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Abstract: It is important to achieve the 3D reconstruction of UAV remote sensing images in deep
learning-based multi-view stereo (MVS) vision. The lack of obvious texture features and detailed
edges in UAV remote sensing images leads to inaccurate feature point matching or depth estimation.
To address this problem, this study improves the TransMVSNet algorithm in the field of 3D recon-
struction by optimizing its feature extraction network and costumed body depth prediction network.
The improvement is mainly achieved by extracting features with the Asymptotic Pyramidal Network
(AFPN) and assigning weights to different levels of features through the ASFF module to increase the
importance of key levels and also using the UNet structured network combined with an attention
mechanism to predict the depth information, which also extracts the key area information. It aims to
improve the performance and accuracy of the TransMVSNet algorithm’s 3D reconstruction of UAV
remote sensing images. In this work, we have performed comparative experiments and quantitative
evaluation with other algorithms on the DTU dataset as well as on a large UAV remote sensing image
dataset. After a large number of experimental studies, it is shown that our improved TransMVSNet
algorithm has better performance and robustness, providing a valuable reference for research and
application in the field of 3D reconstruction of UAV remote sensing images.

Keywords: reconstruction; deep learning; drone remote sensing; TransMVSNet; artificial intelligence

1. Introduction

In recent years, multi-view stereo (MVS) has become a research hotspot in the field of
computer vision, with high potential value in computer-aided design [1], virtual reality [2],
augmented reality [3], and robot navigation [4]. Prior to deep learning, conventional
multi-view stereo vision involved first calibrating the camera [5], i.e., calculating the
camera’s image coordinate system in relation to the world coordinate system. Information
from multiple 2D images was then used to reconstruct 3D information. Although great
achievements have been made in the reconstruction of Lambertian surfaces [6], they are
still affected by factors such as illumination variations or low texture leading to poor
reconstruction results.

The three-dimensional reconstruction of remote sensing scenes by unmanned aerial
vehicles (UAVs) is receiving increasing attention. However, there are still some challenges
in the 3D reconstruction process, including the accuracy and efficiency of reconstruction,
especially in complex and large-scale scenes. Therefore, the problem to be addressed in
this study is the accuracy and efficiency of the 3D reconstruction of remotely sensed scenes
using UAVs, especially in complex and large-scale scenes. The specific objective of this
research is to improve the existing TransMVSNet 3D reconstruction algorithm with the aim
of providing more accurate and detailed 3D models for various scenes. The importance of
this work is that it has the potential to improve the adaptability of multi-view vision in the
field of unmanned remote sensing and contribute to the development of better algorithms.
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Related Work and Contribution

Among the traditional 3D reconstruction algorithms, the most representative of sparse
reconstruction is the Structure from Motion (SFM) [7] algorithm, which takes a set of images
as input and generates two pieces of information: the camera parameters of each image
and a set of 3D points visible in the image, which are usually encoded as trajectories. A
trajectory is defined as a list of the 3D coordinates of the reconstructed 3D points and the
corresponding 2D coordinates in a subset of the input images. Dense reconstruction [8]
is the process of finding points in space with photometric consistency [9] to stereo match
the scene when the camera parameters are known. On these bases, OpenMVS [10] is a
more classical multi-view stereo (MVS) open-source library that integrates the complete
technical solution for 3D reconstruction, which includes camera modeling, multi-view
stereo, dense reconstruction, surface reconstruction [11], point cloud fusion [12], and
texture mapping [13].

In the era of deep learning, deep learning-based stereo vision uses deep CNNs to
extract the depth map for each view, and the 3D model is finally obtained through multi-
view fusion, which can effectively improve the accuracy of 3D reconstruction. In particular,
MVSNet [14] proposed by Yao Yao et al. is the originator of multi-view stereo vision. In
this approach, the algorithm mainly extracts the depth map for each view, and central to
this is that each pixel of the reference image is searched along the antipodal line in all the
projection-transformed source images to find the best depth with the lowest matching cost.
Consequently, a depth map with high resolution and accuracy can be obtained. Then, in
2019, Prof. Long Quan’s team at the Hong Kong University of Science and Technology
improved MVSNet and proposed RMVSNet [15], which replaced 3D convolution with
the GRU temporal network to reduce the model size, and then the loss was changed to
cross-entropy loss for multi-classification.

In 2019, Chen et al. proposed PointMVSNet [16] based on MVSNet, which is an
algorithm that predicts the depth information and then forms a 3D point cloud using
the image. It then uses the algorithm of the 3D point cloud to optimize the regression
of depth. Subsequently, in 2020, Hongwei Yi et al. proposed PVA-MVSNet [17], which
is an algorithm that uses the attention mechanism to adaptively learn weights, such as
the weights of different viewpoints. X. Gu et al. also proposed the Cascade-MVSNet [18]
algorithm, which utilizes the strategy of chained costume construction to estimate the
coarser depth values first and then further reduces the depth estimation range to improve
the depth estimation accuracy, achieving higher resolution and higher accuracy depth maps
with less GPU consumption. After dense reconstruction, the results of Cascade-MVSNet
are also more complete than those of the previously mentioned methods. Meanwhile, in
2020, Jiayu Yang et al. proposed an unsupervised neural network, CVP-MVSNet [19]. This
is a costume-based, small, and computationally efficient MVS deep inference network. The
costume pyramid is constructed in a coarse-to-fine manner based on a detailed analysis
of the relationship between the depth residual search range and image resolution; the
framework can use less memory to process higher resolution images. It is six times faster
than PointMVSNet.

More recently, Ding, Yikang et al. proposed the TransMVSNet [20] algorithm, which
is the first attempt to use Transformer for MVS tasks. The authors utilize MVS due to its
suitability for feature matching tasks and propose a powerful Feature Matching Transformer
(FMT) [21] to leverage intra- (self-) and inter- (cross-)attention [22] to aggregate long-range
context information within and across images. In this paper, to facilitate a better adaptation
of the FMT, we leverage an Adaptive Receptive Field (ARF) [23] module to ensure smooth
transfer in terms of the scope of features and bridge different stages with a feature pathway
to transfer transformed features and gradients across different scales.

The algorithms mentioned above provide outstanding contributions to the field of
multi-view stereo (MVS). Moreover, the application of 3D reconstruction technology in the
field of UAV remote sensing [24] has been expanding, providing richer information and data
for topographic surveying [25], urban planning [26], environmental monitoring [27], and
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other fields. By carrying photographic equipment for aerial photography using unmanned
aircraft and processing and analyzing aerial images with 3D reconstruction algorithms,
high-precision and high-resolution 3D maps [28] and models can be constructed, providing
data support for other geographic information systems [29] and geoscientific research [30].
Compared with traditional multi-view stereo (MVS) vision datasets, the scenes in UAV
remote sensing images are more complex, the image resolution is larger, and the impact of
weather and other factors may lead to lower texture clarity in the image. The TransMVSNet
network adopts the Transformer module, which is more suitable for this kind of scene, so
our work is based on this.

In this work, we improve the TransMVSNet network, which uses a feature extraction
module (FPN) [31] as its feature extraction network. In this paper, we use an asymptotic
feature pyramid network (AFPN) [32] to support the direct interaction of non-adjacent
layers. AFPN is initiated by fusing two neighboring low-level features and progressively
incorporating high-level features into the fusion process. In this way, large semantic gaps
between non-adjacent levels can be avoided. Considering the possibility of multi-target
information conflicts during the feature fusion process at each spatial location, adaptive
spatial fusion operations are further utilized to mitigate these inconsistencies. We use a
network module based on the UNet structure [33] combined with an attention mechanism
to improve the original network module in the construction of the cost volume, which can
improve the quality and the accuracy and reliability of the generated depth map.

To summarize, our contributions are as follows:

(1) We improve the TransMVSNet neural network to estimate the depth map of UAV
remote sensing images and solve the information conflict in the depth extraction
process that results in unreliable depth maps.

(2) We adopt an asymptotic feature pyramid network (AFPN) that progressively inte-
grates low-level, high-level, and top-level features in the bottom–up feature extraction
process of the backbone network [34]. Meanwhile, different spatial weights are
assigned to the features of different levels by ASFF [35], which enhances the im-
portance of key levels and mitigates the effect of contradictory information from
different targets.

(3) We use a UNet neural network to predict the depth while incorporating an attention
mechanism to extract critical region information by adding weights.

2. Proposed Methods
2.1. Feature Extraction

TransMVSNet adopts the FPN feature pyramid structure, comprising a top–down path
to achieve the fusion of features of different levels and a bottom–up path to make up for
the lack of low-level feature details in high-level features. However, detailed information
from low-level features may be lost or degraded during propagation and interaction. This
leads to suboptimal extraction of detailed features from the original view.

In our work, we introduce a novel feature extraction pyramid (AFPN) with the struc-
ture shown in Figure 1. The bottom–up feature extraction process in the backbone begins
by fusing two low-level features of different resolutions. In the later stages of feature
extraction, the high-level features are incorporated into the fusion process to finally fuse the
top-level features of the backbone. This type of fusion avoids large semantic gaps between
non-adjacent levels.

In this process, low-level features are fused with semantic information from high-
level features, and high-level features are fused with detailed information from low-level
features. Due to this direct interaction, information loss or degradation in multi-level
transmission can be avoided. This solves the above-mentioned limitations.

Based on the overall network architecture of the TransMVSNet network, the AFPN
structure extracts three multi-scale depth image features with resolutions ranging from
coarse to fine. In the overall feature extraction structure, the features are first coarsely
extracted using a sequence of three simple network layers, the combination of which is
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a Conv2d network layer, a batchnormed normalization layer, and a Sigmoid Linear Unit
(SiLU) [36] activation function. The SiLU activation function is smoother as it approaches 0,
which can make the network output range between 0 and 1, which is more applicable in
this structure. It is defined as follows:

silu = x ∗ sigmoid(x) =
x

1 + e−x (1)

Next, we input the features into the AFPN after changing the number of feature
channels. In the AFPN structure, we used a 2 × 2 convolution with stride of 2 for 2-fold
downsampling and a 4 × 4 convolution with stride of 4 for 4-fold downsampling; we used
a similar structure for upsampling. This adapts the Adaptively Spatial Feature Fusion
(ASFF) module. This is the most important aspect of our AFPN network, as it solves the
problem of inconsistency within the feature pyramid by learning the links between different
feature maps.
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In the ASFF module, for a certain level of features, the other levels are first adjusted 
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Figure 1. The architecture of the proposed asymptotic feature pyramid network (AFPN). AFPN is
initiated by fusing two neighboring low-level features and progressively incorporating high-level
features into the fusion process.

Next, we employ the ASFF [37] neural network model, which aims to improve the
effectiveness of feature fusion and hence the accuracy of the deep costumers. The ASFF
network model introduces an adaptive feature fusion module for fusing multiple feature
maps at different levels. After the AFPN backbone network extracts the feature maps at
different levels, it uses the adaptive attention mechanism to weight the fusion of these
feature maps. In order to better retain the important feature information, compared to the
feature extraction network without the ASFF network model, the multi-scale information
can be better extracted after the addition, so that better results can be achieved in the next
deep costal body construction.

In the ASFF module, for a certain level of features, the other levels are first adjusted
to the same resolution and simply integrated, and then they are trained to find the best
fusion. In Figure 1, we assume that before entering the ASFF-2 module, the feature levels
are x1, x2, and x3. By multiplying the weight parameters α, β, and
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Next, we employ the ASFF [37] neural network model, which aims to improve the 
effectiveness of feature fusion and hence the accuracy of the deep costumers. The ASFF 
network model introduces an adaptive feature fusion module for fusing multiple feature 
maps at different levels. After the AFPN backbone network extracts the feature maps at 
different levels, it uses the adaptive attention mechanism to weight the fusion of these 
feature maps. In order to better retain the important feature information, compared to the 
feature extraction network without the ASFF network model, the multi-scale information 
can be better extracted after the addition, so that better results can be achieved in the next 
deep costal body construction. 

In the ASFF module, for a certain level of features, the other levels are first adjusted 
to the same resolution and simply integrated, and then they are trained to find the best 
fusion. In Figure 1, we assume that before entering the ASFF-2 module, the feature levels 
are x1, x2, and x3. By multiplying the weight parameters α, β, and Ƴ for the features from for the features from
different layers and summing them up, the new fused features are obtained as shown in
the following equation:

yl
ij = αl

ij·x1→l
ij + βl

ij·x2→l
ij + γl

ij·x3→l
ij (2)

As can be seen from Equation (2), the ASFF module uses summation, which requires
that the three level layers output the same-sized features and the same number of channels.
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Therefore, it is necessary to perform upsampling or downsampling and adjust the number
of channels for the features of different layers, as described above.

The weight parameters α, β, and
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αl
ij =

e
λl

αij

e
λl

αij + e
λl

βij + e
λl

γij

(3)

The λ in Equation (3) represents the coefficients of the softmax function, meaning that
the weight parameter can be used to adjust the size of the contribution of each feature map
during the feature fusion.

Following the ASFF module, it is possible to enhance the importance of the critical level
feature map and mitigate the impact of conflicting information from different targets. After
feature fusion, we input each feature into the residual unit to continue learning features.
As shown in Figure 1, we use a total of five residual units; each residual unit is similar
to ResNet, including two 3 × 3 convolution modules, two batchnormed normalization
layers, and a SiLU activation function. The residual unit maps the input and output to
Equation (4), which allows for better feature learning and also optimizes the training of the
neural network.

y = H(x, wh) + x (4)

In Equation (4), H(x, wh) represents a residual unit, and x is the direct mapping component.
Through the above work, we can extract more detailed image features through the

AFPN feature pyramid. After fusion with the Transformer model, its powerful self-attention
mechanism and positional coding method can be used to extract and aggregate image
features more accurately, laying a solid foundation for subsequent deep extraction.

2.2. Refinement of the Depth Forecast

The initial cost volume computed from the image feature maps is likely to contain
noise, mainly due to problems related to the presence of non-Lambertian surfaces or
line-of-sight occlusion.

Therefore, in order to predict the depth map, it is necessary to smooth the initial
cost volume, optimize it, and refine the probability volume. In the original TransMVSNet
network, a multi-scale 3D-CNN network is used for cost volume regularization. This
network is similar to the 3D version of UNet, using an encoding–decoding architectural
approach for neighborhood information aggregation over a large range of sensory fields at
a relatively small cost volume.

Due to the fact that the global information is weighted on the same scale during the
calculation process, it is not possible to suppress the information in regions of the image
that are not related to the target object. The results predicted from each angle result in large
errors at the edges and are smoother; thus, they fail to reflect the depth difference and make
the reconstructed target hierarchy indistinct.

In order to solve this problem, the attention mechanism is added to the existing UNet
structure in this work. The schematic is shown in Figure 2.

First, we applied the cross-attention module CCA [38]; the current level feature map
and the previous level feature map are used as the first inputs into the CCA.

These two feature maps first travel to the AdaptiveAvgPool3d network layer, whose
main role is to perform an adaptive average pooling operation on the input 3D data.
Suppose the output data are N × h × w × d, where h is the height, w is the width, and d
is the depth of the output data. The operation of the AdaptiveAvgPool3d module can be
expressed as follows:

output[i, j, k] = 1/(h × w × d) ∗ sum(input[p, q, r]) (5)
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In Equation (5), the parameters satisfy the following conditions:

i = h/H × p; j = w/W × q; k = d/D × r (6)

After the AdaptiveAvgPool3d module adaptively tunes the features, they pass into
the fully connected (FC) [39] network structure, which is shown in Figure 3.
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In the fully connected network, the input layer has n neurons, the hidden layer has m
neurons, and the output layer has k neurons. The input of the input layer is denoted by x,
the output of the hidden layer by h, the output of the output layer by y, the weight matrix
by W, and the bias vector by b. Then, the computation process of the fully connected layer
can be expressed as follows:

h = f (W1x + b1) (7)

y = g(W2h + b2) (8)

The computation of the hidden layer is shown in Equation (7), and the computation of
the output layer is shown in Equation (8), F and g. The two formulas contain the activation
functions; the dimensions of weight matrix W1 are (m, n), and the dimensions of W2 are
(k, m); the dimensions of bias vector b1 are (m, 1), and the dimensions of b2 are (k, 1). So, by
continuously iteratively adjusting the weights and biases, fully connected neural networks
can learn complex nonlinear relationships between inputs and outputs.

Here, we assume that the input two feature maps are X and Y, and their dimensions
are N × C and N × D, where N denotes the size of the feature map, and C and D denote
the number of channels of the feature map, respectively. First, we compute the attentional
weight matrices of X and Y, denoted as AX and AY, respectively. These weights are obtained



Sensors 2024, 24, 2064 7 of 21

by calculating the correlation between the two feature maps. Specifically, we can calculate
the attentional weights between X and Y using the following formula:

AX = so f t max(XW_qY ˆT) (9)

AY = so f t max(YW_qX ˆT) (10)

In Equations (9) and (10), W_q is the query weight matrix. In this way, the CCA
module can obtain the spatial location correlation on the feature map, and finally the spatial
location correlation weight scale can be obtained via the Sigmoid activation operation.

The overall network structure is similar to that of the UNet network, where features are
first downsampled in 3D and then upsampled, and attention is computed with the features
in the downsampling process to obtain the feature relevance weight scale. This suppresses
irrelevant regional features in the image by changing the weights while highlighting the
significant features of the feature regions, especially the depth information of the edge
mutation regions. This makes the predicted depth results hierarchical and more accurate.

3. Experimental Results

The DTU dataset [40] and a self-built UAV ground loop shot and push–sweep dataset
were used to evaluate and validate our approach.

The DTU was captured using a fixed camera track in a well-controlled laboratory
environment and contains 128 scenes in 49 views under seven different lighting conditions.
Referring to the MVSNet network setup, we categorized the dataset into 79 training scenes,
18 test scenes, and 22 evaluation scenes.

We trained the original TransMVSNet network with the DTU dataset as well as our
improved TransMVSNet network, and we used both the Pytorch training framework and
cuda version 11.1 to train the network. In the training phase, we set the number of input
images to N = 5 and the image resolution to 512 × 640. For coarse-to-fine regularization, the
depth hypotheses were sampled from 425 mm to 935 mm; the number of depth hypotheses
for each stage was 48, 32, and 8, respectively. The corresponding depth intervals were
attenuated from the coarsest stage to the finest stage by 0.25 and 0.5, respectively.

Then, we tested the optimal weights of the training results separately on the test
dataset. A comparison of the depth maps of the images in the Scan1 scene is shown in
Figure 4.
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In the images in Figure 4a,e, it can be seen that the improved algorithm extracts more
complete edges of the depth image and has less clutter in the background. The other results
from b to g also show a more distinct and complete hierarchy in places in the mutated
region at the edge of the depth map.

The comparison graphs of the Scan4, Scan9, and Scan10 scenes in the DTU dataset are
shown in Figures 5–7.

In Figures 5–7, (a) to (d) are the depth prediction results of our improved algorithm,
and (e) to (h) are the depth prediction results of the original algorithm. From the comparison
results, the improved algorithm can be seen to outperform the original algorithm in terms
of the accuracy, completeness, and detail of depth prediction. This is mainly due to the
optimization of the improved algorithm in terms of feature extraction and depth prediction.

In the feature extraction stage, the AFPN structure can adaptively fuse features of
different scales, which enhances the feature representation. In the depth prediction stage,
large-scale depth variation and detail information can be better handled by introducing a
coarse-to-fine regularization strategy.
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Figure 7. Comparison of depth prediction results for Scan10, where (a–d) are the results of our
algorithm and (e–h) are the results of the original algorithm.

To evaluate the application of our model in the field of UAV remote sensing, we also
performed the corresponding test in the main scene reconstruction of buildings, as shown
in Figure 8. Here, the image of Scene 1 was obtained from a public dataset provided by
the well-known UAV photogrammetry company PIX4D [41]. The camera model was DJI
FC6310, the world coordinates were selected as WGS84/UTM zone 17N, and the image
resolution was 5472 × 3478. The image for Scene 2 was captured with an AV-900 model
drone with a Sony NEX-5T camera model; the world coordinate system was also selected as
WGS84/UTM zone 17N, the average ground sampling distance (GSD) was 1.66 cm/0.65 in,
and the image resolution was 4912 × 3264.

Sensors 2024, 24, x FOR PEER REVIEW 10 of 22 
 

 

 
Figure 8. (a–h) are overhead drone images of buildings from the drone mapping dataset Pix4D. 
Scene 1 is an unfinished building and Scene 2 is a residential home in Chicago, IL, USA. 

As can be seen from Figure 9a,e, the edges of the building in Figure 9e are not smooth 
and appear jagged. After employing our improved algorithm, the edges of the building 
are smoother, and the depth information of the mutated region is more accurate. 

These two scenes belong to the UAV ring shot dataset. The camera is positioned at a 
fixed attitude angle around the scene, similar to the DTU dataset, and the reconstruction 
of such scenes is also good. The reconstruction results are shown in Figure 11, in which 
(a–c) are the reconstruction results of Scene 1, and (d–f) are the reconstruction results of 
Scene 2. 

The 3D models in Figure 11a–d are the 3D reconstruction results of Scene 1 in Figure 
8, and (e–h) are the 3D reconstruction results of Scene 2 in Figure 8. This 3D model was 
created with MeshLab v2022.02 [42] software, and we used a part of the model under dif-
ferent angles for illustration; the following 3D model also uses the same method. 

 
Figure 9. Depth map of the first scene in Figure 8: (a–d) are depth prediction images of our improved 
algorithm; (e–h) are depth prediction images of the original algorithm. 

Figure 8. (a–h) are overhead drone images of buildings from the drone mapping dataset Pix4D.
Scene 1 is an unfinished building and Scene 2 is a residential home in Chicago, IL, USA.

For both scene datasets, we extracted the internal and external camera parameters
separately. After adjusting the format of the data to that of DTU, they were fed to both our
improved algorithm as well as the original algorithm for depth extraction.

The corresponding depth map results for the two scenarios in Figure 8 are shown in
Figures 9 and 10. In both figures, (a–d) show the depth prediction images of the improved
algorithm and (e–h) show the depth prediction images of the original algorithm.
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As can be seen from Figure 9a,e, the edges of the building in Figure 9e are not smooth
and appear jagged. After employing our improved algorithm, the edges of the building are
smoother, and the depth information of the mutated region is more accurate.

These two scenes belong to the UAV ring shot dataset. The camera is positioned at a
fixed attitude angle around the scene, similar to the DTU dataset, and the reconstruction of
such scenes is also good. The reconstruction results are shown in Figure 11, in which (a–c)
are the reconstruction results of Scene 1, and (d–f) are the reconstruction results of Scene 2.

The 3D models in Figure 11a–d are the 3D reconstruction results of Scene 1 in Figure 8,
and (e–h) are the 3D reconstruction results of Scene 2 in Figure 8. This 3D model was
created with MeshLab v2022.02 [42] software, and we used a part of the model under
different angles for illustration; the following 3D model also uses the same method.

We also built two of our own datasets to validate our algorithms, as shown in Figure 12.
We prepared a sandbox demonstration system for ground targets, and we used a robotic
arm to drive the camera around to capture the image. The camera’s focal length is 26 mm,
the aperture size is 1.5, and the resolution of the captured image is 1080 × 1920.
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Figure 12. Self-constructed wrap-around robotic arm overhead shooting scene dataset: (a–d) are
Scene 1, which mainly includes schools and stadiums; (e–h) are Scene 2, which mainly includes
residential areas.

The results for the two scenes in Figure 12 are shown in Figure 13, and it can be seen
clearly that the edges of the building are clearer and there is less depth loss in the improved
algorithm between Figures 13b and 13e. From Figure 13b,e, it can be clearly seen that the
edges of the building are clearer, and less depth is missing in the results of the improved
algorithm. Similarly, the comparison between Figures 13i and 13l shows the same effect.
Figure 16 shows the 3D reconstruction model produced using our improved algorithm.

Next, we acquired a dataset of push–sweep photography captured with a drone and a
publicly available dataset from the photogrammetric company Pix4d, whose camera model
is the Canon IXUS 127 HS, and selected the world coordinate system as WGS84/UTM zone
32N. Because the ground sampling resolution is small and the scene as a whole is very
large, we selected a few images to be displayed in Figure 15.

The depth maps in Figure 16 contain the more iconic buildings in this scene. From
the comparison of Figure 16c,g, for example, the edges of the buildings in Figure 17c
are smoother and the layers are clearer, while the depth of the buildings in Figure 16g is
more pronounced, which can also show that our improved algorithm is very effective in
improving the results. Figure 17 shows the 3D reconstruction model created using our
improved algorithm.
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Figure 16. Depth prediction image of the scene in Figure 15, comparing our improved algo-
rithm with TransMVSNet, where (a–d) are the results of our algorithm and (e–h) are the results
of the TransMVSNet.

The scenes in Figure 15 are mainly urban scenes. We then found an image of a scene
with a mountain village and a natural landscape, located in the capital of the canton of
Vaud, district of Lausanne, Swiss Confederation. This dataset was obtained with the camera
model senseFly S.O.D.A, and the coordinate system used is CH1903+/LV95. The full view
of the scene in the dataset is shown in Figure 18a; b–e are the parts of the images that were
fed into the neural network, which have a resolution of 3648 × 5472.

Figure 19 shows the computed depth image and the results of the 3D reconstruction
are shown in Figure 20 for each of the four views of the model.
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Figure 19 shows the computed depth image and the results of the 3D reconstruction 
are shown in Figure 20 for each of the four views of the model. 

Figure 17. (a–d) are the three-dimensional reconstructed model view of the scene in Figure 15.
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4. Discussion
4.1. Comparison on the DTU Dataset

The main difference between our algorithm and TransMVSNet is the use of the multi-
scale feature extraction network, which can provide multi-scale features for the Transformer
to better compute inter-image and intra-image attention and, at the same time, change
the global information weights when predicting the depth information. This can effec-
tively inhibit the irrelevant regions in the image with the target, making the prediction
results more accurate. We also compare it with the MVS algorithm mentioned in the
Introduction section.

In the DTU dataset, there are two metrics to evaluate the accuracy of the point cloud:
Acc and Comp. The Acc metric is used to find the points in the reconstructed point cloud
according to the points in the reconstructed point cloud and evaluate the accuracy of the
point cloud by the distance between the points in the reconstructed point cloud and the
points in the reconstructed point cloud. And the Comp metric is used to find out whether
there are any corresponding points in the reconstructed point cloud based on the points
in the true value of the point cloud and to evaluate the integrity of the point cloud by the
number of corresponding points. The lower the values of the metrics, the better, as this
means that the distance between the reconstructed resultant point cloud and the true value
of the point cloud is smaller and thus means that the recovered point cloud is more accurate.
The comparison of our algorithm with several other algorithms is shown in Figure 21.

In Table 1, the comparison of the accuracy of these algorithms on the DTU dataset is
shown. From the data in the table, it can be seen that our algorithm is ranked second in Acc
and first in Comp. The overall value is the average of the first two metrics; so, based on this
comparison, our algorithm performs better than the other algorithms on the DTU dataset.

In Table 2, it can be seen that for the same input size, our algorithm and TransMVSNet
have reduced inference speed while requiring more GPU memory for training. This is what
we need to optimize in subsequent neural networks.
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Table 1. Comparison of reconstruction quality on DTU dataset.

Method Acc. (mm) Comp. (mm) Overall

MVSNet 0.396 0.527 0.462

R-MVSNet 0.383 0.452 0.417

CasMVSNet 0.3779 0.3645 0.371

PointMVSNet 0.6344 0.6481 0.391

PVA-MVSNet 0.372 0.350 0.361

TransMVSNet 0.321 0.289 0.305

Ours 0.3643 0.225 0.295
Bolded data indicates current best results.

Table 2. Comparison of GPU memory usage and runtime on DTU dataset for different input sizes.
GPU memory usage and runtime are obtained by running the official evaluation code of baselines on
the same machine with an NVIDIA GeForce RTX 3090 laptop graphics card.

Method Input Size Depth Map Size GPU Mem (MB) Runtime

MVSNet 1600 × 1152 400 × 288 22,511 2.76

R-MVSNet 1600 × 1152 400 × 288 6915 5.09

CasMVSNet 1600 × 1152 640 × 512 5345 0.492

PointMVSNet 1600 × 1152 800 × 576 13,081 3.04

PVA-MVSNet 1600 × 1152 800 × 576 24,870 4.36

TransMVSNet 1600 × 1152 1152 × 864 23,008 0.65

Ours 1600 × 1152 1152 × 864 23,150 1.49

4.2. Comparison on UAV Remote Sensing Datasets

The main reasons for why we chose to improve TransMVSNet are the shortcomings
related to the weak texture, repetitive texture, and non-Lambertian surfaces of UAV remote
sensing images, which have a large impact on the results in the multi-view stereo (MVS)
process. Moreover, the process of multi-view stereo (MVS) is a one-to-many feature match-
ing process, which uses convolution to take local features. The localization of convolutional
features hinders the perception of global information, which is crucial for robust depth
estimation in regions with the above-mentioned shortcomings. TransMVSNet combines
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Transformer with multi-view stereo (MVS), and our work improves the feature extraction
and depth prediction part of Transformer by considering the global feature information and
discarding the feature information in the useless region, which makes the depth prediction
result more accurate.

Meanwhile, our algorithms are very sensitive to the settings of hyperparameters,
which include numdepth, depth hypotheses, and depth interval. In the DTU dataset, these
three hyperparameters are set the same as in TransMVSNet to make it convenient to com-
pare the results. In the dataset of remote sensing images from UAVs, we needed to adjust
the hyperparameters to ensure that it achieved the best depth prediction. The numdepth
was set to 192 in almost all MVS series algorithms. Therefore, we also used 192, followed
by the depth interval hyperparameter (4, 1, 0.5), and finally set the depth hypotheses; this
hyperparameter represents the number of plane scanning depth hypotheses for each stage
and is generally set to three stages. After the first stage, with the maximum number of
hypotheses, it can subsequently become smaller because the larger the setting, the smaller
the depth interval. The initial stage requires strong supervision to be able to output more
details and later becomes smaller to make the details smoother. Therefore, this is also a
factor that can determine whether the depth prediction is accurate.

To set the hyperparameter depth hypotheses, we carried out quantitative experiments.
First, we set the number of small two-plane scans in the three phases to a fixed value (32, 8)
and changed the maximum number of plane scans x, which was set to 48, 64, 96, and 128.
Then, we changed the number of second-plane scans y, which was set to 8, 16, 32, and 40,
and set the other two phases to a fixed value (48, 8). Finally, we changed the number of
third-plane scans in the three phases, which was set to 8, 16, 24, and 30, and set the other
two phases to fixed values (48, 32). The results are shown in Figure 22.
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The results of the quantitative experiments are shown in Figure 22. When y = 32 and
z = 8, the first phase of the plane scanning depth x is 48. Here, the depth prediction result
is the best; its depth error is small, and the edge of the object is smoother. Then, we set
x = 48 and z = 8, and the best results are obtained when the second phase of the scanning
depth y is 32, as shown in Figure 22g. When y = 8, the depth is not very obvious, but it is
slightly better than at y = 16, and there is still a large part of the image missing. Finally,
when we set x = 48 and y = 32, the best result is obtained when the third phase of the plane
scanning depth z is 8. In the four images in Figure 22i–l, it does not look like the difference
is very large because the third phase of the plane scanning depth is small, resulting in large
depth intervals and less detailed information. So, although the difference is not very large,
based on the smoothness of the object edges, z = 8 can be judged to be the best parameter
setting. Therefore, the super parameter depth hypothesis is set to 48, 32, 8.

4.3. Constraints or Challenges

When we improved the feature extraction network model, first of all, the complexity
of the AFPN network model was much larger than that of the FPN, so the parameters
of each network layer needed to be constantly debugged to obtain the optimal colloca-
tion. Meanwhile, considering that after extracting multi-scale features, we need to assign
weights to the key features to achieve the optimal feature extraction, we adopted the ASFF
network model.

During the algorithmic research, after replacing the FPN feature extraction network
model using the AFPN combined with the ASFF feature extraction network model, consid-
ering updating the FMT feature matching module of the original network, after checking
the related literature, we found that the local feature transform LoFTR [43] network model
can satisfy our needs, and this network model also uses the self- and cross-attention layer.
This network model also uses a Transformer with self- and cross-attention layers to handle
the dense local features extracted from the backbone network. After our modification, we
found that there is not much difference in the idea and algorithm structure with the original
network, so there is no big improvement, so we discarded this improvement.

In the final stage of designing the costume regularized network model, we contin-
uously optimize the network structure and hyperparameter combinations and finally
determine the best network design scheme to incorporate the cross-attention module CCA
into the UNet network model, and at the same time, in order to optimize the training
process of the model, we use two NVIDIA 3090 graphics cards for distributed training to
improve the training efficiency.

All of the above are challenges and limitations that we encountered during the design
and research phase of the algorithm, and we eventually overcame them to ensure the
stability and reliability of the research model.

5. Conclusions

In this paper, we improve the TransMVSNet network by first extracting the cascade
features using the AFPN feature extraction network and then improving the regularized
costumed body network by incorporating an attention mechanism to make the overall
network suitable for the 3D reconstruction of images captured by UAVs in the field of
remote sensing. We combined the characteristics of the remote sensing images taken by
UAVs, i.e., the image features are richer, the field of view is wider, and the ground buildings
occupy fewer pixels in the image; therefore, our improved network was better able to
extract the image features, highlight the information of the feature area, and make the
edges of the objects more hierarchical.

In previous 3D reconstruction work, researchers have focused mainly on close-up
object reconstruction and urban outdoor scene reconstruction. Three-dimensional recon-
struction in the field of remote sensing is also a research focus. Our reconstruction method
can completely restore the whole image of an area, which can provide valuable help for
remote sensing measurements and other subsequent work.



Sensors 2024, 24, 2064 19 of 21

Our algorithm also has limitations in the field of UAV remote sensing 3D reconstruc-
tion. First of all, the input image sequence must be continuous and comprehensive; if
there are many missing images, it will lead to missing depth prediction, resulting in an
incomplete reconstructed model. Meanwhile, the algorithm is very strict on the camera
position; if the camera position is deviated, it will lead to wrong depth prediction. In
addition, compared with the original algorithm, the computational speed will be slower,
and these problems need to be solved in the future.

In the future, to address the above limitations, we would like to combine other algo-
rithms such as the Superpoint feature point matching algorithm to find the bitmap, and
we can complement the sequence image by the neural radiation field of Nerf series. At the
same time, we can improve the algorithm to speed up the single-frame processing and add
a real-time rendering function to realize a real-time reconstruction and rendering function.
We hope to apply the algorithm to more fields of 3D reconstruction.
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