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Abstract: The implementation of a progressive rehabilitation training model to promote patients’
motivation efforts can greatly restore damaged central nervous system function in patients. Patients’
active engagement can be effectively stimulated by assist-as-needed (AAN) robot rehabilitation
training. However, its application in robotic therapy has been hindered by a simple determination
method of robot-assisted torque which focuses on the evaluation of only the affected limb’s movement
ability. Moreover, the expected effect of assistance depends on the designer and deviates from the
patient’s expectations, and its applicability to different patients is deficient. In this study, we propose
a control method with personalized treatment features based on the idea of estimating and mapping
the stiffness of the patient’s healthy limb. This control method comprises an interactive control
module in the task-oriented space based on the quantitative evaluation of motion needs and an inner-
loop position control module for the pneumatic swing cylinder in the joint space. An upper-limb
endpoint stiffness estimation model was constructed, and a parameter identification algorithm was
designed. The upper limb endpoint stiffness which characterizes the patient’s ability to complete
training movements was obtained by collecting surface electromyographic (sEMG) signals and
human–robot interaction forces during patient movement. Then, the motor needs of the affected
limb when completing the same movement were quantified based on the performance of the healthy
limb. A stiffness-mapping algorithm was designed to dynamically adjust the rehabilitation training
trajectory and auxiliary force of the robot based on the actual movement ability of the affected limb,
achieving AAN control. Experimental studies were conducted on a self-developed pneumatic upper
limb rehabilitation robot, and the results showed that the proposed AAN control method could
effectively estimate the patient’s movement needs and achieve progressive rehabilitation training.
This rehabilitation training robot that simulates the movement characteristics of the patient’s healthy
limb drives the affected limb, making the intensity of the rehabilitation training task more in line
with the patient’s pre-morbid limb-use habits and also beneficial for the consistency of bilateral
limb movements.

Keywords: upper-limb rehabilitation robot; assist-as-needed control; endpoint stiffness estimation;
stiffness mapping algorithm; surface electromyographic signal

1. Introduction

The process of aging, degeneration, and disease-related damage in the central nervous
system typically results in motor dysfunction, significantly affecting the daily activities of
patients [1,2]. To restore all or part of their motor functions, patients need to receive pro-
longed rehabilitation therapy to induce neuroplasticity [3]. Achieving brain neuroplasticity
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from conventional rehabilitation therapy involves the coordination of multiple therapists,
which makes it a labor-intensive and long-term process. Therefore, manual rehabilitation
therapy presents limitations, including resource inadequacy, high financial investments,
variability in training quality, and therapist burnout. To solve these issues, the development
of robot-assisted therapy is emerging as a promising avenue for rehabilitation treatment.
This approach offers highly repetitive, intensive, adaptable, and quantifiable rehabilitation
therapies [4,5].

Recent studies in robotic therapy indicated that the implementation of a progressive
rehabilitation training model to promote patients’ motivation efforts can greatly restore
damaged central nervous system function in patients [6]. Patients’ active engagement
is considered one of the key factors contributing to neural plasticity and motor recovery
during the course of therapy. Consequently, researchers proposed the assist-as-needed
(AAN) control strategy to better motivate patients’ active voluntary participation in upper
limb rehabilitation therapy. The AAN strategy focuses on providing the minimal amount of
robotic assistance necessary for a patient to complete a rehabilitation task, while a significant
effort is required from the patient [7]. Deploying robotic assistance in accordance with
the AAN strategy comes with some technical challenges. These challenges primarily
involve effectively assessing patients’ functional capabilities, accurately estimating the
required motor support based on patients’ specific disability level or recovery progress, and
dynamically adjusting the level of robot assistance in real time. These technical concerns
are particularly complex in upper limb rehabilitation training, considering the diverse
forms of exercises involved in training for various activities of daily living (ADL) carried
out through occupational therapy (OT) for active rehabilitation training.

The assessment of patients’ function abilities is predominantly performed using two
main approaches: the biomechanical model-based method [8,9] and the motor performance-
based method [7,10–13]. In the context of biomechanical modeling, a skeletal muscle model
is usually constructed and analyzed based on biomechanical theories. This modeling
process involves the identification of model parameters to quantitatively evaluate muscle
forces and joint torques, thus contributing to the assessment of physical motor ability. For
instance, Li Zhijun et al. [9] developed a reference musculoskeletal model of the human
forearm’s joints. This model, driven by surface electromyography (sEMG), was utilized to
calculate net torque and joint stiffness to match the operator’s motion behavior. Alterna-
tively, a common approach for implementing the AAN strategy is through the utilization of
the motor performance-based method. This method involves inferring patients’ assistance
requirements based on their performance and then using this information to adapt the
level of robotic assistance. Motion performance-based assessment methods can be broadly
categorized into two main groups. The first category relies on physical sensors to capture
various signals, including commonly measured parameters such as joint position, veloc-
ity, and human–robot interaction forces. These signals are utilized to develop empirical
formulas for the evaluation of motion performance or establish assessment criteria based
on clinical medical scales. In [7], a new functional ability index (FAI) estimation algorithm
in accordance with the employed clinical procedure was proposed for the estimation of a
subject’s motor ability in a movement task. The FAI evaluation algorithm was obtained
by parameter equations including task completion time and angular position and velocity
of the upper-limb joints. The position and velocity parameters were determined by the
inertial measurement unit (IMU). Pehlivan et al. [10] applied a Kalman filter in conjunc-
tion with Lyapunov analysis to estimate the functional capabilities of subjects wearing
the RiceWrist-S exoskeleton. The force estimator independently determined the subjects’
capability at each moment in time only based on position detection. The second category
of motion performance assessment methods is centered on biological signals, such as elec-
tromyographic signals. These signals are harnessed to establish relationships that map
to joint moments, facilitating the evaluation of an individual’s physical exercise capacity.
Tatsuya Teramae et al. [11] proposed, using EMG signals, to estimate a subject’s torque
output. The relationship between the 16 EMG RMS values and the joint torque vector was
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modeled as a linear torque estimation model, with a neurofuzzy muscle-model matrix
modifier. The neurofuzzy modifier outputs the coefficient for each weight of the muscle-
model matrix to modify the weight matrix in real time based on the upper-limb posture
of the user. This approach establishes a mapping relationship between EMG signals and
joint torques through artificial intelligence algorithms such as support vector machines
or neural networks. However, these methodologies do not delve into the intricacies of
human biomechanical processes and fail to analyze the contributions of different muscles
to various motions.

Building upon the techniques employed to assess a patient’s motor functional ability,
the determination of actual assistive torque and the specific implementation method of
real-time control have emerged as focal points of research in AAN control. These research
areas encompass several approaches, such as direct adjustment of assistive force/torque
through force control methods [8,9,12], adaptive adjustment of impedance/admittance
coefficients to achieve force/position interaction performance [7,13], and intelligent learn-
ing algorithms [14,15]. Shawgi Younis et al. [7] applied an adaptive inertia-related torque
controller. This control strategy involves the design of an inner position loop nested within
the outer torque feedback loop. The desired torque is computed based on the stiffness decay
algorithm integrated with the FAI value, which either strengthens or relaxes the controller’s
stiffness to enable the modulation of the assistive torque. Carmichael et al. [8] developed
an admittance control scheme to implement the AAN paradigm in the robot. The hand
strength of a patient in the task space was calculated by an upper-limb musculoskeletal
model. A task model calculated the strength required for the ongoing task. This calculated
task’s strength requirement was then compared with the operator’s strength capability
to gauge the assistance force which was the input of the admittance controller. In [12],
an upper limb mirror control strategy based on an adaptive AAN approach is proposed.
This adaptive AAN module combines the traditional impedance control with a method for
assessing the movement state of the affected limb. It automatically adjusts the auxiliary
force applied to the affected limb in real time to maximize the active torque of the affected
limb. WANG et al. [13] presented an AAN control strategy for wrist rehabilitation robots.
In this work, specific rules for evaluating patients’ abilities were established, and patients’
functional capabilities were assessed in accordance with these predefined criteria. The
controller was designed based on the impedance control theory and a dynamics model. It
dynamically adjusted the impedance coefficients in response to both the reference trajec-
tory and the assessment of the affected limb’s kinematic ability, enabling the precise and
on-demand modulation of the total output torque of the robot.

With the rapid development of artificial intelligence, researchers have increasingly
focused on intelligent control methods with inherent learning capabilities for upper-limb
rehabilitation exoskeleton robots, for example, neural network control methods, reinforce-
ment learning control methods, etc. In [14], a greedy AAN (GAAN) controller was designed
for the upper limb rehabilitation training of neurologically impaired subjects. The GAAN
control paradigm includes a baseline controller and a Gaussian radial basis function (RBF)
network. This RBF network plays a pivotal role in modeling the functional capabilities of
the subjects. The weight vectors of RBF networks evaluating the subjects’ impairment level
are updated according to a greedy strategy, so that the maximum force provided by the
subjects is gradually learned over time.

The aforementioned forms of adaptive AAN control primarily focus on assessing in
a patient the motor functional ability of the affected limb. In the process of formulating
task-specific assistive guidelines, the requisite torque for task completion has traditionally
been ascertained through either modeling the rehabilitation task or integrating interac-
tive torques of the affected limb into the robot’s dynamic model. These methods are
subjective and experience-based, representing a form of artificially set expectations. As
a result, AAN control, in which the designer determines the desired outcome, tends to
diverge from patients’ expectations and is less adaptable to the diverse requirements of
individual patients.
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In view of the above problems, this paper introduces a novel AAN control method
based on the motor performance of the patients’ healthy limb. The study was conducted on
a self-developed pneumatic upper-limb rehabilitation robot. Employing the AAN control
strategy, this system facilitates the performance of collaborative rehabilitation training tasks
by the patient and the robot. It achieves this by leveraging both the active torque generated
by the patient and the torque output from the robotic system. To implement the AAN con-
trol, myoelectric signals and human–robot interaction forces are collected during patients’
movement to assess their motor ability. This assessment involves a comparison with and
the analysis of the motor performance of the healthy limb to accurately identify deficiencies
in the affected limb motor abilities when performing the same movements. Subsequently,
the robot’s rehabilitation training trajectory and assisting force are dynamically adjusted
based on the actual motor performance of the affected limb. The significance of this study
lies in utilizing the patient’s healthy limb performance as a benchmark, comparing it with
the affected limb’s motor capabilities to determine the robot’s assisting torque. Additionally,
the stiffness information of the healthy limb is utilized as a criterion to determine the neces-
sary motor ability to complete the task, as stiffness reflects the force/position interaction
characteristics of the human body during the rehabilitation process. This method makes
robot-assisted rehabilitation training more in line with patients’ own characteristics and
hand habits. Moreover, the rehabilitation robot’s motions adjusted in time according to
the flexibility of the human healthy limb are more natural. These refinements significantly
enhance the comfort experienced by the affected limb.

2. Upper-Limb Rehabilitation End-Effector Robot

The upper-limb rehabilitation training robot developed by us is a pneumatically driven
end-effector robot which pulls the patient allowing for the completion of the rehabilitation
exercise after grasping a handle. This robot is composed of an arm linkage, a forearm
linkage, two joint components, a handle, and a base. The three-dimensional structure of
the robot is shown in Figure 1, and the mechanical structural parameters of the robot are
shown in Table 1. Differing from common systems in which servo motors drive the joints
through a reducer, the robot’s joints are directly driven by oscillating cylinders, possessing
reverse driving capability and exhibiting a certain level of compliance due to pneumatic
driving. Each joint axis is equipped with incremental encoders to detect the joints’ rotation
angles, while a three-dimensional force sensor is mounted at the end handle of the robot
to measure human–robot interaction forces. Real-time detection by both sensors enables
the collection and feedback of motion and force information. A joint oscillating cylinder is
controlled by a pair of proportional pressure valves, with one side providing the driving
force, and the other side providing back pressure to enhance start-up steadiness and motion
stability. The pneumatic drive system for the robot joints is illustrated in Figure 2. By
adjusting the control voltage of the proportional pressure valves through a control strategy,
the swing angle and output torque of the oscillating cylinder can be modified to facilitate
trajectory tracking control for rehabilitation and the dynamic adjustment of assisting forces.
Proportional pressure valves, a gas supply system, and controllers are discreetly installed
beneath the base bracket.

Table 1. Robot parameters.

Name Length/mm Mass/Kg

Arm 228.15 0.76
Forearm 180 0.148
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3. Personalized Assist-As-Needed Control Strategy

An adaptive AAN control strategy is proposed in this research. With this control
strategy, the robot adjusts the assistance needs of the affected limb by comparing its
capabilities with the movement characteristics of the healthy limb.

The end-effector robot interacts physically with the patient’s hand; so, rehabilitation
tasks are planned in the task-oriented space, and the robot is controlled in the joint space.
As shown in Figure 3, the strategy comprises an interactive control module in the task-
oriented space based on the quantitative evaluation of the motion needs and an inner-loop
position control module for the pneumatic swing cylinder in the joint space. In the position
control module, the planned trajectory Xd and the adjusted value ∆X are converted into
the desired joint angle qr through inverse kinematics, and the robot joints angles q are
controlled according to qr through a position controller. A variable impedance control
strategy based on patient upper-limb endpoint stiffness regulation was constructed in the
interaction control module of the outer loop. With this strategy, the endpoint stiffness
of the healthy limb is estimated based on the vector P of muscle activity obtained from
preprocessed sEMG signals and then quantified as the stiffness value Kd of the impedance
controller by comparison with the motor performance of the affected limb. Then, the
task trajectory is adjusted according to the human–robot contact force Fext between the
affected limb and the robot, aiming to provide AAN rehabilitation motion. The AAN
assessment is grounded in the stiffness characteristics of the patient’s own healthy limb
when performing the interaction task. It better aligns with the force/position dynamic
adjustment characteristics exhibited during the patient’s daily motions, thereby providing
individualized advantages during the rehabilitation exercises.
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3.1. Interactive Control Algorithms and Stiffness-Mapping Criteria

The impedance control strategy is a compelling method for effectively facilitating the
robot–environment interaction, employing an impedance model to articulate the dynamic
relationship between force and position [16,17]. On the basis of the inner-loop position
control, the outer loop employs a position-based impedance control strategy for interactive
control, as illustrated in Figure 3.

The impedance model of the robot in Cartesian space (i.e., the task-oriented space) is
equivalent to a second-order dynamical system [18]:

Fext = Md∆
..
X + Bd∆

.
X + Kd∆X (1)

where Md, Bd and Kd are the mass, damping, and stiffness coefficient matrix, respectively;
∆X is the position correction in the task-oriented space; Fext is the external force applied to
the robot.

The variation of the impedance parameters has varying degrees of impact on the
effectiveness of robots in completing tasks [19]. In order to facilitate an effective rehabilita-
tion process, robotic systems should exploit the patient’s physical capabilities and offer a
proper stiffness range to provide assistance as needed in training processes. Consequently,
an impedance control strategy with variable parameters is proposed in this study. This
strategy considers the stiffness of the healthy limb and the affected limb as a reference and
can dynamically adjust the impedance control parameters according to the patient’s move-
ment performance, so that the patient’s rehabilitation needs can be met, and rehabilitation
effectiveness can be enhanced.

The impedance parameters of the human upper limb are mapped to the impedance
controller by designing a mapping criterion. As a result, the rehabilitation training robot,
which mimics the motion characteristics of the patient’s healthy limb, drives the affected
limb. This alignment ensures that the rehabilitation training motion is more consistent
with the individual’s force generation habit. The parameter mapping criteria are outlined
as follows: {

Kd = Kendh − Kenda
Bd = 2ε

√
KdMd

(2)

where Kendh is the endpoint stiffness of the healthy limb for normal motion, estimated
based on sEMG; Kenda is the endpoint stiffness of the affected limb for the same motion,
estimated based on sEMG; ε is the damping ratio, which was selected to be 0.8 according to
the stability requirements in pneumatic robots.

The interactive force between the affected limb and the robot adjusts the end-effector
trajectory. The corrected trajectory is:

Xr = Xd − ∆X (3)
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where Xd is the desired rehabilitation motion trajectory.
The robot joints are actuated by the swing cylinders, which need to be controlled in

the joint space. As a consequence, the external torque τext can be obtained from the end
interaction force Fext using the force Jacobian matrix JT(q):

τext = JT(q)Fext (4)

The force Jacobian matrix JT(q) of the two-degree-of-freedom robot is represented as
follows:

JT(q) =
[
−L1 sin θ1 − L2 sin(θ1 + θ2) L1 cos θ1 + L2 cos(θ1 + θ2)

−L2 sin(θ1 + θ2) L2 cos(θ1 + θ2)

]
(5)

where θ1 and θ2 denote the joint angles of the upper arm and forearm, respectively, and L1
and L2 represent the lengths of the linkage segments corresponding to the robot’s upper
arm and forearm.

Neglecting the influence of friction, the dynamical model of the robot in the joint space
can be written as follow:

M(θ)
..
θ + C(θ,

.
θ)

.
θ +

1
2

m1gL1 +
1
2

m2gL2 = τrob + τext (6)

with τrob denoting the joint torque vectors output by the swing cylinder.
For the two-link planar robot shown in Figure 1, the dynamical equation coefficients

in Equation (6) are described below.
The mass matrix is composed of all those terms which multiply

..
θ and is a function of

θ. Therefore, we have

M(θ) =

[
M11 M12
M21 M22

]
with 

M11 = 1
3 m1L1

2 + 1
3 m2L2

2 + m2L1
2 + m1L1L2 cos θ2

M12 = 1
4 m2L2

2 + 1
2 m2L1L2 cos θ2

M21 = 1
4 m2L2

2 + 1
2 m2L1L2 cos θ2

M22 = 1
3 m2L2

2

(7)

The velocity term Coriolis/centrifugal matrix contains all those terms that have any
dependence on joint velocity. Thus, we obtain

C(θ,
.
θ) =

[
C11 C12
C21 C22

]
with 

C11 = −
.
θ2m2L1L2 sin θ2

C12 = − 1
2 m2L1L2 sin(θ2)

.
θ2

C21 = 1
2 m2L1L2 sin(θ2)

.
θ1

C22 = 0

(8)

In Equations (7) and (8), m1 and m2 are the concentrated masses of the robot’s upper
arm and forearm.

3.2. Position Control Algorithms in the Joint Space

The position control module employs the PD (proportional–derivative) control strat-
egy with dynamic-term feedforward. To address the characteristics of the pneumatic
proportional system [20], PD control was employed to increase system damping, thereby
enhancing the system’s stability. Given the low-speed crawling issue in the swing cylinder
and the joint motion coupling characteristics of the robot, dynamic-term feedforward con-
trol was introduced to compensate for torque, thereby improving the dynamic response of
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the pneumatic system and enhancing the robot’s position control accuracy. The schematic
diagram of the position control strategy is shown in Figure 4.
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The PD control with the dynamic-term feedforward algorithm is outlined as follows:{
u = u1 + Ku

(
M(θr)

..
θr + C(θr,

.
θr)
)

u1 = Kp(θr − θ) + Kv(
.
θr −

.
θ)

(9)

where θr is the desired joint trajectory; θ is the actual joint trajectory; u1 is the output voltage
of the PD control; u is the control voltage for the proportional pressure valve; Ku is the
proportional coefficient matrix of the dynamic-term feedforward control; and Kp and KV
are the proportional and differential coefficient matrices of the PD control, respectively.

The control voltage of the proportional pressure valve is linearly related to the out-
put torque of the swing cylinder installed on the robot to drive the joints. The output
torque τrob is calculated by Equation (10), and the proportional coefficient Kτ can be
determined experimentally

τrob = Kτu (10)

4. Human Arm Endpoint Stiffness Estimation Method

The mechanical characteristics of the human arm reflect a patient’s movement ability in
the motion interaction of the end-effector rehabilitation robot dragging the patient. One way
to quantify the interaction between the limb and the robot in rehabilitation tasks is through
the estimation of the endpoint stiffness. The stiffness can be modified via co-contraction of
the muscles involved in task execution [21]. Therefore, an upper-limb endpoint stiffness
estimation model based on sEMG signals was constructed to map muscular activities and
the resulting arm endpoint force and stiffness. Then, the parameters of the model were
determined by the small perturbation method.

4.1. Endpoint Stiffness Estimation Modeling

When humans perform tasks, the force required for task completion is generated by
altering the activation pattern of individual muscles, and the stiffness for task completion
is regulated through the co-contraction of muscle groups, with both processes operating
independently. Specifically, the resulting modifications in force and impedance can be re-
garded as the effects of internal force regulation exerted by the extensor and flexor muscles.
Agonist–antagonist muscle co-contractions affect and modify the endpoint stiffness of the
arm. In the equilibrium position, the counterbalance of flexor and extensor muscle forces
results in no force variation and joint rotation, but the co-contraction of the muscles leads
to an increase in stiffness. When maintaining posture amidst mechanical perturbation,
the changes in force and impedance exhibit a linear relationship with the level of muscle
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activation [22,23]. The mapping of muscular activities and resulting arm endpoint force
and stiffness in Cartesian coordinates was described in [24][

Fend
Kend

]
=

[
TF
TK

]
P +

[
0

K0

]
(11)

where Fend and Kend represent the endpoint force and stiffness vectors, respectively; TF is
the EMG-to-force map matrix; TK is the EMG-to-stiffness map matrix; P is the vector of
muscular activities, obtained from preprocessing EMG signals from electrodes applied on
each muscle; and K0 is the intrinsic stiffness in relaxed conditions.

The robot pulls the patient producing movement in the plane, and thus both Fend and
Kend are two-dimensional vectors. The EMG-to-force map matrix TF is defined as

TF =

[
αx1 · · · αxi βx1 · · · βxi
αy1 · · · αyi βy1 · · · βyi

]
(12)

where αxi and αyi are the force-map coefficients of the i-th agonist muscle in the X and Y
directions, and βxi and βyi are the force-map coefficients of the i-th antagonist muscle in
the X and Y directions.

The identification of the EMG-to-force map matrix TF is relatively easily performed
by conducting precise measurements of the endpoint force and the EMG signals of the
individual muscles, while it is more challenging to identify the EMG-to-stiffness map
matrix TK by the EMG signals due to the co-contraction of muscle groups. To solve this
problem, Arash Ajoudani [21] proposed an algorithm for estimating human arm stiffness
using the force-map null space Pk which contains information about the co-contraction
component of stiffness generation.

The space of muscular activation P is the direct sum of a force-generating subspace PF
and the force-map null space Pk, i.e.,

P = PF ⊕ Pk (13)

NF denotes a basis matrix for the kernel of TF, written as

NF = I − TR
F TF (14)

where TR
F is the right-inverse matrix of TF, i.e., TFTR

F = I.
Consequently, the null-space component Pk can be expressed as

Pk = NFP (15)

The model for Cartesian stiffness regulation through co-contraction is formulated as

Kend = Kend0 + TcPk (16)

where Tc maps the force-map null space Pk (the set of muscle activations that do not change
the endpoint force) in relation to stiffness variations.

From the above algorithms, it can be seen that the established estimation model for
endpoint stiffness based on force-map null space vectors describes the relationship between
muscle co-contraction and stiffness.

4.2. Parameter Identification in the Stiffness Estimation Model
4.2.1. Identification of the EMG-To-Force Map Matrix TF

The relationship between the endpoint force and the muscular activity vector can be
derived from Equation (11) as

Fend = TFP (17)
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The dataset {Fend, P} is constructed by acquiring multiple sets of EMG signals from
dominant muscles and the endpoint forces during the completion of rehabilitation training
tasks. Then, the identification of the EMG-to-force map matrix TF can be accomplished by
utilizing the projected gradient descent algorithm for the linear Equation (17).

For the end-effector rehabilitation robot, dragging the patient’s upper limb in plane to
accomplish rehabilitation, we estimated TF by combining the endpoint force vectors in the
horizontal plane with the measured activities of four involved muscles. The endpoint forces
in the horizontal plane, Fend= [Fx Fy]T, were detected by a three-axis force sensor connected
to a handle equipped at the endpoint of the robot arm. The analogue sEMG signals from the
dominant muscles associated with the shoulder and elbow joint motions were collected and
amplified separately utilizing an EMG signal detector. Four dominant muscles acting on
elbow and shoulder joints [25] were chosen as the sources of sEMG recordings, including
two flexors, i.e., the biceps long head (BILH) and the deltoid clavicular part (DELC), and
two extensors, i.e., the triceps lateral head (TRIA) and the deltoid scapular part (DELS).
Since the raw surface electromyographic (sEMG) signals directly acquired through electrode
pads contain information about the activity of motor units of muscle fibers, along with some
noise signals, a preprocessing algorithm was employed to extract the envelope amplitude
of the raw sEMG signals. The preprocessing algorithm included procedures such as linear
noise removal, Butterworth bandpass filtering, and root-mean-square envelope calculation.

4.2.2. Identification of the EMG-to-Stiffness Map Matrix Tc

From Equations (14)–(16), it can be inferred that the kernel matrix NF was initially
obtained from the identified EMG-to-force map matrix TF. Subsequently, the identification
of the EMG-to-stiffness map matrix Tc for the linear Equation (16) was achieved through
the application of the projection gradient descent algorithm.

During the identification process, the participant grasps the handle at the robot’s
end-effector and generates random perturbation forces of a certain peak value in the X
and Y directions by varying the degree of muscle contraction, thereby creating a sufficient
dataset. This interactive process is described by the Cartesian space impedance model:

FH = Mend
..
X + Bend

.
X + Kend(X− X0) (18)

where FH is the human–robot interaction force, Mend, Bend, and Kend are the mass, damping,
and stiffness matrices of the endpoint of the upper limb, respectively; X is the endpoint
position; and X0 is the initial-point position.

During the experiment, it is necessary for the testers to perform contraction motions
at varying levels of muscle activity. This can be monitored using the co-contraction index
TCI [25], defined as follows:

TCI = Sxx + Syy (19)

where Sxx and Syy are the contraction indices corresponding to the forces acting in the X
and Y directions at the end-effector in a plane. They can be determined by the identified
EMG-to-force map matrix TF and the muscular activity vector P:[

Sxx
Syy

]
= |TF|P (20)

The co-contraction index (TCI) needs to be normalized for different patients, with
TCImin representing muscle relaxation, and TCImax representing full muscle contraction.
The muscle contraction rate ψco is defined based on the normalized TCI index:

ψco =
TCI − TCImin

TCImax − TCImin
(21)

When the muscles are in a relaxed state, ψco = 0, as indicated by Equation (18). By
applying a small mechanical perturbation to the endpoint of the human arm by the robot,
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the initial intrinsic impedance parameters (Mend0, Bend0, Kend0) can be obtained based on
the measured restoring force and position deviation. When the patient performs active
motions, the muscles are in a certain contraction state, exerting force on the robot. The
endpoint stiffness of the human upper limb Kend is calculated by Equation (18) at this time.
Let Ke = Kend − Kend0, then the Equation (16) is rewritten as

Ke = TcPk (22)

For the linear Equation (22), the endpoint-stiffness mapping matrix Tc identification
can also be accomplished by employing the projected gradient descent algorithm.

5. Experiments and Results Analysis

In order to evaluate the effectiveness of the proposed control method, experiments
were carried out. The experimental system primarily consisted of a two-degree-of-freedom
end-effector rehabilitation training robot prototype driven by pneumatic swing cylinders, a
computer, a controller, data acquisition boards, a three-dimensional force sensor, and an
sEMG signal acquisition device, as depicted in Figure 5.
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Figure 5. Physical prototype of the robot and the test system.

The pneumatic swing cylinders were selected from the products of SMC Corpora-
tion (Tokyo, Japan), with the CRB1BW100-270S model used for the upper arm and the
CRB2BW40-270S model for the forearm. The cylinder control valves were the VPPE-3-1-
1/8-6-010-E1 proportional pressure valves produced by FESTO Corporation (Esslingen,
Germany). The control system of the robot adopted the Links-RT semi-physical simulation
device, with control board cards embedded internally. Specifically, the PCI-6602 board
card (National Instruments (NI), Austin, TX, USA) was utilized for collecting pulse signals
output by the encoders, the PCI-6251 board card (NI) served as an A/D input card for
acquiring the output pressure of proportional pressure valves and the human–robot interac-
tion force feedback from the force sensors, while the PCI-6216 board card (NI) functioned as
an output card, generating analog voltage signals to control the pressure of the proportional
pressure valves. Within the sensing system, two incremental encoders were selected for
robot joint angle acquisition. The A3D46 model (Shenzhen Measurement and Control
Technology Co., Ltd, Shenzhen, China) three-dimensional force sensor was chosen for
human–robot interaction force acquisition, operating in the range from 0 to 200 N in the
XYZ directions, while the pressure sensor selected for proportional valve output pressure
acquisition was the PSE540-R06 series produced by SMC Corporation, with a rated pressure
range from 0 to 1 MPa. Additionally, a six-channel sEMG sensor developed by SICHIRAY
Corporation (Wuxi, China) was utilized for collecting human raw sEMG signals.
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5.1. Parameter Identification and Stiffness Estimation Experiment

Based on the stiffness estimation model, the experimental and computational pro-
cedures were designed according to the parameter identification method explained in
Section 4, as illustrated in Figure 6.
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Figure 6. Experimental and computational procedure for endpoint stiffness identification based on
sEMG signals.

Initially, the identification of the EMG-to-force map matrix TF was completed. The
robot was in a no-drive mode and served only as a support for the force sensors. The test
subject sat upright, naturally positioning the upper arm and tightly gripping the robot
handle by the hand. The participant, with electrode sheets affixed to four muscles of the
healthy limb, generated a specified force in the X and Y directions. Six sets of force data
and twelve sets of sEMG data (across four channels) were obtained by measuring three
times in each direction. Using these data, the identification of TF was achieved through the
application of the projected gradient descent algorithm, and the results were as follows.

TF =

[
0.306 0.152 −0.185 0.651
0.876 −0.319 0.583 −0.582

]
Based on the identified TF, the kernel matrix NF was calculated by Equation (14).

NF =


0.1088 1.0967 0.7430 0.8533
1.0967 0.9165 1.1356 0.7791
0.7430 1.1356 0.7669 1.3071
0.8533 0.7791 1.3071 0.2078


The estimated force was calculated by Equation (17) and was then compared to the ac-

tual force measured by the force sensor, as depicted by the curve in Figure 7. Consequently,
the validity of proposed identification method was demonstrated, providing a good repre-
sentation of the mapping relationship between the sEMG signals and endpoint forces.

In the following phase, the upper-limb end-effector rehabilitation robot transitioned
to an active control mode. The participant gripped the handle at the robot’s endpoint,
generating random perturbations with specific peaks in the X and Y directions. The intrinsic
impedance parameters (Mend0, Bend0, Kend0) of the upper-limb endpoint were calculated
by Equation (18) in a relaxed state of the muscles in the healthy limb, specifically, at a
contraction rate ψco = 0. These parameters are detailed in Table 2.
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Table 2. Intrinsic impedance parameters of the healthy-limb endpoint.

M0 (Kg) B0 (Ns/m) K0 (N/m)

Mxx Myy Bxx Byy Kxx Kyy

0.21 0.15 14.9 25.2 194.1 178.3

The human–robot interaction force and positional deviation were detected again
during muscle contraction of the healthy limb, and the endpoint stiffness Kend of the upper
limb was calculated by Equation (18). Finally, the endpoint stiffness mapping matrix was
identified, and the results are as follows.

Tc =

[
293.8 494.4 −217.8 −390.1
327.2 583.5 −353.1 −496.3

]
5.2. Assist-As-Needed Control Experiment

Within the safe working space of the experimental prototype, rehabilitation training
experiments with AAN control were conducted by planning a circular motion trajectory in
Cartesian space. Multiple healthy individuals participated in the experiments, simulating
different degrees of motion impairments. The robot pulled their arms to perform circular
training in the plane.

Firstly, the effectiveness of the inner-loop position controller was verified through
passive rehabilitation training experiments. The passive rehabilitation training mode refers
to training that was completely driven by robots when the affected limb was in a flaccid
state. Due to the lack of a human–robot contact force during this training process, the
interaction control of the outer loop was not effective, and the robot joint motion was only
controlled by the position controller to track the planned circular training trajectory. The
robot’s joints were driven by the swing cylinders, which were controlled by the proportional
pressure valves. Precision in pneumatic joints’ position control was ensured through the PD
control with the dynamic-term feedforward strategy, as mentioned in Section 3. As shown
in Figure 2, each swinging cylinder of the driving joint is equipped with two proportional
pressure valves, which realize the movement of the swinging cylinder based on the pressure
difference. The output torque of the swinging cylinder is linearly proportional to the control
voltage difference of the two proportional pressure-regulating valves. With the pressure
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sensors and an A/D (analog/digital) board, the output pressure and analog voltage changes
related to the proportional valves were measured. Using the torque and pressure difference
coefficients provided in the swing cylinder manual, the coefficient Kτ was calculated. The
stable pressure provided by the pump during operation was 0.6 MPa, and the coefficient Kτ

of the proportional pressure valve was experimentally determined to be 0.06. The control
parameters are listed in Table 3. The motion trajectory at the robot’s endpoint and the joint
torque curves are depicted in Figure 8.

Table 3. Position control parameters.

Kp Kd Ku

Swing cylinder of the upper arm 0.23 0.024 0.012
Swing cylinder of the forearm 0.4 0.015 0.04
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During passive rehabilitation training, the robot provided the patient with the maxi-
mum assistive torque, given that the affected limb had no active participation ability. As
shown in Figure 8a, the joint torque provided by the robot upper arm was about 3 Nm, and
the joint torque provided by the forearm was about 1.5 Nm. At the same time, the robot
drove the affected limb according to the desired trajectory with a small error, as shown
in Figure 8b. With this system, the desired trajectory is planned according to the bearing
capacity of the affected limb. For example, if the range of motion of the affected limb is
small, the radius of the circle in early rehabilitation training will be set accordingly, and the
training trajectory will gradually increase with the degree of rehabilitation of the affected
limb. The average absolute position errors in the X-axis and Y-axis relative to the desired
trajectory were 2.13 mm and 3.05 mm, respectively, through statistical calculations. The
position accuracy met the needs of rehabilitation training, thus verifying the effectiveness
of the design of the position control strategy.

Active rehabilitation training is employed when the affected limb possesses a certain
level of motion capability and was performed utilizing the AAN control strategy proposed
in this study. In the AAN control experiments, the tester interacted with the robot by vary-
ing muscle contraction intensity and output force to imitate affected limbs with different
motor abilities. These were referred to as Test 1 and Test 2 and labeled in the experimental
curves. EMG signals from both the healthy and the affected limbs were collected. Then, the
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estimated stiffnesses were obtained by utilizing the stiffness estimation algorithm, and the
curves are shown in Figure 9. The forces exerted by the affected limb on the robot were
synchronously acquired, as depicted in Figure 10. The robot endpoint motion trajectory
under AAN control is illustrated in Figure 11, while the robot joint torques are presented in
Figure 12.
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6. Discussion

Upon examining the aforementioned test data in Figures 9–12, the AAN characteristics
of the robot in active rehabilitation training were analyzed and are discussed in detail below.

(1) As shown in Figure 9, the mean value of the endpoint stiffness in the X-direction of
the healthy limb was approximately 550 N/m, and the mean value of the endpoint stiffness
in the Y-direction was about 450 N/m. The endpoint stiffness values in both Test 1 and Test
2 were lower than those of the healthy limb, with Test 1 showing a lower stiffness than Test
2. Therefore, Test 1 was used to simulate the more severely affected limb, while Test 2 was
used to simulate the less severely affected limb. The testers could not entirely maintain
the same muscle contraction intensity during motion; so, the measured stiffness had the
characteristic of fluctuating at a constant level. Meanwhile, the stiffness in the X-direction
was slightly greater than that in the Y-direction when completing the task of drawing a
circle. This observation reflects the stiffness characteristics of human motion in different
directions during the task, indicating good consistency in the algorithm’s recognition.

(2) The real-time changes in endpoint forces detected by the force sensor mounted
at the handle’s endpoint in the two tests are illustrated in Figure 10. A comparison re-
vealed that the variation trends of the endpoint forces in the two experiments were similar.
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Nevertheless, the endpoint force in Test 1 was significantly lower than that in Test 2. Corre-
sponding to the stiffness curves in Figure 9, since the affected-limb condition simulated in
Test 1 was more serious than that in Test 2, the force curves indicated that the patient in
Test 2 had a greater active motion ability.

(3) The variations between the expected and the actual endpoint motion trajectories of
the robot during the two tests are depicted in Figure 11. Firstly, compared to the endpoint
motion trajectory in passive rehabilitation training (Figure 8a), the desired trajectory was
regulated by the impedance model because of the addition of the interaction control
outer loop and the participation of the affected limb in active rehabilitation training. The
robot moved according to the adjusted trajectory, demonstrating its motion compliance.
Comparing Figure 12a,b, the amount of trajectory adjustment in Figure 12b is greater due
to the higher active involvement of the affected limb in Test 2.

(4) The output joint torque reflects the robot’s AAN characteristics, which can be
calculated by Equation (10) with the air pressure values detected in the two chambers of
the swing cylinder. Comparing the joint torque in passive training (Figure 8b), the average
assistive torques provided by the robot’s upper arm and forearm in Test 1 in Figure 12a and
Test 2 in Figure 12b were reduced by 0.68 Nm and 0.212 Nm, respectively. This suggests
that the robot provided varying assistance based on the participant’s motion performance.

Tatsuya Teramae et al. [11] also proposed an EMG-based assist-as-needed (AAN)
controller for rehabilitation. The joint torque of a patient was estimated from the measured
EMG signals of the affected limb, and then the deficient joint torque was derived based on
the preset desired torque to generate the target movements. The adaptive AAN control
focuses on assessing in a patient the motor functional ability of the affected limb only. As
a result, the outcomes of the AAN control, in which the designer determines the desired
outcome, tend to diverge from the patient’s expectations. In our study, the active movement
ability of affected limbs in different conditions was quantitatively described through the
endpoint stiffness. Subsequently, compared to the normal movement ability of healthy
limbs, the varying assistive forces provided by the robot were determined. This variation
reflects personalized assist-as-needed features tailored to the patient’s active movement
abilities. Furthermore, the stiffness directionality of a patient during task completion is also
integrated into the auxiliary strategy due to the different stiffness values mapped to the
robot in the X and Y directions. This integration highlights the second advantage of this
method—the incorporation of robotic assistive features tailored to the patient’s unique arm
exertion habit.

7. Conclusions

In this paper, an AAN control method based on the motion characteristics of the
healthy limb is proposed, using a pneumatic end-effector upper-limb rehabilitation training
robot as the controlled device. To evaluate the patient’s motion performance, a stiffness
estimation model was established by utilizing the sEMG signals containing skeletal muscle
motion information, and a parameter identification method was designed to obtain the
estimated endpoint stiffness of the patient’s arm. A stiffness mapping algorithm was
developed for the impedance controller. The impedance parameters of the controller were
synchronously adjusted in real time based on the estimated stiffnesses of the healthy and
the affected limb. By using the stiffness information of the healthy limb as a benchmark for
the required motion capability to complete tasks and combining it with that of the affected
limb to assess the motor needs, the robot’s assistive force can be dynamically modified.
This method employs personalized stiffness parameters representing the force/position
dynamic relationship in human–robot interaction, so that the robot-assisted force for
completing the rehabilitation task is better aligned with the patient’s pre-morbid limb habit,
thereby promoting coordination in bilateral motions.

Through prototype experiments, including the estimation of the endpoint stiffness of
the human arm based on sEMG, the position control of the robot, and variable impedance
AAN control experiments, the results demonstrate that the established stiffness estimation
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model and identification algorithm provide a correct quantitative method for estimating
the motion ability of a patient’s limb. The robotic assistance torque and motion trajectory
undergo reasonable adaptive adjustments with changes in the motion ability of the affected
limb and in human–robot interaction forces, thereby validating the effectiveness of the AAN
control strategy proposed in this study and affirming the feasibility of the pneumatic robot
system design. The proposed techniques in this study contribute to enhancing personal
adaptation in robot-assisted active rehabilitation training.

Although the results obtained in this paper are encouraging, the algorithm for estimat-
ing the endpoint stiffness in three-dimensional motion needs further derivation. Among
the limitations of the present technique is the local validity of the stiffness estimation data.
This arises from the fact that, in the experiments described in this article, the upper limbs
completed plane movements in a relatively consistent posture. When applied to other
multi-degree-of-freedom rehabilitation training robots, such as those completing spatial
movements, three-dimensional stiffness recognition is related to upper-limb posture and
needs to be recalibrated in different postures. Additionally, the rehabilitation training robot
is still in the prototype stage, and the selected experimenters were all healthy individuals.
The system was validated by simulating patients. In the future, clinical trial studies will be
carried out to further optimize the design of the system.

Author Contributions: Conceptualization, B.G.; methodology, Z.L. and M.H.; writing—original draft
preparation, B.G., Z.L. and M.H.; writing—review and editing, B.G., Z.L., M.H., X.L. and J.H.; project
administration, B.G.; funding acquisition, B.G. All authors have read and agreed to the published
version of the manuscript.

Funding: This study was supported by the “Research on Key Technologies for Embodied Intelligent
Collaborative Control of Upper Limb Exoskeleton Robots” project granted by the “Project of science
and technology of the Henan Province” (242102220116).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Informed consent was obtained from all the subjects involved in
the study.

Data Availability Statement: All the test data mentioned in this paper will be made available upon
request to the corresponding author with appropriate justification.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Donkor, E.S. Stroke in the 21st Century: A snapshot of the burden, epidemiology, and quality of life. Stroke Res. Treat. 2018, 2018,

1–10. [CrossRef] [PubMed]
2. Hatem, S.M.; Saussez, G.; Della, F.M.; Prist, V.; Zhang, X.; Dispa, D.; Bleyenheuft, Y. Rehabilitation of motor function after stroke:

A multiple systematic review focused on techniques to stimulate upper extremity recovery. Front. Hum. Neurosci. 2016, 10, 442.
[CrossRef] [PubMed]

3. Hung, Y.; Chen, P.; Lin, W. Design Factors and Opportunities of Rehabilitation Robots in Upper-Limb Training after Stroke. In
Proceedings of the 2017 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), Jeju, Republic of
Korea, 25 July 2017; pp. 650–654.

4. Hu, W.; Li, G.; Sun, Y.; Jiang, G.; Kong, J.; Ju, Z.; Jiang, D. A Review of Upper and Lower Limb Rehabilitation Training Robot. In
Intelligent Robotics and Applications; Huang, Y., Wu, H., Liu, H., Yin, Z., Eds.; Rona, Nugent: Wuhan, China, 2017; pp. 570–580.

5. Fareh, R.; Elsabe, A.; Baziyad, M.; Kawser, T.; Brahmi, B.; Rahman, M.H. Will your next therapist be a robot?—A review of the
advancements in robotic upper extremity rehabilitation. Sensors 2023, 23, 5054. [CrossRef] [PubMed]

6. Meng, Q.; Yue, Y.; Li, S.; Yu, H. Electromyogram-based motion compensation control for the upper limb rehabilitation robot in
active training. Mech. Sci. 2022, 13, 675–685. [CrossRef]

7. Mounis, S.Y.A.; Azlan, N.Z.; Sado, F. Assist-as-needed control strategy for upper-limb rehabilitation based on subject’s functional
ability. Meas. Control 2019, 52, 1354–1361. [CrossRef]

8. Carmichael, M.G.; Liu, D. Admittance Control Scheme for Implementing Model-Based Assistance-As-Needed on a Robot. In
Proceedings of the 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC),
Osaka, Japan, 3–7 July 2013; pp. 870–873.

9. Li, Z.; Huang, Z.; He, W.; Su, C. Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE
Trans. Ind. Electron. 2017, 64, 1664–1674. [CrossRef]

https://doi.org/10.1155/2018/3238165
https://www.ncbi.nlm.nih.gov/pubmed/30598741
https://doi.org/10.3389/fnhum.2016.00442
https://www.ncbi.nlm.nih.gov/pubmed/27679565
https://doi.org/10.3390/s23115054
https://www.ncbi.nlm.nih.gov/pubmed/37299781
https://doi.org/10.5194/ms-13-675-2022
https://doi.org/10.1177/0020294019866844
https://doi.org/10.1109/TIE.2016.2538741


Sensors 2024, 24, 2082 19 of 19

10. Pehlivan, A.U.; Losey, D.P.; Ormalley, M.K. Minimal assist-as-needed (mAAN) controller for upper limb robotic rehabilitation.
IEEE Trans. Robot. 2016, 32, 113–124. [CrossRef]

11. Teramae, T.; Noda, T.; Morimoto, J. EMG-based model predictive control for physical human–robot interaction: Application for
assist-as-needed control. IEEE Robot. Autom. Lett. 2017, 3, 210–217. [CrossRef]

12. Li, H.; Hu, S.; Song, A. Adaptive assist-as-needed upper limb mirror control strategy. J. Electron. Inf. Technol. 2022, 44, 437–445.
13. Wang, J.; Zuo, G.; Zhang, J.; Shi, C.; Song, T.; Guo, S. Research on assist-as-needed control strategy of wrist function-rehabilitation

robot. J. Biomed. Eng. 2020, 37, 129–135.
14. Luo, L.; Peng, L.; Wang, C.; Hou, Z. A greedy assist-as-needed controller for upper limb rehabilitation. IEEE Trans. Neural Netw.

Learn. Syst. 2019, 30, 3433–3443. [CrossRef] [PubMed]
15. Ding, Y.; Zhao, J.; Min, X. Impedance control and parameter optimization of surface polishing robot based on reinforcement

learning. Proc. Inst. Mech. Eng. Part B J. Eng. Manuf. 2022, 237, 216–228. [CrossRef]
16. Hogan, N. Impedance control-an approach to manipulation: Part 1,2,3. Asme. Trans. J. Dyn. Syst. Meas. Control B 1985, 107,

304–313.
17. Guo, Y.; Wang, H.; Tian, Y.; Xu, J. Position/force evaluation-based assist-as-needed control strategy design for upper limb

rehabilitation exoskeleton. Neural Comput. Appl. 2022, 34, 13075–13090. [CrossRef]
18. Lv, B.; Zhong, Y.; Zhao, X.; Zeng, G. Research on Position-Based Impedance Control in Cartesian Space of Robot Manipulators. In

Proceedings of the 2019 2nd World Conference on Mechanical Engineering and Intelligent Manufacturing (WCMEIM), Shanghai,
China, 1 November 2019; pp. 549–551.

19. Mao, D.; Yang, W.; Du, Z. Fuzzy variable impedance control based on stiffness identification for human-robot cooperation. IOP
Conf. Ser. Earth Environ. Sci. 2017, 69, 1–9. [CrossRef]

20. Lafmejani, A.S.; Masouleh, M.T.; Kalhor, A. Dynamic modeling, identification, and a comparative experimental study on position
control of a pneumatic actuator based on Soft Switching and Backstepping–Sliding Mode controllers. In Backstepping Control of
Nonlinear Dynamical Systems; Vaidyanathan, S., Azar, A.T., Eds.; Elsevier: Amsterdam, The Netherlands, 2021; pp. 261–289.

21. Ajoudani, A.; Tsagarakis, N.; Bicchi, A. Tele-impedance: Teleoperation with impedance regulation using a body–machine interface.
Int. J. Robot. Res. 2012, 31, 1642–1656. [CrossRef]

22. Song, T.; Yan, Z.; Guo, S.; Li, Y.; Li, X.; Xi, F. Review of sEMG for robot control: Techniques and applications. Appl. Sci. 2023,
13, 9546. [CrossRef]

23. Zhang, L. An upper limb movement estimation from electromyography by using BP neural network. Biomed. Signal Process.
Control 2019, 49, 434–439.

24. Ajoudani, A.; Fang, C.; Tsagarakis, N.G.; Bicchi, A. A Reduced-Complexity Description of Arm Endpoint Stiffness with
Applications to Teleimpedance Control. In Proceedings of the 2015 IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Hamburg, Germany, 1 September 2015; pp. 1017–1023.

25. Kiguchi, K.; Hayashi, Y. An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Trans. Syst. Man Cybern.
Part B Cybern. 2012, 42, 1064–1071. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/TRO.2015.2503726
https://doi.org/10.1109/LRA.2017.2737478
https://doi.org/10.1109/TNNLS.2019.2892157
https://www.ncbi.nlm.nih.gov/pubmed/30736008
https://doi.org/10.1177/09544054221100004
https://doi.org/10.1007/s00521-022-07180-x
https://doi.org/10.1088/1755-1315/69/1/012090
https://doi.org/10.1177/0278364912464668
https://doi.org/10.3390/app13179546
https://doi.org/10.1109/TSMCB.2012.2185843
https://www.ncbi.nlm.nih.gov/pubmed/22334026

	Introduction 
	Upper-Limb Rehabilitation End-Effector Robot 
	Personalized Assist-As-Needed Control Strategy 
	Interactive Control Algorithms and Stiffness-Mapping Criteria 
	Position Control Algorithms in the Joint Space 

	Human Arm Endpoint Stiffness Estimation Method 
	Endpoint Stiffness Estimation Modeling 
	Parameter Identification in the Stiffness Estimation Model 
	Identification of the EMG-To-Force Map Matrix TF  
	Identification of the EMG-to-Stiffness Map Matrix Tc  


	Experiments and Results Analysis 
	Parameter Identification and Stiffness Estimation Experiment 
	Assist-As-Needed Control Experiment 

	Discussion 
	Conclusions 
	References

