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Abstract: Hyperspectral image classification remains challenging despite its potential due to the high
dimensionality of the data and its limited spatial resolution. To address the limited data samples
and less spatial resolution issues, this research paper presents a two-scale module-based CTNet
(convolutional transformer network) for the enhancement of spatial and spectral features. In the first
module, a virtual RGB image is created from the HSI dataset to improve the spatial features using a
pre-trained ResNeXt model trained on natural images, whereas in the second module, PCA (principal
component analysis) is applied to reduce the dimensions of the HSI data. After that, spectral features
are improved using an EAVT (enhanced attention-based vision transformer). The EAVT contained
a multiscale enhanced attention mechanism to capture the long-range correlation of the spectral
features. Furthermore, a joint module with the fusion of spatial and spectral features is designed
to generate an enhanced feature vector. Through comprehensive experiments, we demonstrate the
performance and superiority of the proposed approach over state-of-the-art methods. We obtained
AA (average accuracy) values of 97.87%, 97.46%, 98.25%, and 84.46% on the PU, PUC, SV, and
Houston13 datasets, respectively.

Keywords: hyperspectral; RGB; fusion; spatial; feature; classification; transformer

1. Introduction

Hyperspectral imaging captures highly detailed spectral information across numerous
narrow bands. In contrast to traditional imaging systems that record data in only a few
broad spectral channels (e.g., RGB), hyperspectral sensors can acquire data in hundreds or
thousands of contiguous and narrow bands [1]. This vast amount of spectral information
provides high capabilities for various applications, including agriculture, environmental
monitoring, mineral exploration, urban planning, and military surveillance [2]. Hyper-
spectral imaging can capture the unique spectral signature of materials, surfaces, and
objects. Each pixel in a hyperspectral image contains a spectral curve representing the
reflectance or emissivity of the corresponding material at different wavelengths. Analyzing
these spectral curves empowers researchers and practitioners to gain valuable insights into
the composition and characteristics of the observed scene, enabling the identification of
specific materials, vegetation species, mineral deposits, and pollution levels, among others.
However, the effective utilization of hyperspectral data remains a formidable challenge.
The primary obstacle arises from the high dimensionality of hyperspectral datasets, where
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each pixel contains a vast number of spectral bands [3]. This substantial increase in data
dimensions poses difficulties for traditional image processing and classification.

Furthermore, the challenges imposed by high dimensionality and limited spatial
resolution make conventional classification methods less effective. In recent years, signifi-
cant progress has been made in machine learning (ML) and deep learning (DL). However,
ML-based methods require handcrafted features for training. Therefore, performance could
be more optimal [4]. In contrast, convolutional neural networks (CNNs) have demonstrated
remarkable feature extraction, pattern recognition, and image-classification capabilities.
Several CNN-based methods have utilized spatial features for land cover classification.
Further, several research studies have utilized joint spectral and spatial features to im-
prove the classification [5]. Vision transformers (ViTs) have recently been proposed to
provide long-range dependency on spatial and spectral features for the classification of
land objects [6].

Hyperspectral image classification categorizes pixels or regions within a hyperspectral
image into predefined classes or land cover categories. Meanwhile, the supervised machine
learning methods support vector machine (SVM) [7] and random forest (RF) [8] have been
widely used in the early stages of hyperspectral image analysis using texture and color
features of the land covers. These methods rely on spectral signatures to discriminate
between different classes of land cover. However, hyperspectral data are characterized
by high dimensionality, as each pixel contains many spectral bands. Researchers have
thus explored various techniques to address these challenges and enhance classification
accuracy. Feature-extraction methods, such as principal component analysis (PCA) [9]
and minimum noise fraction (MNF) [10], have been utilized to reduce data dimensionality
while preserving relevant information. Additionally, dimensionality reduction algorithms
like non-negative matrix factorization (NMF) [11] and t-distributed stochastic neighbor
embedding (t-SNE) [12] have been employed to enhance the separability of different classes
in reduced feature spaces.

Recently, DL techniques have gained popularity in hyperspectral image classifica-
tion. Deep learning models, particularly convolutional neural networks (CNNs), have
demonstrated exceptional capabilities in automatically learning hierarchical and discrim-
inative features from raw data. The CNN-based approach is extensively employed in
many image-related applications because of its inherent local connectivity and transla-
tional invariance properties. In the context of HSI, CNNs are typically constructed by
considering both spatial and spectral dimensions. Several studies [13] have employed
a 2-D CNN approach to concurrently extract spatial and spectral information to classify
hyperspectral images (HSIs). Moreover, a previous study [14] has used a three-dimensional
convolutional neural network (3-D CNN) to extract spectral details for land cover clas-
sification. The study [15] proposes a novel approach called the spectral-spatial residual
network (SSRN). This method combines continuous spectral and spatial residual blocks to
extract feature maps from hyperspectral images. The primary objective of this approach is
to mitigate the issue of gradient disappearance commonly observed in neural networks.
An end-to-end residual spectral-spatial attention network (RSSAN) was suggested for
hyperspectral image classification by Zhu et al. [16].

Classification accuracy is improved by combining the spatial and spectral attention
modules. In their paper, Xing et al. [17] presented DIKS, a novel deep network with a
self-expressive property and irregular convolutional kernels. Hyperspectral image classifi-
cation was the primary motivation for developing this network. The Multilevel Feature
Network and Spectral-Spatial Attention Model (MFNSAM) is a new method presented
in [18]. In this approach, a CNN is integrated with the attention mechanism. A multilayer
convolutional neural network (CNN) and a spectral-spatial attention module make up
the MENSAM. Fusion techniques play a pivotal role in remote sensing applications when
integrating data from several sources to acquire complementary and comprehensive in-
formation about the scene under observation. Information from hyperspectral pictures
is fused with data from other sources in hyperspectral image analysis, such as multispec-
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tral photos, auxiliary RGB images, or LIDAR data [19]. Improving classification accuracy,
enhancing geographical features, and providing a more comprehensive picture of the
scene are all goals of merging disparate data types. Hyperspectral image classification
presents several unique obstacles, and various fusion methods have been investigated to
solve these issues [20]. These methods include pixel-level fusion, feature-level fusion, and
decision-level fusion. The spatial and spectral properties were enhanced by merging them
at four scales using a lightweight deep CNN model based on residuals, as demonstrated by
Li et al. [21]. In a similar study, Wang et al. [22] improved the spatial information of HSI by
multispectral image through cross-modality information extracted by a multi-hierarchical
cross transformer (MCT).

Pixel-level fusion involves merging individual pixels from multiple data sources to
create a new image that integrates spectral and spatial information [23]. This technique is
beneficial when the spatial resolution of hyperspectral images is lower than that of ancillary
data sources, as it allows for enhanced spatial details in the final fused image [24]. On the
other hand, feature-level fusion involves extracting features from different data sources
and combining them to create a new feature representation that captures complementary
information from both sources. Feature-level fusion can preserve the original data sources’
spectral and spatial characteristics while reducing data redundancy and increasing classifi-
cation accuracy [25]. We have added a summary of some recent methods for hyperspectral
classification in Table 1.

Table 1. Summary of the recent method for HSI classification.

Author Model Dataset OA
P 96.70%
Zhang et al. [26] TMOE-CNN PU 95.97%
Houston13 89.36%
PU 95.66%
Ahmad etal. [27] WaveFormer Houston 96.54%
IP 95.30%
Xu et al. [28] F-GCN PU 97.68%
KSC 99.94%
PU 95.17%
Shi et al. [29] AIAF-Defense Houston 18 71.94%
SV 96.56%
Ranjan et al. [30] Siamese network E}j Zggoﬁ
SV 99.48%
Gao et al. [31] SSC-SFN WHU-HI-HanChuan 91.82%
WHU-HI-HongHu 92.94%
1P 94.40%
Dang et al. [32] DCTransformer Houston 94.89%
PU 93.99%
Tajasaree et al. [33] deep-LSTM P 99.01%
KSC 96.72%
1P 92.78%
Patel et al. [34] RPDAL PU 97.85%
SV 97.94%

In short, the ML-based method fails to achieve high performance on HSI datasets due
to its dependency on handcrafted features. On the other hand, the CNN approach improved
performance but lacked correlation with the long-range features. Further, ViT improved the
long-range dependency of the spatial and spectral features. However, computational costs
also increased. In the hyperspectral image, spatial resolution is low and spectral resolution
is high due to continuous narrow spectral bands. When classifying the land covers in the
hyperspectral data, spatial and spectral features play crucial roles. In an RGB image, spatial
resolution is high, and spectral resolution is low. Our primary motivation was to improve
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the spatial and spectral resolution. Therefore, we designed two module-based models,
including CTNet. We first generated a synthetic RGB image from the HSI data in one
module using a spectral weighting technique. We utilized a pre-trained ResNeXt model to
improve the spatial features. In the second module, we first reduced the dimensions of the
HSI data using PCA since the processing of many bands requires high costs and time. After
that, an enhanced attention-based transformer model was utilized to improve the spectral
features and provide long-range dependency. Finally, spatial and spectral features were
fused to classify the land covers.
The significant contributions of the method are as follows.

1.  We demonstrate the effectiveness of improving spatial features through synthetic RGB
images using a pre-trained ResNeXt to classify the land covers.

2. We develop and optimize a multiscale attention module of the transformer block to
provide long-range dependency of the spectral features.

3. We designed a fusion module to generate enhanced spatial and spectral features
obtained through convolution and transformer modules.

4. We conducted extensive experiments to evaluate the performance of the proposed
method on four benchmark datasets.

The rest of the paper is arranged as follows.

In Section 2, a description of the proposed model architecture for HIS classification
is discussed. Further, in Section 3, quantitative and visual results on different datasets
are illustrated. In Section 4, we discuss the results, Finally, in Section 5, we discuss the
conclusion, limitations, and future scope of the proposed method.

2. Materials and Methods

In the proposed study, we designed a dual-block convolution and transformer-based
model. The transformer block extracts spectral features, and the convolution block enhances
the spatial features using virtual RGB images. The detailed architecture of the proposed
model is shown in Figure 1.
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Figure 1. The proposed CTNet architecture for the classification of the land covers.
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2.1. Enhanced Attention-Based Vision Transformer (EAVT)

Suppose the hypercube of the hyperspectral image (HSI) is I € RM*N*B where
M and N indicate the width and height dimensions, and B denotes the total number of
bands. Each pixel inside image I encompasses both spatial and spectral characteristics.
Their one-hot encoding is represented by a vector, denoted as H = {hy,hy,...... het,
where C represents the various land covers. In HSI, numerous continuous bands offer
significant spectral information. However, this increased number of bands also leads
to higher computational costs and redundancy. Principal component analysis (PCA) is
employed on band B to address this issue. After PCA is performed, the resulting band
is denoted as D, and it is represented as Y € RM*N*D_ The pixel-wise spectral input is

defined as Yspec = {y1,¥2,Y3/-- - - - - yp} € R*P. After that, the spectral band is converted
to tokens, and positional encoding is performed as follows.
Y' = POS (Yspec) = [YCLSHYbund} + Ypos (1)

where N = number of bands in the token T, Y15 € R*P class tokens, Y,,g € RN*P band
tokens, Y’ = output after positional encoding, and Yspec € R(+N)*D js generated after
position encoding.

The attention weight A]k of the jth input with neighbor size k and relative positional
bias B(i,j) is calculated as follows.

QK. (i) Bijn(i)

xT .
A}c: Q]Kaz(j)+B(]r02(]) )

QK. (i) * Bljox(i)

In Equation (1), the nearest neighbor of the k-th input is denoted by o (k). Query (Q)
and Key (K) are the linear projection token vectors. After that, the linear projection neighbor
is calculated using Equation (2).

T
T T
Vi Vaw) 3)

where V]1< is a matrix that represents k nearest neighbor linear projection value of the j-th input.

Finally, the attention to the j-th tokens with neighbor size k is defined using Equation (4).

Vd

where V/d is the scaling factor. The attention obtained using Equation (4) is repeated for
every pixel in the feature map. The detailed architectures designed for the attention module
of the classical transformer and the proposed one are shown in Figure 2.

Ak
Tout = EATi(j) = Softmax <]> 4 (4)

2.2. Synthetic RGB Image Formation

Let H be the hyperspectral image cube with dimensions M x N x P, where M and N
are the spatial dimensions (height and width) and P is the number of hyperspectral bands.
We defined the intensity of the image at spatial position (1, j) in the K-th band with Hyj.
Further, the weight matrix W of each RGB channel with dimension 3 x P is defined, in which
the rows represent the red, green, and blue channels and the columns represent the weight
for each hyperspectral band in producing the RGB channel. We applied weights to each
hyperspectral band to enhance the quality and relevance of the derived data. Additionally, it
optimizes computational resources for accurately identifying constituent materials and data
processing for specific applications. Band weighting refines hyperspectral data, making
land cover classification more accurate and efficient. We applied band weighting to each
channel c and spectral band P and calculated the intensity of the spectral band as follows.
ok = Hije X Wek (5)

c,
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P

I =Y, Hij x Wgy (6)
P

If =Y, Hij x Wgy )
v

17 =Y Hijk x We 8

where Ié] x = intensity of the spectral band K for channel c, at spatial position (i, j).
Hjj = intensity of the hyperspectral image at position (i, j) in the k-th band.
Wk = weight of the k-th spectral band for c-th RGB channel.

Query Key Value

Positional Bias

Query

Positional Bias

Query

Positional Bias|

(b)

Figure 2. The architecture of the self-attention (a) and enhanced attention (b) block.

After this, we populated each channel for the spatial dimension at position (i, j)

as follows. i
RGB_I(i,j,1) = I} 9
RGB_I(i,j,2) = I/ (10)

] G
RGB_I(i,j,3) = I! (11)

For each channel (R, G, B) of the synthetic image, the minimum and maximum in-
tensity values are calculated to ensure all channels have values within the same range.



Sensors 2024, 24,2016

7 of 26

In hyperspectral images, different bands might have been captured under slightly dif-
ferent illumination conditions. Normalization mitigates these differences, ensuring that
the brightness and contrast are consistent across bands. The normalization operation is
performed as follows.

_ RGB_I(i,j,1) — minValg
 maxValg — minvalg

In(i,j,1) x 255 (12)

. RGB_I(i,],2) — minValg
InG,j,2) = maxValg — minval g X255 (13)
..o RGB_I(i,],3) — minValp
In(ij.3) = maxValg — minvalg

where Ix(i,j,1) = normalized intensity pixel value of red channel at a spatial position (i, j).
RGB_I(i,j,1) = intensity of the pixel at spatial position (i, j) in the red channel before
normalization. minvalg = minimum intensity value of red channel. maxvalg = maximum
intensity of red channel. Iy (i, j,2) = normalized intensity pixel value of blue channel at a
spatial position (i, j). RGB_I(i, j,2) = intensity of the pixel at spatail position (i, j) in blue
channel before normalization. minvalg = minimum intensity value of the blue channel.
maxvalg = maximum intensity of the blue channel. Iy (i, j, 3) = normalized intensity pixel
value of green channel at a spatial position (i, j). RGB_I(i,},3) = intensity of the pixel
at spatail position (i, j) in the green channel before normalization. minvalg = minimum
intensity value of green channel maxvalg = maximum intensity of green channel.

After normalization, we rounded each pixel value to the nearest integer in each
channel, and finally, the image was constructed as follows.

x 255 (14)

Irgp = [round(In(i,j, 1), round(In(i, j,2), round(In(i, j, 3)] (15)

The synthesized RGB image is passed to the pre-trained ResNeXt for spatial feature
extraction. The Algorithm 1 to generate synthetic RGB is shown below.

Algorithm 1: Steps to generate synthetic RGB image

Input: Hyperspectral image cube H, with dimensions M x N x P and Weight matrix (W)
(1) For each channel (Red, Green, Blue) and each spectral band (P), calculate the intensity of the
spectral band as follows.

I
N (¢,K)
where ZZ k) = intensity of k-th spectral band for channel c at spatial position (i, j). H;j = intensity

= H;jjx x Wk

of the hyperspectral image at position (i, j) in the k-th band. W g = weight of the k-th spectral band
for c-th RGB channel.
(2) Calculate the intensity of the R, G, and B channels for the synthetic image using Equation (6),
Equation (7) and Equation (8), respectively.
(3) For each channel (R, G, B) at spatial position (i, j), populate the channel with calculated
intensities using Equation (9), Equation (10) and Equation (11), respectively.
(4) Normalize each pixel value in the R, G, and B channels by calculating minimum and
maximum values using Equation (12), Equation (13) and Equation (14), respectively.
(5) Round each pixel value to the nearest integer in each channel as follows.
I_N = round(I_N(i, j,c))

where I_N = Normalized pixel value rounded to the nearest integer and I_N(i, j, ¢) = normalized
intensity value of the pixel at position (i, j) in channel c.
(6) Construct the final RGB image using the normalized and rounded values in each channel
as follows.

RGB_final(i,j,c) = I_N(i,j,c)
where RGB_final(i, j, c) = pixel value in the final RGB image at position (i, j) in channel ¢ and
I_N(i,j,c) = normalized and round intensity value of pixel value at position (i, j) in channel c.
Output: RGB image
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2.3. Enhanced Spatial Features Using Virtual RGB Images

The labeled hyperspectral image data are limited. Significant differences in imaging
settings, spectral bands, and ground objects make hyperspectral data unsuitable for training
using nature. The CNN can classify HSI by determining the pixel level of each land cover.
In the proposed study, we utilized a three-channel synthetic RGB image to enhance spatial
features using a pre-trained ResNeXt model trained on natural images for pixel-level
classification. A residual block is mathematically defined as follows.

y = F(x, {Wi}) +x (16)

where F represents the residual, x is the input, and y is the output. In the ResNeXt, the
input is split into several branches, processing each distinctively and subsequently merging
them. The split and merge function are expressed as follows for a specific layer.

F(x) = Yy T(x, W) 17)

where C is the cardinality and T represents each branch’s transformation function. The resid-
ual block is shown in Figure 3, and the branch’s transformation is represented as follows.

T(x, W) = conv(ReLU(BN (conv(ReLU(BN(x, W;))), W2))) (18)

where T(x, w) is the output of the convolution layer for input x, “conv” refers to the
convolutional process, “BN” indicates batch normalization, “ReLU” is the rectified linear
activation, and W and W are convolutional operation weights. After that, a global average
pooling and a fully connected layer are added to classify the land covers. The detailed
architecture of the ResNeXt model is shown in Figure 4.

256, 1x1., 64
1

64, 3x3., 64
1

64, 1x1., 256

Figure 3. The residual block of the model.
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Figure 4. Architecture of the ResNeXt for spatial feature extraction.



Sensors 2024, 24,2016

9 of 26

2.4. Spectral-Spatial Feature Fusion for HSI Classification

We observed that the spatial features obtained through FCN and spectral features
extracted by transformer blocks differed in the range and distribution of values. Therefore,
features were normalized and integrated to merge spatial and spectral features. Suppose
Tout € RWXHXDs jg spectral feature obtained from a Transformer with band Ds and
Cout € RW*H*Dspa jg 5 spatial feature obtained from pre-trained FCN with dimension Dgpa.
Here, W x H is the size of the size of the feature that will be fused to generate an enhanced
features vector. Before the fusion process, spectral features are normalized as follows.

n

~ n
1
Iy = WxH ZTij
i=1j=1
n n
04 = wm 3, 2 (Tij — Td) (19)
i=1j=1
T T, T-T,
F(Ty) = ( /U'd d>/ n

where T; = mean of the spectral features, 0; = standard deviation, F (Ti]-) = normalized
spectral features.

Similarly, we normalized the spatial feature. After normalization, we concatenated the
spectral and spatial features to generate an enhanced feature vector as follows.

F, = concat(Fout, Cout) (20)

Finally, the enhanced F; is passed to the Softmax layer for the classification of the
land covers. The loss of the model on each dataset having N training samples is calculated

as follows.
Loss = —Z Zp L Liplog(vjp) (21)

where P = Total land cover categories, [, = Indicator function. It takes a value of 1 if the
j-th category is p and otherwise 0. Vj, = Probability value of the j-th samples belongs to
p-th class. The Algorithm 2 for the proposed method is shown below.

Algorithm 2: The proposed method’s algorithm

INPUT: Hyperspectral image I € R7*"W*D and ground truth label X € RFE*W,
1. Apply PCA and set dimension D = 30, and pass it to the transformer block.
2. Generate RGB image from I € RF*WxD ysing spectral weighting.
3. ForI=1to0 200, do
(a) Train the ResNeXT using synthesize image.
(b) Apply spectral linear projection to generate Q, K, and V and pass to EAVT.
(c) Train the EAVT.
end
4. Apply Equations (19) and (20) to generate enhanced features.
5. Test the model for classification of land covers.
6. Plot the training loss curve.
OUTPUT: Classified label of the test dataset (I € RF*WxC)

3. Experimental Results and Discussion

In this section, we have demonstrated the quantitative and visual results obtained on
four datasets.

3.1. Datasets Description

In this section, we discussed the datasets used to evaluate the proposed method for
hyperspectral image classification. Four benchmark hyperspectral datasets, PU (Pavia
University), PUC (Pavia University Centre), SV (Salina Valley), and Houston-13, were
selected for this study. The PU dataset captures an area covering Pavia University, Italy,
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and was acquired by the Reflective Optics System Imaging Spectrometer (ROSIS) sensor.
The spatial dimensions of the dataset are 610 x 340 pixels, and each pixel represents a
ground area of 1.3 m x 1.3 m, which is the spatial resolution of the dataset, which has nine
land cover classes. The PUC dataset has spatial dimensions of 1096 x 715 pixels. The image
in PUC is larger than the Pavia University dataset, which has 610 x 340 pixels. It contains
102 bands, and it has nine land cover classes.

The SV data were captured using the Airborne Visible/Infrared Imaging Spectrometer
(AVIRIS) sensor, and they have spatial dimensions of around 512 x 217 pixels. The dataset
typically contains 224 contiguous spectral bands. The spectral bands usually cover a range
from 0.4 um to 2.5 um, and they have 16 land covers. The Houston13 dataset contains both
hyperspectral and LiDAR data from an urban area in Houston, Texas, USA. This dataset
has 144 spectral bands in the 380 nm to 1050 nm region and has been calibrated to at-sensor
spectral radiance units. The spatial dimensions of the dataset are 349 x 1905 pixels, with a
spatial resolution of 2.5 m. The detailed description of the datasets is shown in Table 2, and
a color map of the land covers is shown in Figure 5.

(b)

() (d)

Figure 5. The ground truth map with the class label colors of the PU, PUC, SV, and Houston13 shown
in (a), (b), (c), and (d), respectively.
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Table 2. Details of the sample in each land cover with their ground truth and color map.
University of Pavia (PU) Pavia University Centre (PUC)

Id Class Train Test Id Class Train Test
1 Water 742 82 1 Asphalt 6299 332
2 Trees 738 82 2 Meadows 17,717 932
3 Asphalt 735 81 3 Gravel 1994 105
4 Self-Blocking Bricks 727 81 4 Trees 2911 153
5 Bitumen 727 81 5 Painted metal sheets 1278 67
6 Tiles 1134 126 6 Bare Soil 4778 251
7 Shadows 428 48 7 Bitumen 1264 66
8 Meadows 742 82 8 Self-Blocking Bricks 3498 184
9 Bare Soil 738 82 9 Shadows 900 47

Salinas Valley (SV) Houston13

1d Class Train Test Id Class Train Test
1 Brocoli_green_weeds_1 1909 100 1 Grass healthy 311 14
2 Brocoli_green_weeds_2 3540 186 2 Grass stressed 329 36
3 Fallow 1877 99 3 Trees 329 36
4 Fallow_rough_plow 1324 70 4 Water 257 28
5 Fallow_smooth 2544 134 5 Residential buildings 288 31
6 Stubble 3761 198 6 Non-Non-residential buildings 368 40
7 Celery 3400 179 7 Road 399 44
8 Grapes_untrained 10,707 564
9 Soil_vinyard_develop 5893 310
10 Corn_senesced_green_weeds 3114 164
11 Lettuce_romaine_4wk 1015 53
12 Lettuce_romaine_5wk 1831 96
13 Lettuce_romaine_6wk 870 46
14 Lettuce_romaine_7wk 1017 53
15 Vinyard_untrained 6905 363
16 Vinyard_vertical_trellis 1717 90

3.2. Performance Metrics

Standard performance metrics for classification tasks were employed to compre-
hensively evaluate the proposed approach’s performance and compare it with baseline
methods. The following metrics were utilized:

Overall Accuracy (OA): Overall accuracy represents the ratio of correctly identified
instances to the total number of instances.

1t
OA = ﬁzi:1 CM; (22)
where N = total testing sample, T = total diagonal, and CM = confusion matrix.

Average accuracy (AA): Average accuracy is the mean of accuracies obtained for each

individual class.

1 N
AA= Y CA; (23)

where N is the number of classes and CA; represents class-specific accuracy.
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Kappa core (KS): kappa measures the observed agreement between two classifiers
compared to the agreement that would be expected purely by chance. This metric can
be used to evaluate the reliability and consistency of a classifier on a categorical problem.
Kappa is calculated using the following formula:

Py — P

K =
S 1-P,

(24)

where P, is the proportion of instances where the two classifiers agree and P, is the
proportion of instances where the two classifiers would agree by chance.

3.3. Experimental Setup

We experimented on Dell Precision 7920 Workstation, which has the following configuration:

Intel Xeon Gold 5222 3.8 GHz Processor (Intel Corporation, Santa Clara, CA, USA),
Kingston 128 GB DDR4 2933 RAM (Kingston Technology Company, Fountain Valley,
CA, USA), Kingston 1 TB 7200 RPM SATA HDD (Kingston Technology Company, Foun-
tain Valley, CA, USA), Kingston 500 GB SSD (Kingston Technology Company, Fountain
Valley, CA, USA), Nvidia Quadro RTX 4000 8 GB Graphics Card (Nvidia Corporation,
Santa Clara, CA, USA), 24 Inch Dell TFT Monitor (Dell, Round Rock, TX, USA), Dell
USB Mouse (Dell, Round Rock, TX, USA), Dell KB216 Wired Keyboard (Dell, Round
Rock, TX, USA), Microsoft Windows 10 Operating System (Microsoft Corporation, Red-
mond, WA, USA), Python 3.8 Programming Language (Python Software Foundation (PSF),
Wilmington, DE, USA), and Tensor Flow 2.0 open-source Machine Learning Framework
(Google, Menlo Park, CA, USA). The Adam optimizer with an initial learning rate of 0.001
accelerates the training process and trains each model for 200 epochs with a batch size of 128.

3.4. Comparative Analysis with Baseline Methods

In this subsection, a comprehensive comparative analysis was performed to evaluate
the effectiveness of the proposed approach against traditional classification methods and
state-of-the-art deep-learning-based methods.

3.4.1. Quantitative Results

We evaluated the performance of several methods under the same experimental
environment. For the PU dataset, 95% of the samples were used for training and 5% for
validation. The 2DCNN is a five-layer sequential convolutional neural network. It has
three convolutional, two max pooling, and one fully connected layer. On the other hand,
3DCNN has three convolutional layers to extract spectral features.

Further, BTA-Net is an attention-based model designed using 1D and 2D convolutional
layers to extract spatial features. The HybridSN utilized 2D and 3D CNN layers to improve
performance using spatial and spectral features. At the same time, UML applied multiscale
depth-wise 1D and 3D convolutional layers for joining spatial and spectral features. SiT
and 3DSwinT provide long-range dependency on the spatial and spectral features using
ViT to improve the accuracy of the classification of land covers. The performance measures
of the proposed CTNet and other methods are shown in Table 3. Table 3 shows that the
HybridSN achieved the highest classification accuracy of 97.53% for painted metal sheets,
whereas UML classifies Bare Soil with an accuracy of 96.42%. The transformer-based model
SiT obtained 96.53% accuracy for the tree class. The proposed model CTNet achieved the
highest classification accuracies of 98.65%, 95.37%, 94.17%, 98.76%, and 97.58% for the
Asphalt, Gravel, Bitumen, Self-Blocking Bricks, and Shadows classes, respectively.

In the PUC dataset, for nine land covers, 7456 samples are available, which is less than
the PU dataset. In addition, to avoid overfitting, we trained all models on 90% samples and
validate on 10% samples. Other experimental setups were the same as those used for the PU
dataset. The performance for each class and OA, AA, and Kappa value is shown in Table 4.
Table 4 shows that the BTA-Net achieved an accuracy of 98.12% for the Self-Blocking Bricks
land cover. UML achieved the highest classification, 97.82%, for Asphalt, whereas SiT
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obtained 98.84% accuracy for Tiles class. The 3DswinT obtained an accuracy of 97.57% for
the Meadows class.

Table 3. Quantitative performance comparison on the PU dataset (in %).

Id. 2DCNN 3DCNN BTA-Net HybridSN  UML SiT 3DSwinT CTNet

1 85.35 94.17 91.80 95.16 90.53 92.17 94.15 98.65

2 92.18 93.54 92.71 96.47 94.81 96.43 97.63 97.18

3 62.57 81.34 84.05 86.57 85.17 92.62 94.35 95.37

4 91.71 93.18 89.16 91.26 88.62 96.53 95.67 94.94

5 93.87 94.87 95.98 97.53 96.57 94.76 93.75 97.49

6 82.58 91.57 95.36 93.89 96.42 90.85 95.38 95.92

7 80.65 88.94 86.54 84.52 83.53 91.74 92.14 94.17

8 78.64 90.67 87.28 96.76 80.27 91.17 96.81 98.76

9 82.16 83.67 92.79 92.89 89.15 92.04 91.59 97.58

AA 83.30 90.27 90.63 92.78 89.34 93.15 94.83 96.83

OA 86.75 92.15 93.24 94.17 90.76 93.03 95.68 97.87

Kappa 82.17 88.05 87.26 90.18 87.25 92.07 94.13 96.58
Table 4. Quantitative performance comparison on the PUC Dataset (in %).

Id. 2DCNN 3DCNN BTA-Net HybridSN  UML SiT 3DSwinT CTNet

1 56.38 55.34 64.52 88.28 86.62 88.92 89.25 96.72

2 77.53 82.28 82.38 87.58 93.32 94.65 92.53 95.48

3 84.18 87.68 92.32 96.74 97.82 96.16 94.46 95.19

4 75.32 72.27 98.12 97.36 96.32 96.25 96.34 96.87

5 81.96 84.54 87.54 96.32 96.92 97.98 94.54 98.57

6 90.28 93.26 96.87 98.66 99.25 98.84 97.73 96.45

7 46.25 65.78 78.42 92.26 94.87 95.28 97.64 97.82

8 82.78 86.14 90.63 94.86 95.74 96.26 97.57 97.14

9 74.92 62.89 96.18 93.68 96.85 94.45 95.25 96.27

AA 74.44 76.89 86.35 94.01 95.10 94.42 95.03 96.72

OA 75.34 78.24 88.23 95.17 96.58 96.36 96.54 97.46

Kappa 73.48 75.84 85.98 93.28 94.92 94.13 94.62 96.16

The SV dataset contains 54,129 samples. The dataset is divided into 95% and 5%

for training and validation. In Table 5, we can see that the 2DCNN performance could
be better in several classes. However, 3DCNN improved the performance in the Let-
tuce_romaine_7wk and Vinyard_vertical_trellis classes. Moreover, BTA-Net has the highest
classification accuracy for the Lettuce_romaine_6wk class. The HybridSN discriminates
Fallow_rough_plow and Stubble land covers with the highest quantitative value. Further,
UML showed improved results in several classes. The SiT methods achieved more than 95%
classification accuracy. The 3DSwinT and proposed CTNet achieved similar performance
in several classes. However, CTNet dominates in classification accuracy, where there are
fewer samples.
Table 5. Quantitative performance comparison on the SV Dataset (in %).

Id. 2DCNN 3DCNN BTA-Net HybridSN  UML SiT 3DSwinT CTNet

1 87.52 64.25 85.27 84.32 89.25 96.72 95.36 97.85

2 78.63 88.76 85.64 85.48 97.53 95.42 93.42 96.15

3 77.81 91.24 90.52 96.37 94.46 95.84 89.25 98.24

4 65.27 72.28 80.62 98.56 96.34 98.38 88.12 96.52

5 87.78 88.67 93.25 95.62 94.54 97.56 95.78 97.21

6 68.46 67.89 75.48 98.46 97.73 97.94 96.92 95.54
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Table 5. Cont.
Id. 2DCNN 3DCNN BTA-Net HybridSN  UML SiT 3DSwinT CTNet
7 58.35 51.48 71.34 97.82 97.64 98.52 98.64 97.12
8 65.28 66.78 74.94 95.25 98.28 97.38 92.36 98.67
9 58.92 64.96 88.36 88.28 86.62 88.92 84.52 92.25
10 68.84 76.43 68.74 87.58 93.32 96.65 92.38 94.52
11 78.65 88.75 91.82 96.74 97.82 96.16 94.32 96.15
12 81.52 76.38 94.76 97.36 96.32 96.25 97.12 98.52
13 82.42 95.57 98.15 96.32 98.12 97.98 95.54 98.17
14 85.57 94.32 95.21 95.66 97.25 96.14 96.87 98.86
15 72.64 85.65 90.18 92.26 94.87 95.28 88.42 96.24
16 75.85 94.36 96.34 97.82 97.13 97.48 93.87 97.94
AA 74.59 79.24 86.19 93.99 95.50 96.41 93.31 96.74
OA 77.28 82.16 88.27 95.36 96.35 97.17 94.54 98.25
Kappa 72.45 78.22 84.35 92.15 93.26 95.28 91.19 96.37
The Houston 13 dataset contains very few samples for each class. Therefore, we
split the dataset into 90% and 10% for training and validation. The quantitative results
of the 2DCNN and 3DCNN are less in several classes, as shown in Table 6. The BTA-Net
and HybridSN improve the performance. The UML achieved the highest classification
accuracy for the Trees class and 3DSwinT for Non-residential buildings. Moreover, CTNet
classification accuracy is highest in the five land covers.
Table 6. Quantitative performance comparison on Houston13 Dataset (in %).
Id. 2DCNN 3DCNN BTA-Net HybridSN  UML SiT 3DSwinT CTNet
1 44.53 47.37 56.38 67.82 72.43 65.28 66.78 74.94
2 52.67 68.72 46.86 57.28 54.85 58.92 64.96 88.36
3 48.14 49.85 41.58 45.84 73.76 48.84 46.43 68.74
4 61.34 46.86 58.93 63.76 68.78 78.65 88.75 91.82
5 54.53 65.67 66.37 62.94 72.13 81.52 76.38 94.76
6 72.72 42.92 68.92 65.87 75.52 82.42 95.57 95.10
7 45.48 52.94 56.38 67.82 42.32 65.28 51.48 71.34
AA 54.20 53.47 56.48 61.62 61.40 68.70 70.05 83.58
OA 55.64 55.84 57.83 62.17 63.28 70.36 72.54 84.46
Kappa 53.48 52.84 55.98 60.28 60.92 67.13 68.62 83.16

3.4.2. Visual Results Analysis

In Figures 6-9, we present visual maps for the classes of the PU, PUC, SA, and Hous-
ton13 datasets. Specifically, Figure 6 reveals that the 2DCNN-based land cover classification
map is not consistently accurate with the ground truth (GT) across various classes. This dis-
crepancy is particularly evident in the Asphalt, Bitumen, Self-Blocking Bricks, and Shadows
classes. In contrast, 3DCNN offers enhanced visual maps for several classes. The SDCNN
method displays superior object visualization, mainly producing a map almost identical to
the GT for the Painted metal sheets class. The BTA-Net's representation of the Meadows
class outperforms other techniques, while HybridSN’s depiction of the Asphalt class closely
aligns with the GT. The UML method leverages global feature attention to refine its land
cover classification map, and CTNet's visualizations closely match the GT in the Trees, Bare
Soil, Bitumen, and Shadows classes.

Figure 7 further showcases that the classification maps of 2DCNN, 3DCNN, and
BTA-Net for water and Shadows land covers appear noisy. In contrast, HybridSN provides
a superior representation for the tiles class. The UML methods provide better visuals in
the Asphalts class. Meanwhile, SiT and 3DSwinT improved the visual map of the Tree and
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Meadows classes. Furthermore, our proposed approach’s classification maps align closely
with the GT across multiple classes Water, Trees, Bitumen, Shadows, and Bare Soil.

Figure 6. Visual map of land covers using (a) 2DCNN (b) 3DCNN (c) BTA-Net (d) HybridSN (e) UML
(f) SiT (g) 3DSwinT, and (h) CTNet on PU dataset.

In Figure 8, the 2DCNN-based method classification map for land covers does not
align closely with the GT across various classes. Discrepancies are noticeable in several
specific classes. On the other hand, the SDCNN method offers more accurate visual rep-
resentations in multiple classes. Compared to the GT, the BTA-Net technique showcases
superior object detail, which is especially evident in its near-perfect depiction of the Let-
tuce_romaine_6wk class. Similarly, HybridSN’s representation of the Fallow_rough_plow
and Stubble classes closely mirrors the GT. The UML method refines its portrayal using
global feature attention, especially in the Brocoli_green_weeds_2 and Lettuce_romaine_4wk
classes. At the same time, SiT showed better visual maps for the Fallow_smooth and
Corn_senesced_green_weeds classes. The proposed CTNet improved the visual maps
aligning with the GT across Alfalfa, Corn-mintill, Hay-windrowed, Oats, Soybean-clean,
Woods, Buildings-Grass-Trees-Drives, and Stone-Steel-Towers classes.
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Figure 7. Visual map of land covers using (a) 2DCNN (b) 3DCNN (c) BTA-Net (d) HybridSN (e) UML
(f) SiT (g) 3DSwinT, and (h) CTNet on the PUC dataset.

(a) (b)

Figure 8. Cont.
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(f) (8) (h)

Figure 8. Visual map of land covers using (a) 2DCNN (b) 3DCNN (c) BTA-Net (d) HybridSN (e) UML
(f) SiT (g) 3DSwinT, and (h) CTNet on the SV dataset.

(d)

(® (h)

Figure 9. Visual map of land covers using (a) 2DCNN (b) 3DCNN (c) BTA-Net (d) HybridSN (e) UML
(f) SiT (g) 3DSwinT, and (h) CTNet on the Houston13 dataset.
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In Figure 9, we can observe that the classification maps from 2DCNN and 3DCNN ap-
pear noisy. The BTA-Net offers a refined visualization, particularly for the Non-residential
buildings class. The HybridSN excels in representing the Grass healthy class compared
to other techniques. UML and 3DSwinT yield superior visualizations for the Trees and
Non-residential buildings classes, respectively. Additionally, our suggested approach’s
classification maps closely resonate with the GT across various classes.

4. Discussion

We evaluated the CTNet on PU, PUC, SV and Houston13 and achieved better quanti-
tative visual results compared to its counterparts 2DCNN, 3DCNN, BTA-Net, HybridSN,
UML, SiT, and 3DSwinT, as discussed in Section 3. The proposed model enhances spatial
features using virtual RGB and ResNeXt. Further, we enhanced the spectral features us-
ing an enhanced attention-based vision transformer (EAVT). ViTs are advanced natural
language processing (NLP) techniques representing pairwise interactions among tokens
and capturing long-range correlations [35]. The transformer-based technique has been
effectively implemented in computer vision applications, and pre-trained transformers
now have a robust multipurpose backbone. To implement the classical ViT, we split the
input image I € RF*W*D into patches P € R (P! <P xD) with a size of pHpW. The ViT
encoder uses alternating multi-head self-attention (MSA) and feed-forward (FF) blocks
with layer normalization (LN) to encode and generate embedded data z. The quadratic
complexity of the attention mechanism for a given input token is the primary impediment
to implementing ViT on high-dimensional data. The complexity of self-attention has been
reduced in several research studies, and self-attention has been applied individually instead
of pairwise among all tokens to increase the effectiveness of transformers for large numbers
of tokens. Our EAVT is inspired by the Swin and convolution self-attention mechanism
that enhanced the spectral features.

4.1. Patch Size Effect on Model Performance

Vision transformers depend on patch size, the length, and the width of the non-
overlapping patches created from the input images. The transformer receives tokens
that are linearly integrated with these patches. Figure 10 demonstrates that the CTNet
performance is lower for 9 x 9 and 11 x 11 patch sizes, while the highest accuracy for
classification is attained for 15 x 15 patches. In addition, growing the patch size decreases
the accuracy of classification.

4.2. Training Loss of the Proposed Model

We have calculated the training loss of the CTNet on the four-dataset using the method
described in Equation (14) for the PU, PUC, SV, and Houston13 datasets shown in Figure 11.
In Figure 11a, the training loss of the proposed method is initially high; after 30 epochs, it
reaches zero. On PUC, dataset training loss reaches a value close to zero after 25 epochs.
However, the SA dataset reaches a value close to zero after 75 epochs. Furthermore, on the
Houston 13 dataset, training loss is relatively high due to the small size of the dataset.

4.3. Computation of the Training and Validation Time

In Table 7, we compare the training and validation times of various methods, including
2DCNN [24], 3DCNN [36], BTA-Net [37]. The CNN based require large volume of data for
training [38,39]. In addition, we also compared with HybridSN [40], UML [41], SiT [42],
3DSwinT [43], and CTNet. The CTNet demonstrates relatively faster performance than
other methods, excluding 2DCNN. This indicates that our approach can reduce compu-
tation time and enhance classification efficiency. The high training and validation time
for SiT and 3DSwinT are attributed to their deeper network layers, requiring extensive
computational cycles per iteration. However, CTNet takes slightly longer than 2DCNN
due to utilizing a ResNeXt for spatial feature extraction.
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Figure 11. Illustration of the training loss on the PU, PUC, SV, and Houston13 datasets is shown in
(a), (b), (¢), and (d), respectively.
Table 7. Comparison of training and validation times of various methods.
PU PUC SV Houston13
Methods . . ; .
Train (s) Test (s) Train (s) Test (s) Train (s) Test (s) Train (s) Test (s)
2DCNN [24] 247.2 3.02 214.2 1.52 387.6 3.23 924 1.12
3DCNN [36] 788.4 8.19 435 3.46 622.2 7.54 247.2 1.28
HybridSN [37] 561 4,51 271.2 2.17 615.6 5.47 149.4 1.53
BTA-Net [40] 687 8.06 502.2 4.29 735.6 7.52 319.2 2.18
3DSwinT [41] 508.2 5.12 513.6 3.42 812.4 7.58 292.2 2.45
UML [42] 510.6 4.23 445.2 4.18 800.4 6.26 249.6 1.53
SiT [43] 370.2 2.97 559.2 3.57 850.8 9.62 261 2.39
CTNet 273.6 3.52 251.4 2.16 439.2 4.16 132.6 1.13

Further, we plotted the bar plot for the computation time comparison on the PU, PUC,
SV, and Houston13 datasets, shown in Figure 12. We can notice that the training time of
all the models on the SV training dataset is relatively high. For the Houston13 dataset, the
training and test times are the lowest.

4.4. Effects of Training Samples (%) on OA Accuracy

The general thought for the CNN model is that it requires a large volume of training
data for better classification performance [44]. We plotted the training sample (in %) and the
OA accuracy curve for the PU. The PUC, SV, and Houston datasets are shown in Figure 13.
The OA accuracy is less in all the datasets for a small percentage of the training samples.
As we increased the samples, the OA accuracy also increased. The highest OA on 90% of
the data was obtained in the PUC datasets due to the large samples present in each class
of the PUC dataset. The lowest OA accuracy of 84% on 90% training was obtained on the
Houston13 dataset due to the fewer samples in each land cover.
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Figure 13. Effect of training sample on OA.

4.5. Bar Plot Based Comparison

We experimentally evaluated the performance of the 2DCNN [24], 3DCNN [36], BTA-
Net [40], HybridSN [37], UML [42], SiT [43], and 3DSwinT datasets [41] and proposed
CTNet on the PU, PUC, SV, and Houston13 datasets. All the methods were evaluated
under the same experimental conditions for a fair comparison. We plotted these models
AA, OA, and Kappa scores, as shown in Figure 14. In Figure 14a, we notice that the OA
accuracy of classical CNN-based methods is relatively low compared to transformers. The
3DSwinT obtained the second-highest OA of 95.68%, whereas 2DCNN achieved the lowest
OA of 86.75% on the PU dataset. On the PUC dataset shown in Figure 14b, UML, SiT,
and 3DSwinT, we obtained OA values that were very close to each other. Meanwhile, the

7
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proposed CTNet showed superior performance compared to other methods. In Figure 14c,
we can observe that the AA accuracy of the SiT is very close to that of the proposed CTNet.
At the same time, the lowest AA accuracy can be noticed in the 2DCNN and 3DCNN
methods. In addition, the Kappa values of the HybridSN and 3DSWinT are very close
to each other. On the Houston 13 dataset shown in Figure 14d, the OA of the classical
CNN and transformer-based methods is below 90% due to there being fewer samples in
each land cover. The OA of the 2DCNN and 3DCNN are close to each other. Transformer-
based methods SiT and 3DSWinT obtained AA values of 68.7% and 70.05%, respectively.
Meanwhile, the proposed CTNet achieved an AA value of 83.58%.
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Figure 14. Performance comparison of the different methods on the (a) PU, (b) PUC, (c) SV, and
(d) Houston13 datasets.

5. Conclusions

In the proposed study, the fusion of spectral and spatial information has resulted in a
remarkable improvement in classification accuracy, surpassing traditional methods and
even outperforming deep learning models that do not incorporate RGB data. Integrating
RGB and hyperspectral data allows for a more comprehensive characterization of the
observed scene, empowering effective discrimination between land cover classes with
distinct spectral and spatial patterns. Further, high-dimension spatial features are extracted
by pre-trained ResNeXt to improve the spatial features. At the same time, it takes less
computation time due to the pre-trained model. In addition, the enhanced attention-based
transformer network extracts spectral features to provide a long-range dependency of the
features. Furthermore, the fusion of spatial and spectral features enhanced the classification
performance. We experimentally evaluated the CTNet on the four standard datasets, PU,
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PUC, SV, and Houston13. The average accuracies on PU, PUC, SV, and Houston13 is 96.83%,
96.72%, 96.74, and 83.58%, respectively. Moreover, the visual map of the CTNet on these
datasets is closer to the GT. The proposed approach can be utilized in agriculture remote
sensing to monitor crop health and stress measurement. In addition, it can be also used
for the classification of different types of crops. Furthermore, an automated system can
be designed for the diagnosis of different types of disease in crops. In the environment of
remote sensing, it can be used to monitor the land cover changes, vegetation dynamics, and
ecosystem health. In addition, it can be also used for biodiversity assessment by mapping
habitats, identifying biodiversity hotspots, and monitoring changes in species distribution.

The major limitations of the proposed method include accurately aligned RGB data
with high spatial resolution. Misalignment can disrupt the fusion process and affect
classification accuracy. Furthermore, a pre-trained model is required to improve the spatial
resolution. The fusion process improved the classification performance, but noise in the
data can lead to potential misclassification. Additionally, the approach’s success may be
contingent upon the availability of labeled data for training and diverse datasets to achieve
optimal performance. We will include axillary data from Radar and other transfer learning
and domain adaptation methods in future studies. Further, the interpretability of the
hyperspectral image with explainable Al and ensemble learning techniques with real-time
applications can be explored.
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Abbreviations

HSI Hyperspectral imaging

CTNet Convolutional transformer network
RGB Red blue green

PCA Principal component analysis
EAVT Enhanced attention-based vision transformer
AA Average accuracy

OA Overall accuracy

PU Pavia university

pPUC Pavia university Centre scene

SV Salina velley

ML Machine learning

DL Deep learning

CNN Convolution neural network

SVM Support vector machine

MNF Minimum noise fraction

NMF Non-negative matrix factorization
BN Batch normalization

ReLU Rectified linear unit

FCN Fully convolution network
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ROSIS Reflective Optics System Imaging Spectrometer
M Confusion matrix

GT Ground truth

NLP Natural language processing

ViT Vision transformer

Al Artificial intelligence

TMOE-CNN Tree-shaped multi objective evolutionary CN
F-GCN Fuzzy graph convolutional network

KSC Kennedy space Centre

AIAF-Defense Attack-invariant attention feature-based defense
DCTransformer Discrete cosine transform
RPDAL Reinforced pool-based deep active learning
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