of working memory.
Therefore, some operators’ available attentional resources may be insufficient for executing
high-complexity tasks in the new digitalized workplace.

Furthermore, as mass customization in manufacturing is increasing due to many
customers desiring customized products, the variability of product parts is increased, and
the time for new product iteration is shortened [12]. The mass customization workflow
also clearly shortens the operators’ cycle time due to the challenging delivery timelines.
Cycle time is the official time allocated to operators to complete a given job on the assembly
line, and it is becoming more restrictive to prevent potential supply chain risks in the
production of customized products. These trends lead to increased complexity on the
assembly line, and new production workflows may require more mental workload for
operators [13]. The new production pattern in manufacturing places higher demands on
cognitive workload [14], especially in the transition to a digitized paradigm. A survey of
engineers at Swedish companies found that assembly complexity causing poor ergonomics
can lead to more errors and scrap [15]. The well-being of employees must therefore be
emphasized by enterprises to avoid the risk of cognitive-overload situations; this could
also improve cost saving and waste reduction in manufacturing production.

In this context, it is crucial to constantly and accurately monitor operators’ cognitive
workload to ensure that operators are not burned out, with consequences for the long-
term and optimal range of operator performance. Manufacturing managers also reported
that cognitive ergonomics is important in preventing manufacturing quality errors and
operators’ health and disease issues [16]. Cognitive workload is an important feature
of cognitive ergonomics; the expended mental effort and the associated attentional re-
sources result in the cognitive workload level. Evaluating operators’ cognitive workload
is essential for managing their well-being, which will also benefit the overall efficiency of
achieving the enterprise’s manufacturing production goal in a sustainable, resilient, and
ergonomic approach.

Three general methods exist to measure cognitive workload. First, self-reported and
performance inference [17,18] are the most widely used methods in ergonomics; these
two methods are generally accepted and can be applied in most cases. Along with the
recent development of smart sensors, some studies have used physiological measurement
methods [3,17,19,20] in the field of applied ergonomics, which reflects the desire to obtain
more objective and precise measures of cognitive workload.

Physiological measurements are increasingly gaining attention in cognitive workload
research, where wearable devices can be used to measure cognitive workload without
impacting task performance. A study conducted on operators in control rooms found
that eye-tracking metrics and task performance are suitable for indicating mental work-
load levels in monitoring tasks. Specifically, a significant decrease in mean relative pupil
size has been reported from difficult to medium and simple conditions [19]. In a study
conducted on the role of pilots collaborating with unmanned aerial vehicles, the physi-
ological features of ECG and eye-tracking (ET) sensors were applied in the designated
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scenarios. In this pilot operational context, the ECG and ET features showed a statistical
difference between high and low mental-workload conditions. Also, ECG features alone,
or a combination of EEG and ET features, reached approximately 75% accuracy within the
intra-subject classification [3].

Several studies have investigated the cognitive workload of operators in assembly
tasks. The individual alpha frequency from EEG and blink rate from electrooculography
(EOG) were shown to discriminate the cognitive-load levels between medium, high, and
overload in the context of puzzle-related assembly tasks [17]. A vision-based cognitive-
load assessment was also developed with a stereo camera under the 3D-printed objects’
assembly task [20]. The mental effort mean score from their novel assessment system in
three-minute intervals was confirmed by the correlation between the physiological heart-
rate variability and assembly performance. This study suggests that measuring cognitive
workloads with an online human motion pattern-assessment system could give potential
success in improving cognitive ergonomics in manufacturing. Further, the assembly task
of a LEGO car set was investigated with the addition of an “N-Back task” to introduce
increasing cognitive task difficulty by increasing the number N [18]. The N-Back task is
commonly used to measure working memory capacity in attention and cognition research
settings. The defined scenarios reported greater muscle activity and higher self-reported
workload with increased cognitive demand.

Several studies have included the expertise factor in attention and cognition research.
A study was conducted to explore the cognitive ability differences between musicians
and non-musicians [21]. The results showed significant variations in reasoning and verbal
memory abilities between the two groups. Moreover, musicians’ long-term professional
training positively impacted their verbal memory. Similarly, it has been suggested that
athletes perform better in mental imagery skills than non-athletes [22]. More recently,
electroencephalographic (EEG) sensors have been used to study the impact of expertise
on audio-visual cuts [23]. Media professionals were found to be more effective in dealing
with the loss of visual information, as demonstrated by their reduced blink rate after
audio-visual cuts. According to these studies, it is possible that cognitive abilities like
reasoning, working memory, and imagery skills, which the level of expertise can influence,
may also have an impact on the way non-experts handle manufacturing tasks, potentially
challenging them to manage complex tasks in comparison to experts.

However, based on the existing literature, it remains unclear how cognitive workload
affects performance in the context of manufacturing engineering. This is particularly im-
portant due to the current rapid implementation of digitalized technologies within this
manufacturing domain and its complex impact on the user’s cognitive workload. This arti-
cle proposes using two sensors, eye-tracking and electrocardiogram, together with related
biomarkers to objectively measure cognitive-workload variations and their impact. There is
currently no study specifically in this area that compares the performance of these two sen-
sors and the resulting cognitive-load indices with task performance. Furthermore, no prior
studies have reported the simultaneous use of transitions from pupillometry and cardiac
bio-markers to cognitive-workload indices. Existing averaged metric-based biomarkers can
only provide a value within a defined assembly period, which may not accurately assess
dynamic changes in cognitive workload by reflecting accumulated mental effort.

In this study, participants were asked to play the role of an assembly operator per-
forming the three assembly tasks of the Wankel Engine scenario as quickly as possible. The
objectives of the presented study are to (i) investigate the ability of physiological biomark-
ers, ET and ECG, to differentiate between rest, low, medium, and high cognitive workloads,
in addition to assessing their interaction with personalized factor expertise; (ii) define
pupillometry and cardiac cognitive-workload indices that better indicate and align with
the levels of complexity and their interaction with expertise; (iii) evaluate the effectiveness
of the two identified cognitive-workload indices in aligning with task performance across
different levels of complexity and their interaction with expertise factors.
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2. The Proposed Method
2.1. Conceptual Model

Cognitive workload is a widely utilized terminology in cognitive ergonomics. It com-
prises two cause-and-effect components with mental demands (i.e., imposed workload) and
strain (i.e., the workload expression on individuals), according to the ISO10075 standard
definition [24]. In this research, the cognitive workload is referred to as the individual
cognitive-workload expression affected by external sources, as shown in Figure 1.
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The proposed conceptual cognitive workload model in Figure 1 follows the theory
of demands and strain; however, this theory has been challenged as too simplistic in a
review article on mental workload in ergonomics to describe cognitive workload to some
extent [25]. Additionally, the fixed resource model could compensate for this simplistic
cognitive workload cause-and-effect theory, i.e., humans are assumed to have limited
attentional resource capacity for processing information and completing the task, which is
also reviewed [25]. Moreover, they reviewed how demands in the conceptual model are
factors comprised of external impacts such as task complexity and enterprises’ performance
criteria. As an illustration, mental demands are imposed on the attentional resource balance,
resulting in cognitive-workload fluctuations. The attentional resource occupied by mental
effort is shown in Figure 1 and mediates the relationship between task demands and
cognitive workload.

However, the fixed-resource theory still needs to consider non-attentional factors that
compensate for their drawbacks in the actual application. Personal characteristic differences
such as expertise are considered in this study as non-attentional factors that can potentially
mediate cognitive workload and result in various cognitive-workload expressions. As
shown in Figure 1, expertise, a non-attentional factor theoretically confirmed to influence
available attentional resources, can modulate information processing and cognitive task
completion [26]. Therefore, expertise is a mediating factor that can influence attentional
resources in the cognitive-workload framework.

Human task performance has been used to indicate workload over long periods.
Cognitive overload can probably lead to overall operators’ performance degradation, and
this may not be compensated through mental effort when there is only a limited attentional
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resource while under a high cognitive load [27]. The lasting effect of cognitive overload
and associated performance degradation would be detrimental to operator motivation and
enterprise objectives. The cause-and-effect factors of cognitive workload examined in this
research are represented by the proposed conceptual cognitive workload framework in
Figure 1. In this figure, task complexity, which is a component of the external factor of task
demand, serves as the input variable. The mediator factor of expertise influences attentional
resources, and the factor of attentional resources can influence cognitive workload. Thus,
the same complexity imposed on individuals can result in varying cognitive workloads.
Cognitive workload also influences task performance; individual cognitive workload
and task performance are defined in this framework as operator-evaluation metrics and
output variables.

To evaluate this framework, a set of experiments was designed in which operators
assemble an engine block, consisting of a series of tasks with varying levels of complex-
ity, as described in Section 2.3. Three different assembly stages were designed to elicit
low, medium, and high cognitive-workload levels. The cognitive workload is measured
using the physiological method through pupillometry and electrocardiography (ECG)
bio-markers. These methods, alongside the experimental design, are described next.

2.2. Participants and Equipment

Twenty-five healthy adults (age mean: 29 ± 10, 16 males and 9 females) were enrolled
in the study. The study’s protocol was approved by the University Ethical Advisory Com-
mittee (proposal ID:2021-5254-4696). Some of the participants’ data had to be excluded from
the datasets, primarily due to the quality of the data extracted for some experiments. Specif-
ically, participants wearing corrective lenses result in an excessive blink rate, and pupil
dilation as a biomarker of cognitive workload is sensitive and cannot be replaced by the
median in this designed experiment. The final datasets with reliable data quality included
6 highly skilled participants with at least one year of assembly experience, grouped as
“experts” in this article. The remaining 11 participants, grouped as “non-experts”, reported
an average of 25 (±45) h of assembly experience in total. The non-experts had an average
self-reported skill score of 0.71 (±0.91) on a scale of −2 to 2. The small sample of expert
participants is comparable to similar studies that rely on highly skilled expertise [28,29],
to understand the cognitive and physiological demands of multi-tasking, brain electrical
activity, eye movements, and heart rate were recorded from 7 participants who simulta-
neously performed complex tasks at two difficulty levels [28]. Similarly, prior research
employing small samples, like a study with six non-experts and two experts in complex
surgical training, has successfully investigated the role of expertise in stress, attention,
and acceleration [30].

Participants were asked to wear the Tobii Pro Glasses 3 eye-tracking device, man-
ufactured by Tobii, based in Stockholm, Sweden [31], to measure pupil diameter as an
indicator of cognitive workload [25] during the assembly task (Figure 2). Tobii Pro Glasses
3 provides robust and accurate eye-tracking metrics for measuring cognitive workload in
assembly-scenario settings. The glasses allow participants to move and interact naturally
with the physical assembly tasks while recording the defined biomarkers [31]. The Tobii Pro
lab software (Lab version 1.181 from Tobii Connect, accessed date 22 May 2022) was utilized
to mark events to individually locate the occurrence of the three stages of assembly on the
eye-tracking timeline recordings. The pupil-diameter-timeline recordings and additional
logged events were exported from the Tobii Pro lab as Excel files for further pre-processing
and statistical analysis [32].

Participants were also asked to wear a chest belt ECG Zephyr Bioharness 3 (manu-
factured by Zephyr Technology, Annapolis, MD, USA) [33], a mobile device, to measure
heart-rate variability metrics to investigate cognitive workload. It can provide partici-
pants with natural interactions in assembly scenarios and acquire highly accurate and
reliable non-invasive cardiac biomarkers. Raw ECG waveforms were obtained using the
Zephyr Log Downloader Tool (version 2016-04-07 from Zephyr Performance System, ac-
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cessed date 7 June 2021) [34] and exported as Excel files for further pre-processing and
statistical analysis.

These two sensors were chosen over other methods due to the fact that they provide
more reliable and valid biomarkers of cognitive workload, and the eye-tracking sensor can
also record participants’ assembly behaviours during the experiments. The physiologi-
cal metrics obtained from both sensors, i.e., pupillometry and cardiac biomarkers, were
analysed and compared to support the research findings and insights.

2.3. Task

The participants were asked to assemble a Wankel Engine, as illustrated in Figure 2.
The assembly task consisted of three stages, and the assembly process was explained to
the participants. The assembly task sequence was provided during the assembly task with
a photographic image instruction. Figure 2a shows the first assembly stage to align and
place the output shaft into the engine body. Figure 2b aligns the housing to the rods of
the engine body to push together. Figure 2c–e shows the third stage of assembling the
rotor into the housing, the cover, and screws, respectively. The experiment setup is shown
in Figure 2f, with the participant assembling the Wankel Engine components seated at
the workstation. The components were presented on the workstation for participants to
conduct the assembly task within convenient reach.
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Figure 2. Three Wankel Engine assembly stages illustration and one participant assembled the engine
at the working station. Three assembly stages are listed: (a) assembly stage 1: assemble output shaft
and gear; (b) assembly stage 2: align rotor housing; (c) assembly stage 3: assemble rotor; as well as
assemble cover and screws in (d,e). One participant assembled the engine components at the working
station in (f), wearing eye-tracking and ECG sensors.

The task complexity of the three assembly stages was defined by a general theoretical
model that allows three dimensions of task complexity: component complexity (TC1),
coordinative complexity (TC2), and dynamic complexity (TC3) [35]. Dynamic complexity
(TC3) is not involved in this experiment; it is typically present in the complex dynamic task,
i.e., the air-traffic-controller task. Each stage of the engine assembly task only owns two
types of task complexity: component (TC1) and coordinative (TC2).

In the first assembly stage of assembling the output shaft and stationary gear, the
information cues are listed Table 1. The component complexity is assessed by calculating
each required act’s accumulated information cues. There are two required acts in the first
assembly stage; the pushing action is associated with the first information cue, and the
rotating act is correlated with the second information cue. The coordinative complexity
in the first assembly stage requires the pushing act to be done before the rotating act.
The component complexity (TC1) for the first assembly stage is 2, and the coordinative
complexity (TC2) is 1, and the task complexity equation with three different complexity
dimensions can be shown as follows in (1):

TCt = αTC1 + βTC2 + γTC3 (1)

where α > β > γ and α = 2, β = 1, and γ = 0, the total complexity for the first assembly stage
is 5.

In the assembly stage of assembling housing, the information cues are also listed in
Table 1. There is only one required act aligning the holes on the housing with the four
rods on the engine body. There are two information cues associated with this required
act, resulting in the value of 2 for the component complexity; additionally, there is no
sequencing between the required act, and consequently, the coordinative complexity is 0.
As calculated from Equation (1), the total task complexity for the second assembly stage
is 4.

Additionally, the information cues of the third assembly stage are listed in Table 1;
however, the acts are excluded if they are redundant with other acts. The act of alignment
with information cues (3) and (4) in this third assembly stage is excluded in the aggregated
distinct task acts due to appearing in the previous (housing) assembly stage. Therefore, the
component complexity (TC1) is 3 instead of 5, accounting for the distinct information cues.
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The coordinative complexity requiring the assembling rotor has to be acted upon before
aligning the cover and screwing the nuts in the third assembly stage. Consequently, the
coordinative complexity (TC2) is 1 in this stage. As calculated from Equation (1), the total
task complexity for the third assembly stage is 7.

Table 1. Required acts and information cues for Wankel Engine assembly.

Assembly Stage Required Acts Information Cues

Gear assembly: first (or second)
assembly stage

1. Pushing (behaviour act 1) and rotating
(behaviour act 2) the output shaft into the
hole of the engine body.

1. The correct side of the hole for
output assembly;
2. Quality of assembly completion of the gear of
the output shaft.

Housing assembly: second (or
first) assembly stage

2. Align (behaviour act 1) the 4 holes on
the housing with the four rods on the
engine body.

1. Visualization of 4 rods of the engine;
2. Visualization of 4 correlated holes of engine
rods on the housing.

Rotor and cover assembly: third
assembly stage

3. Assemble (behaviour act 1) the rotor
inside the housing, align the correct holes
on the cover with four rods on the engine
body, and screw (behaviour 2) 5 nuts.

1.Visualization of the output shaft, housing
chamber, and rotor;
2. Quality of assembly completion for the rotor;
3. Visualization of 4 rods on the engine body;
4. Visualization of 4 correlated holes on
the cover;
5. Finding 5 nuts.

Table 2 illustrates the relationships between the assembly stage, task name, complexity
levels, and scores. The experiment stage involving housing assembly, which has a score
of 4 and is considered a low-complexity phase, can be performed in either the second or
first stage. The stage involving gear, which has a score of 5 and is regarded as a medium-
complexity stage, can be performed in either the first or second stage. Finally, the rotor- and
cover-assembly stage, with a complexity score of 7 and rated as a high-complexity stage, is
identified as the last stage. Therefore, the constructed task can be presented in a sequence
from medium to low to high complexity, or from low to medium to high complexity. The
order between the low- and medium-complexity stages was randomized to avoid any
potential learning effects.

Table 2. Assembly stage, assembly task name, task complexity levels, and score illustration.

Assembly Stage Assembly Task Name Task Complexity Task Complexity Score

2 or 1 Housing assembly Low complexity 4

1 or 2 Gear assembly Medium complexity 5

3 Rotor and cover assembly High complexity 7

2.4. Experimental Protocol

Participants who reviewed and signed the informed consent form then completed
a demographic survey (i.e., assembly experience level, health status, age, and gender)
and were then fitted with the Tobii Pro Glasses 3 eye tracker and the Zephyr Bioharness
3 ECG wearable sensor. Once the eye-tracker device was calibrated to ensure sufficient
pupillometry recording, the recording was started. Also, the ECG device was checked
to work properly before the assembly tasks were launched. To minimize the impact of
external factors on the experiment, the laboratory was kept quiet with nearly constant
illumination and blackout blinds.

The experiment started with a 2 min rest time before conducting the assembly tasks
with open eyes, and this rest time was used to provide baseline signals. Participants were
asked to complete three engine-assembly stages only once, in an assembly sequence of
(1) or (2) gear assembly with output shaft and stationary gear, (2) or (1) housing, and
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(3) rotor and cover as quickly as possible. The paper-based instructions were presented
to the participants at the start of the assembly task. The experimental session consisted of
performing an assembly task for approximately 30 min, and the time required to complete
the task depended on individual differences.

2.5. Metric Extraction and Statistical Analysis
2.5.1. Pupil-Diameter Extraction

The raw pupil-diameter metrics were collected at a sampling rate of 100 Hz and
extracted for further pre-processing. The pupil-diameter-related parameters were extracted
and pre-processed with Matlab_R2021b software [36]. Some invalid samples including
artefacts were identified and removed, which were probably caused by blinks or system
errors [37]. The invalid samples were rejected through quality-check measures and standard
deviation filtering, and are considered as missing data. The quality-check measure is
defined by the rule that a blink generally cannot be longer than 500 milliseconds; a blink
exceeding 500 milliseconds is out of the interpolation criteria [38]. The outliers are detected
and removed when the pupil-diameter values exceed the upper and lower boundaries of
three standard deviations from the mean values. However, missing data can potentially
reduce statistical power, and interpolation needs to be completed through either cubic-
spline or linear interpolation [38]. A zero-phase low-pass filter with a cut-off frequency
of 10 Hz smooths out and reduces noise spikes by removing high-frequency signals [37].
Baseline correction is performed individually after the pre-processing step by subtracting
the mean pupil size during a “2 min rest period” before the start of the experiment [38]. Data
quality was inspected through the calculation of the missing data percentage; in addition,
this evaluation process was assisted by plotting. Trials with missing data percentages above
40% were excluded from the analysis due to the fact that interpolation for pupil-diameter
data above 40% is not meaningful in this study, and these data may not be able to fully
represent the fluctuations in cognitive workload that participants experienced during the
assembly task, which can likely lead to misleading pupillometry results and interpretation.
As a result, 5 participants were excluded based on this criterion.

Derivative pupil diameter is correlated to stress-related behaviours to some extent,
and this metric is considered a potentially useful indicator of stress and possibly correlates
with cognitive workload [39]. The pupil derivative was calculated as the pupil diameter
difference between each two successive time samples; also, the averaged derivative was
calculated in each assembly stage. In such a manner, the pupil diameter and derivative
pupil-diameter biomarkers were extracted for further statistical analysis.

2.5.2. Heart-Rate-Variability Extraction

The raw ECG amplitudes were acquired at a 1 kHz sampling rate, and several cardiac
parameters were extracted through defined pre-processing pipelines. The heart-rate vari-
ability parameters were extracted and pre-processed with Matlab_R2021b software [36].
This pipeline includes down-sampling the ECG signal to 250 Hz on account of improv-
ing computational efficiency, detecting R-R peaks using Pan–Tompkins’s algorithms [40],
which includes DC bias elimination, signal normalization, low pass filter, high pass filter,
derivative filter, squaring function, and moving window integration. Then, z-score cor-
rection is applied to correct a small number of errors, finding the outliers of an absolute
z-score value larger than 2 and then replacing the outliers with the median value of R-R
intervals. The Z-score is identified to measure how many standard deviations are below
or above the population mean. We excluded 2 participants (who were also excluded from
the pupillometry signals) based on the target heart-rate range for a healthy adult during
physical activity, which is approximately 50% to 85% of the maximal heart rate, where the
maximum is calculated as 220 minus age in years.

As a result of these signal-processing techniques, two pupillometry parameters and
eight cardiac parameters of heart-rate variability (HRV) from 17 participants were extracted
and summarized in Table 3.



Sensors 2024, 24, 2010 10 of 23

Table 3. Cognitive-workload metrics overview.

Cognitive Workload Metrics Definition

Baselined pupil diameter The average pupil dilation from baseline time was subtracted
from the pupil diameter.

Baselined pupil-diameter derivative

The average pupil-diameter derivative from baseline time was
subtracted from the pupil-diameter derivative, and this metric
can quantify the extent of pupil dilation or constriction from

baseline time.

Baselined standard deviation of the RR intervals
(baselined SDNN)

The average SDNN from baseline time was subtracted from the
standard deviation of the RR intervals (SDNN).

Baselined Root Mean Square of successive differences between
normal heartbeats

(baselined RMSSD)

The average RMSSD from baseline time was subtracted from
the Root Mean Square of successive differences between normal

heartbeats (RMSSD).

Baselined proportion of the number of pairs of successive NN
intervals that differ by more than 50 ms divided by the total

number of NN intervals (baselined PNN50)

The average PNN50 from baseline time was subtracted from the
proportion of the number of pairs of successive NN intervals
that differ by more than 50 ms divided by the total number of

NN intervals (PNN50).

The low-frequency band (LF) The low-frequency band is from 0.04 to 0.15 Hz.

The high-frequency band (HF) The high-frequency band is from 0.15 to 0.4 Hz.

The normalized low-frequency band power (LFnu) The normalized low-frequency band power is from 0.04 to
0.15 Hz.

The normalized high-frequency band power (HFnu) The normalized high-frequency band power is from 0.15 to
0.4 Hz.

The ratio of low-frequency to high-frequency (LF/HF ratio) The ratio of low-frequency to high-frequency is LH/HF.

3. Results
3.1. Physiological Metrics

The pupillometry and cardiac metrics obtained from the experiment are presented
in Table 4, comparing the mean values between expert and non-expert groups in the
four stages with three task complexities and one rest stage of the Wankel Engine assembly.
Since most variables in Table 4 violated the normality, homogeneity of variance, and
sample size assumptions of parametric statistical analysis, we opted for the Non-parametric
Analysis of Longitudinal Data in Factorial Experiments (nparLD) technique [41], and these
analyses were completed with R studio software (version 2021.09.2+382 from RStudio
daily builts, accessed date 13 February 2022) [42]. A non-parametric statistical analysis of
nparLD is applied on the two factors of assembly complexity and expertise, which aims to
verify whether the physiological metrics have significant statistical differences between
complexity or expertise or the interaction between complexity and expertise.

Two of these ten metrics showed statistical significance on the complexity factor
and the promising ability to indicate cognitive workload; baselined pupil dilation (Wald
type statistic of χ2(3) = 77.664, p < 0.001 ***; ANOVA-Type Statistic F(2.147) = 38.710,
p < 0.001 ***) showed highly statistical significance, baselined PNN50 (Wald type statistic
of χ2(3) = 9.650, p = 0.022 *; ANOVA-Type Statistic F(2.615) = 2.963, p = 0.038 *) showed
statistical significance, and significant differences can be found in the interaction between
complexity and expertise (Wald type statistic χ2(3) = 10.074, p = 0.018 *).

However, as shown in Table 4, other biomarkers lacked statistical significance for ei-
ther the assembly stage or the expertise factor interaction. This might be due to a potential
insensitivity of these metrics to workload differences within the predefined complexities or
interactions with expertise groups. In the following paragraphs, we only report the details
of baselined pupil dilation and PNN50 biomarkers, which showed statistically significant
differences in the complexity or the interaction between complexity and expertise. Also, the
changing trend of these two metrics in the low-, medium-, and high-complexity assembly
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stages between expertise groups will be interpreted and discussed. Furthermore, the tables
summarize the results of non-parametric statistics, and the treatment effects for the param-
eters of baselined pupil dilation and PNN50 are presented in the Supplementary Materials.

Table 4. Mean and standard deviation results of analysis of physiological features in engine assembly.

Physiological
Metrics

Expertise
Group 1

Rest
(B) 2

Housing
(LC) 2

Gear
(MC) 2

Rotor and Cover
(HC) 2

Baselined
peak pupil dilation (mm) 3

E 0.000 ± 0.000 0.457 ± 0.270 0.626 ± 0.253 0.484 ± 0.282
N-E 0.000 ± 0.000 0.631 ± 0.469 0.706 ± 0.419 0.736 ± 0.682

Baselined pupil-
diameter derivative (mm/s) 3

E 0.000 ± 0.000 6.993 ± 0.114 −0.041 ± 0.152 0.015 ± 0.026
N-E 0.000 ± 0.000 −0.011 ± 0.010 −0.002 ± 0.032 −0.001 ± 0.006

Baselined SDNN
(ms) 3

E 0.000 ± 0.000 4.363 ± 22.123 −4.257 ± 13.977 5.780 ± 18.861
N-E 0.000 ± 0.000 30.434 ± 61.439 −13.292 ± 33.977 −2.375 ± 58.385

Baselined RMSSD
(ms) 3

E 0.000 ± 0.000 18.934 ± 30.241 9.051 ± 18.609 16.374 ± 27.140
N-E 0.000 ± 0.000 −34.743 ± 86.464 −8.940 ± 47.154 1.340 ± 75.709

Baselined PNN50
(%)

E 0.000 ± 0.000 0.382 ± 0.454 0.623 ± 0.686 0.401 ± 0.449
N-E 0.000 ± 0.000 −0.044 ± 0.501 0.173 ± 0.787 −0.108 ± 0.510

LF
(ms2/Hz) 3

E 1.196 ± 2.825 14.776 ± 22.135 12.411 ± 26.253 0.909 ± 1.432
N-E 8.577 ± 28.084 0.797 ± 1.150 4.760 ± 13.400 1070.000 ± 34,400.000

HF
(ms2/Hz) 3

E 0.021 ± 0.049 0.176 ± 0.274 0.147 ± 0.300 0.008 ± 0.012
N-E 0.104 ± 0.344 0.011 ± 0.021 0.012 ± 0.024 1770.000 ± 5860.000

LFnu
(%)

E 0.425 ± 0.364 99.505 ± 0.554 98.923 ± 0.606 99.263 ± 0.568
N-E 0.382 ± 0.506 82.252 ± 37.974 90.390 ± 29.900 81.900 ± 35.703

HFnu
(%)

E 0.005 ± 0.008 0.495 ± 0.554 1.077 ± 0.606 0.737 ± 0.568
N-E 0.003 ± 0.007 0.562 ± 0.675 0.539 ± 0.857 2.345 ± 4.320

LF/HF ratio
(Unitless)

E 425.491 ± 283.706 616.648 ± 541.243 179.885 ± 215.633 281.295 ± 258.100
N-E 566.180 ± 177.973 408.872 ± 363.832 527.458 ± 423.384 400.036 ± 729.143

1 Column Expertise Group is presented with E for experts and N-E for non-experts. 2 Rest: baseline stage;
housing assembly: low-complexity stage; gear assembly: medium-complexity stage; rotor and cover assembly:
high-complexity stage.3 Units: “mm” is an abbreviation for millimetres; “mm/s” stands for millimetres per
second; “ms” stands for milliseconds, “ms2/Hz” stands for milliseconds squared per hertz.

The mean results of baselined pupil dilation changes associated with the four stages
of the engine assembly task are presented in Figure 3. The assembly stages are presented
in the complexity sequence defined in Section 2.3, from low to high complexities of the
housing assembly, gear assembly, and rotor- and cover-assembly stages.

Generally, as shown in Figure 3, the baselined pupil-dilation values are above the
zero line in the three sub-engine-assembly stages. The multiple complexities defined in the
engine-assembly stages can lead to increased cognitive-load arousal among the subjects; the
non-experts showed higher metrics than the experts in the low- and high-complexity stages.

Regarding pupil-dilation means in Figure 3 and Table 4, in the non-expert group, a
steady increase can be seen from low- to high-complexity tasks. The results indicate that
the cognitive workload in the non-expert group aligns well with the complexity level in the
sub-assembly stages. A marked increase in baselined pupil dilation in the expert group
is shown from rest, low-, and medium-complexity stages. However, the misalignment
between the complexity and pupillometry metrics among the expert group present in
the high-complexity assembly stage; this might be because expertise can compensate
for the high-complexity task, resulting in the pupillometry cognitive-load metric in high
complexity being lower than the metric in the medium-complexity task.

Regarding measuring cognitive load with baselined pupil dilation (Table S2), the non-
experts showed higher relative treatment effects than the experts. The relative treatment
effects (RTE) in both groups increased from low to medium complexity, ranging from
0.525 to 0.652 in experts and 0.630 to 0.671 in non-experts. The experts had a higher 95%
confidence interval of RTEs than the non-experts, and this interval remained constant
across different complexities for each group (Figure S1). When estimating cognitive load,
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the non-experts’ pupil dilation showed higher precision, while the experts’ pupil dilation
showed higher variability than the non-experts.
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The mean results of baselined PNN50 changes associated with task complexity are
presented in Figure 4. Similarly, the assembly stages are presented in the complexity se-
quencing from low to high complexities. Non-experts’ PNN50 values are −0.044, 0.173 and
−0.108, in low, medium and high complexities, respectively. Studies by other researchers
have demonstrated a strong correlation between lower heart-rate-variability metrics and
increased cognitive workload [43,44]. The values in low and high complexities are lower
than the baseline value of zero, indicating a decreased PNN50 and higher cognitive work-
load in non-experts. Also, the cardiac metrics of non-experts are lower than the experts
in each stage. Although the baselined PNN50 means did not demonstrate a higher cogni-
tive workload in experts, according to Figure 4, the mean differences that are illustrated
with mean dots and connected by line plots indicate a steady decrease from medium to
high complexity. The experts exhibit a greater relative treatment effect (RTE) (0.673, 0.719,
0.684) than non-experts across levels of low to medium to high complexity (0.434, 0.516,
0.361) (Table S5), suggesting that non-experts potentially have a higher cognitive workload
than experts.

PNN50 values decreased from medium (gear) to high (rotor and cover) complexity
in both experts and non-experts (Figure 4), but the pairwise comparisons between these
observed values were not statistically significant after Bonferroni adjustment (Table S6).
Also, the lower HRV metrics from non-experts indicating higher cognitive workload can be
found in the high-complexity task compared with the low or medium task. One possible ex-
planation for non-experts demonstrating higher cognitive workloads in the low-complexity
task is that the pre-defined difficulty level may have still triggered more significant cogni-
tive arousal than the medium-complexity task for this group. The underlying reason for
this is that performing the simple engine-assembly task still needs non-experts to occupy
considerable attentional resources for information processing compared with medium
complexity; this could also be interpreted by the low- and medium-complexity tasks’ scores
being close to each other. As shown in Figures 3 and 4, the baseline pupil dilation and
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PNN50 showed promising abilities with statistically significant differences to indicate cog-
nitive workload in the three task complexities (low, medium, and high), and the differences
can be seen between the two expertise groups. However, it remains difficult to compare
the trends of the two cognitive workload metrics because the different biomarkers show
opposite changes in indicating high cognitive workload.
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Due to the shortcomings of existing methods, a novel cognitive-workload index con-
version is proposed in the next Section 3.2 to support and further verify that the cognitive
workload biomarkers from ECG and ET sensors can discriminate the task complexities
through statistical analysis and the demonstration of cognitive-workload-trend graphs
across different expertise groups.

3.2. Cognitive-Workload Indices

The primary reasons for converting cognitive-workload indices are to shorten the
measurement interval and improve the accuracy and reliability of cognitive-workload
estimation. This is obtained by averaging a few seconds of intervals during each assembly
stage. Secondly, the cognitive-load indices also can improve the consistency for indicat-
ing high cognitive workloads by aligning fluctuations in the same direction rather than
opposite directions from different sensors and biomarkers. The analysis technique of
non-overlapping 6 s epoch averages of eye-tracking metrics was applied to the estima-
tion of mental workload for the pilot’s cooperation task [3]. However, this metric-based
interval method is an instantaneous indicator, and it is not suitable to be accumulated in
a defined period for estimating the cognitive workload. The processing of two cognitive-
load indices proposed by the authors can address this issue and will be illustrated in the
following paragraphs.

Absolute peak dilation responses to baseline will be utilized to ascertain and convert
them into the pupillometry cognitive-load index. Identifying peaks and averaging them
within a short time window is an effective method for capturing elicited pupil dilation, as
opposed to using mean amplitude, which eliminates the characteristics of high cognitive
workload [45]. Figure 5 shows an example of the pupillometry cognitive-load index
conversion. To measure cognitive workload, a technique called epoch analysis was applied.
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This technique involves dividing the pupil-dilation data into non-overlapping 7 s segments
(epochs). For each epoch, the average peak pupil dilation was calculated. Peak pupil
dilations greater than zero were converted into a high cognitive-workload index of 1, as
previous research has shown that pupil diameter is positively correlated with cognitive
workload. During epoch analysis, peak pupil dilation values less than zero were converted
to low cognitive-workload indices of 0. This process was repeated until the last 7 s epoch
was analysed. The high cognitive-workload indices were then accumulated to produce
total high cognitive-workload indices for each assembly-complexity level.
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Figure 5. Pupillometry cognitive-load index converted from baselined pupil-dilation metrics for
subject 105.

Figure 6 shows an example of the cardiac cognitive-load index conversion. In order
to keep the similar measurement frequency and data length between the two different
metrics, a non-overlapping 10 s means of cardiac metrics technique was applied. HRV
signal analysis can be performed at ultra-short-term intervals of 10 s to 5 min; maintaining
an HRV signals analysis window of at least 10 s is required to perform an optimal HRV
assessment in the defined activities [46]. Moreover, in the assembly stage, mean baselined
PNN50 interval values less than zero were converted to high cognitive-workload indices of
1, and mean baselined PNN50 interval values within each epoch greater than zero were
converted to low cognitive-workload indices of 0, due to lower heart-rate variability values
having been shown to correlate with higher cognitive workload. This process was repeated
until the mean baselined PNN50 value for the last 10 s of the epoch was converted. The high
cognitive-workload indices for each assembly complexity level were summed to produce
total high cognitive-workload indices. The pupillometry and cardiac indices are presented
in Table 5.
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Figure 6. Cardiac cognitive load index converted from baselined PNN50 metrics for subject 107.

Table 5. Pupillometry and cardiac cognitive-load indices.

Pupillometry Cognitive-Load Indexes Cardiac Cognitive-Load Indexes

Subject
ID

Rest
(B)

Housing
(L)

Gear
(M)

Rotor and Cover
(H)

Rest
(B)

Housing
(L)

Gear
(M)

Rotor and Cover
(H)

201 3 2 3 15 2 0 2 14

202 1 3 7 12 2 2 1 5

203 0 11 2 21 4 3 1 1

204 2 10 14 14 4 2 2 4

205 3 6 6 30 3 3 2 14

206 4 5 7 17 4 1 5 5

102 2 2 4 27 4 1 2 19

105 1 42 9 20 3 25 29 4

107 3 8 4 27 2 3 0 12

108 3 19 34 72 2 2 2 9

110 1 8 1 49 2 13 1 42

111 3 16 4 20 3 10 3 17

112 3 12 4 13 4 4 0 8

115 3 14 3 17 3 3 0 2

116 2 2 14 21 4 1 1 12

117 1 4 6 16 2 3 3 11

121 4 13 3 33 4 7 4 20

B, baseline stage; L, low-complexity stage; M, medium-complexity stage; H, high-complexity stage.
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The conversion processes of the two measurement methods have been completed
from the original biomarkers to the cognitive-load indices. The cognitive-load indices
are summarized in Table 5 with accumulated the cognitive-load indices of numerous
segments (epochs) in each task complexity, namely rest (baseline), housing (low complexity),
gear (medium complexity), and rotor and cover (high complexity) stages. The Pearson
correlation coefficient in Table 5 reveals that the degree of correlation between the indices
varies across different levels of complexity. The low-complexity (housing)-assembly stage
exhibits a highly positive correlation with r = 0.826 (p < 0.001, α = 0.05), whereas the
medium-complexity (gear)-assembly stage does not exhibit any correlation. The high-
complexity (rotor and cover)-assembly stage shows a moderate positive correlation with
r = 0.454 (p > 0.05, α = 0.05).

3.3. Statistical Analysis for Cognitive-Workload Indices

The statistical analysis of pupillometry and cardiac cognitive-load indices showed
highly significant differences between task-complexity stages. Highly significant differ-
ential effects were observed for both pupillometry and cardiac indices across conditions
(p < 0.001), as evidenced by both ANOVA (F(2.413) = 35.335, F(2.507) = 9.555) and Wald-
type statistics (χ2(3) = 280.264, χ2(3) = 31.645). However, none of them showed statistically
significant differences between the interaction of assembly complexity and expertise factors.
Statistical differences in cognitive-load indices between assembly stage and expertise factors
were investigated correspondingly with the Non-parametric Analysis of Longitudinal Data
in Factorial Experiments [41]. The Supplementary Materials contains tables and figures that
summarize and illustrate the results of non-parametric statistical tests and the treatment
effects on pupillometry and cardiac cognitive-load indices.

As shown in Figure 7, the pupillometry cognitive-load indices of assembly stages
are higher than the resting stage. At the same time, the high-complexity cognitive-load
indices are significantly higher than the indices in the low- and medium-complexity stages.
Although there is no significant difference between complexity and expertise factors, the
non-experts from low and high complexities had higher cognitive loads than the experts.
The non-experts’ higher pupillometry index can also be seen from relative treatment effects
that non-experts own higher RTEs (0.577, 0.860) than experts (0.429, 0.777) in low and high
task complexities (see Table S8). With regard to non-experts’ cognitive-load indices, the
increased trend can be seen in the comparisons from low to high and medium to high. The
experts’ cognitive-load indices remained constant from low- to medium-complexity tasks.
At the same time, markedly increased indices from medium to high complexity are shown
in experts.

As illustrated in Figure 8, the non-experts’ cardiac cognitive-load index is higher than
the experts’ cardiac cognitive-load index in each complexity task. The experts’ cardiac
cognitive-workload showed a steady increase from low-complexity- to the high-complexity-
assembly stage. In terms of relative treatment effects (see Table S11), non-experts displayed
relatively higher values (0.548 and 0.804) in low and high task complexities compared
to experts (0.279 and 0.673). In the medium complexity, non-experts exhibited a slightly
higher relative treatment (0.316) than the experts (0.306). An increase in cardiac cognitive
workload was observed for both experts and non-experts as task complexity within their
respective groups increased. The exception was non-experts at medium complexity, who
exhibited lower cardiac workloads compared to the low complexity level.
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of rest (baseline), housing (low complexity), gear (medium complexity), and rotor (high complexity).
The black circles above the boxplots represent extreme values that indicate high cognitive workloads
(high value) compared to the overall pattern of cognitive workloads.

3.4. Task Performance

As shown in Figure 9, overall task completion time increases with the task complexity
from low to high in the two expertise groups, except for non-experts in the medium-
complexity stage. The statistical analysis results show that the task-complexity factor
significantly affected assembly performance with a p-value < 0.001 in Wald-type statistics
and ANOVA-type statistics. However, no statistically significant differences were shown in
the interaction of complexity and expertise. The increase in assembly time was identified
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in both expert and non-expert groups when comparing the high complexity level with the
low or medium complexity level. Non-experts have a relatively higher relative treatment
effect (RTE) (0.588 and 0.862) compared to the experts’ RTE (0.480 and 0.779) in the low
and high complexities (see Table S14). However, the medium task complexity showed that
experts (0.505) have slightly higher RTEs than the non-experts (0.486).
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4. Discussion

Our approach proposes that the physiological biomarkers of pupil dilation and cardiac
PNN50 can be used to estimate cognitive workloads, depending on assembly complexity
and expertise. The results showed that these two biomarkers had statistically significant
differences depending on the assembly-task complexity, with the cardiac biomarker of
PNN50 having statistically significant differences in the interaction between complexity
and expertise within this task.

Notably, we found that averaging the cognitive workload experienced during each
assembly stage did not align well with the three complexity levels, nor with the cumulative
and dynamic cognitive workload encountered during the assembly process. Addition-
ally, evaluating physiological biomarkers may not be a fair comparison method due to the
unique variations in pupillometry and cardiac metrics indicating a high cognitive workload.
Therefore, cognitive-workload indices were introduced to capture the dynamic and accumu-
lated cognitive loads and to conserve the consistency of high-cognitive-workload changes
between pupillometry and cardiac biomarkers. The pupillometry and cardiac cognitive-
workload indices were verified as statistically significant in the assembly complexity. Our
findings align with previous research on cognitive-workload-indicator development. In
studies on assembly tasks [20], novel cardiac indices derived from heart-rate variability
demonstrated similar trends to assembly performance across varying complexity levels
within short intervals. Additionally, a pilot role study [3] employing multiple physiological
sensors (ECG and ET) found statistically significant differences in features between high-
and low-mental-workload conditions. Additionally, in our study, the cognitive-workload
indices derived from these two sensors also demonstrate clear responsiveness to complex-
ity levels (rest, low, medium, and high), further confirming the development of effective
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biomarkers. This finding is similar to that of the study examined, in which increased cog-
nitive demand for assembly tasks was reported as a higher workload [18]. However, this
phenomenon was only observed in this study when comparing low- and high-complexity
conditions and medium- and high-complexity conditions. Similarly, another study found
that individual alpha frequencies from EEG and blink rate from EOG can discriminate be-
tween medium, high, and overloaded cognitive-load levels in the puzzle-solving assembly
task [17]. However, in this study, the cognitive-workload indices could not distinguish
complexity well between low and medium conditions. This is due to Morton and colleagues
introducing the additional three different working memory tasks with each complexity
level to increase the distinction between the three complexity levels within the task. Uti-
lizing pupillometry and cardiac indices in this study enhances our understanding of how
cognitive workload responds to complexity in the assembly task. Their capacity to visually
illustrate and compare these changes enhances a better recognition and understanding of
cognitive load dynamics.

The pupillometry index and the cardiac index showed a similar trend that experts had
lower cognitive workloads than non-experts in all the assembly complexities (Figures 7 and 8),
except for pupillometry indices in medium complexity, although statistically significant
differences were not exhibited in the interaction of complexity and expertise. This obser-
vation can be considered a verification that personal factor expertise potentially exerts an
influence on cognitive workload within an industrial experiment setting, and may need
to use more specified scenarios to verify the statistically significant differences between
complexity and expertise.

The non-expert group showed higher cognitive-load indices in the pupillometry and
cardiac indices graphs when comparing low and high complexity and medium and high
complexity. Experts showed an increasing trend in cognitive-load indices for pupillometry
and cardiac signals from low to high complexity, with a steady increase or constant variation
between low and medium complexity. Furthermore, cognitive overload can be found in
non-experts compared with experts in the low and high complexities, as shown from both
cognitive-load indices. The lack of alignment between low or medium cognitive-load
indices and task complexity may be due to the fact that the difference in complexity scores
is not distinctive. Nonetheless, significant increases in cognitive workloads can be found in
the high-complexity assembly task compared with the lower-complexity tasks.

The two cognitive-workload indices were correlated in the low- and high-complexity
conditions, but not in the medium-complexity condition. As shown in Table 5, the cardiac
index showed exceptionally low scores of 0 for three participants in the medium-complexity
condition, compared to the pupillometry index. This finding is likely attributed to the fact
that the medium-complexity task was the first task for them and that anxious participants
did not exhibit substantial changes in their HRV from the baseline to the early stage of
stressors [47]. However, in highly complex tasks, such as multiple varied-assembly tasks,
cognitive-workload indices are better indicators of cognitive load than original physiologi-
cal biomarkers, as physiological biomarkers may not clearly show the relationship between
task complexities and cognitive loads.

We found that the eye-tracking device is ideal when measuring cognitive workload
in assembly scenarios, as high cognitive-workload results can be traced back to specific
assembly segments in the recording video. Also, such signals are less likely to be influenced
by psychological factors like anxiety.

The performance metric showed statistical significance in the assembly complexity,
and performance can also indicate that higher cognitive workloads inevitably lead to
performance degradation, such as longer completion times [25]. The most notable finding
is that assembly completion time was strongly correlated with the two cognitive-workload
indices mentioned above. The same trends in experts and non-experts can even be found
by comparing the performance plot Figure 9 and the pupillometry cognitive-load index
plot Figure 7.
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The existing method for estimating cognitive workloads with averaged pupil-dilation
biomarkers could not capture the accumulated cognitive workload of short intervals. As
shown in Figure 3, experts exhibited a slightly higher cognitive workload in the high
complexity task than in the low complexity task. When compared with existing pupil-
lometry biomarkers, the novel proposed method in the pupillometry cognitive-workload
index, which uses short-interval estimation, enables the accumulation and capture of
cognitive workloads in the high complexity task in both groups. This, in turn, increases
the cognitive-load distinction between low and high and medium and high complexities
(Figures 3 and 7).

The existing method of estimating cognitive workload using averaged PNN50 mea-
sures results in similar fluctuations to the cardiac cognitive-workload index, but with the
opposite indication of high cognitive workload. Using original multiple biomarkers to
indicate cognitive load in this context can be misleading, because fluctuating biomarkers
with different directions can mask the true variation in cognitive workload across complex
tasks. The proposed method, which utilizes the cardiac cognitive-workload index, reverses
the direction of the indication to align with the complexity level. This provides better
discrimination between non-experts in low- and high-complexity tasks, as well as between
experts across all three complexity levels, as shown in Figures 4 and 8.

This new approach may still not be good at distinguishing the cognitive workload
between low- and medium-complexity tasks, especially in non-experts. This is potentially
due to the bio-sensors being insufficiently sensitive to distinguish the cognitive workload
between these two tasks. Another underlying reason may be that the non-experts may have
difficulties performing the medium-complexity task of gear assembly to the right standard,
which can considerably decrease the cognitive workload in the medium-complexity task.
Due to the engine-assembly sequence, the first two stages (low and medium complexi-
ties) must be completed successfully to proceed to the high complexity (rotor and cover)
assembly, and the errors in the earlier stage may largely influence the last stage’s task by
increasing cognitive workload and completion time.

The comparison of the two cognitive-load indices shows that the cardiac cognitive-
load index is better at indicating cognitive workload in the assembly task scenario, with a
better alignment between low, medium, and high complexity levels for experts. It is also
more likely to differentiate cognitive workload between experts and non-experts at the
same task-complexity level. The pupillometry cognitive-load index is well aligned with
task performance in terms of completion time, especially from low- to high-complexity
assembly stages, in both experts and non-experts.

There are two limitations to this study. Firstly, there is a lack of perceived workload to
compare the objective data with participants at different stages of the task. Future research
should include self-reported workloads at short intervals within the defined production
scenario to gain a broader understanding. Secondly, the relatively low statistical power
of 0.3 could potentially limit the accuracy of the proposed model and the detection of
the effects. However, considering that the effect size of approximately 0.6 is within the
acceptable range for engineering psychology research, this study still provides valuable
insights into cognitive-workload variations in response to task demands. Future studies
should address the power limitation by potentially increasing the sample size.

5. Conclusions

Our results highlight the importance of understanding operators’ cognitive workload
in a human-centric digitalized manufacturing system. We introduce a new approach to
analyse bio-markers from wearable sensors for eye-tracking and ECG to indicate cognitive
workload and compare this with existing methods. The relationship between the cognitive
workload, task complexity, and the expertise level of the operators was also determined.
Specifically, a new workload-index conversion method was introduced and proved to
be effective when participants are completing the different levels of complex tasks. Both
pupillometry and cardiac cognitive-load indices, along with completion time performance,
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exhibit consistent results. Notably, the two indices align well in indicating cognitive
workload across different complexities, reflecting similar trends to completion time in both
experts and non-experts.

The proposed hypothesis was tested and supported by a practical experiment, where
participants went through a series of assembly tasks with defined complexity levels. Fur-
thermore, the expertise factor was uniquely used in this research as a mediator to indicate
a more accurate method of measuring the impact of task complexity on cognitive workload
and, therefore, the performance of the operators. This was found to be particularly relevant
within the engineering sector of manufacturing assembly. However, the two cognitive-load
indices did not reveal any statistically significant differences in terms of expertise or the
interaction between complexity and expertise across the tasks.

Prior studies have shown that expertise has a significant impact on cognitive and
attentional performance in other fields, such as music, media, and sports [21–23]. To
validate the assumption of expertise differences in manufacturing assembly tasks, more
specialized scenarios need to be designed and conducted.

Future research should focus on the impact of additional personal traits on variations
in cognitive workload in manufacturing settings, where operators interact with advanced
digital technologies and interfaces.
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Table S5. Relative treatment effects summary table for cardiac parameter baselined PNN50; Table S6.
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