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Abstract: With the growing maritime economy, ensuring the quality of communication for maritime
users has become imperative. The maritime communication system based on nearshore base stations
enhances the communication rate of maritime users through dynamic resource allocation. A virtual
queue-based deep reinforcement learning beam allocation scheme is proposed in this paper, aiming
to maximize the communication rate. More particularly, to reduce the complexity of resource
management, we employ a grid-based method to discretize the maritime environment. For the
combinatorial optimization problem of grid and beam allocation under unknown channel state
information, we model it as a sequential decision process of resource allocation. The nearshore base
station is modeled as a learning agent, continuously interacting with the environment to optimize
beam allocation schemes using deep reinforcement learning techniques. Furthermore, we guarantee
that grids with poor channel state information can be serviced through the virtual queue method.
Finally, the simulation results provided show that our proposed beam allocation scheme is beneficial
in terms of increasing the communication rate.

Keywords: deep reinforcement learning; beam allocation scheme; deep Q-network

1. Introduction

The sixth-generation (6G) wireless communication aims to expand network cover-
age and improve network performance [1,2]. Maritime communication, as an important
component of wireless communication, has received increasing attention with the growing
maritime economy.

In general, maritime communication is composed of satellite communication and com-
munication based on nearshore base stations (BSs). Satellite communication systems, such
as the Global Maritime Distress and Safety System (GMDSS), Iridium system, and Interna-
tional Maritime Satellite System (Inmarsat) [3–5] can cover the large maritime environment,
meeting the communication requirements of maritime users. However, the high cost and
latency of satellite communication are the main challenges faced in maritime satellite
communication [6]. Communication systems based on nearshore BSs can be integrated
with terrestrial communication systems, which effectively reduces cost and latency. Nev-
ertheless, compared to terrestrial communication, maritime communication is subject to
multiple factors. The refractive index fluctuation caused by the uneven atmospheric pres-
sure and temperature, namely turbulence, reduces the performance of the communication
system [7], and, due to the lack of scatterers in the vast maritime environment, the scattering
of electromagnetic waves affects communication performance [8]. Furthermore, maritime
communication users exhibit locally dense, and overall sparse, distribution characteristics.
These factors make it inappropriate to directly address the communication requirements of
maritime users through traditional terrestrial communication.

Currently, there are some nearshore communication systems and networks designed
for maritime communication. The Long Term Evolution (LTE)–Maritime project aims to
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meet the communication requirements of maritime users using ground infrastructure [9]; it
can support a high data rate while providing coverage around 100 km from BSs. The mesh
TRITON network, based on IEEE 802.16, focuses on dense wireless mesh networks in mar-
itime nearshore areas for maritime users [10]. The nearshore communication systems, such
as the navigation telex (NAVTEX) system and the automatic identification system (AIS)
provide services for information broadcasting, voice, and ship identification [11]. However,
the above communication systems and networks are merely direct applications of terres-
trial communication systems in maritime environments. At present, there is still a lack of
communication schemes based on the characteristics of the maritime environment and mar-
itime users. To solve the above problems, beamforming technology can provide directional
coverage, ensuring communication quality for users within the coverage area [12,13].

In maritime communication systems, beamforming technology can be used to solve
the issue of communication distance and improve user communication quality [14,15]; it
can further enhance communication system performance through its combined applica-
tion with non-orthogonal multiple access (NOMA) technologies [16]. However, further
research is needed on how to manage beam resources, and when and where to make
beam management decisions. On the one hand, maritime communication faces challenges
such as long distances between BSs and users, significant transmission delays, and high
interference [17]. It is difficult to obtain the CSI in the maritime environment [18], and the
traditional communication resource allocation schemes based on CSI are difficult to employ
in the maritime environment [19]. On the other hand, there is still a lack of relevant research
on the distribution characteristics of communication users in maritime environments. So, it
is necessary to design an efficient beam management scheme to cater to the characteristics
of the maritime environment and users.

The essence of a beam management scheme is essentially a combinatorial optimization
problem; its computational complexity increases continuously with the growth of the di-
mension of combinatorial optimization states. Traditional methods are not applicable when
the state space is large. Reinforcement learning (RL) can solve this problem by structuring
combinatorial optimization as a sequential decision process. It continuously interacts with
the environment and updates iterations based on real-time data, optimizing the choices
made. RL has been widely applied in the scenario of resource allocation in maritime envi-
ronments [20,21]. In a rapidly changing vehicular environment, Liang et al. [22] effectively
improved the transmission rate in the end-to-end communication link. It has been shown
that multi-agent RL can achieve significant performance gains by allocating appropriate
resources in the face of uncertain environments [23].

Nevertheless, Shi et al. [24] also point out that, as the number of serviced users
increases, which corresponds to the growth in the state space of RL, there is a higher
requirement for online devices, which will reduce the efficiency of service devices. Mean-
while, due to the dynamic nature of the maritime environment, it is challenging to fully
describe the state information of all communication users using a Q-network in RL. Hence,
we consider using the method of deep reinforcement learning (DRL) to address the resource
allocation problem. DRL as an effective method has achieved great performance in resource
management [25,26]. In [27], Hu et al. propose a DRL framework model to address the deci-
sion problem of dynamic resource allocation in satellite communication. In [28], Qian et al.
effectively reduced the total energy consumption of the entire maritime Internet of Things
network by utilizing relay devices for resource allocation through a DRL framework. All of
these papers demonstrate the effectiveness of using a DRL method for resource allocation
in communication networks. Furthermore, in order to further reduce the complexity of
communication systems, an optimized algorithm using a grid-based method to tackle the
resource allocation management problem is proposed in [29]. Similarly, we can divide the
sea area covered by the BS’s transmitted signal into multiple grids.

In this paper, a virtual queue-based deep reinforcement learning (VQDRL) beam
allocation scheme for maritime communication systems is proposed, wherein the CSI is
unknown, aiming to maximize the communication rate of the maritime communication
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system. Due to the sparse features of maritime users, an optimized algorithm using a
grid-based method is employed to tackle the resource allocation management problem.
After modeling the maritime communication system and VQDRL framework, we employ
neural networks to allocate beam resources. Furthermore, the neural network is trained
based on the communication rate of maritime users to obtain the optimal beam allocation
scheme. This paper has three main contributions which are as follows:

1. Due to the complexity of the maritime environment, a grid-based method is adopted
to discretize the coverage area, reducing the complexity of resource management.

2. A VQDRL resources allocation scheme is employed in grids with unknown CSI.
By continuously training the neural network to optimize its output, we obtain the
most effective beam allocation scheme.

3. A virtual queue method is employed in maritime communication, it can ensure that
grids with poor channel states can be served.

The remainder of this paper is organized as follows. Section 2 introduces the system
model. A VQDRL resources allocation scheme is proposed in Section 3, and the simulation
results are given in Section 4. Finally, we conclude this paper in Section 5.

2. System Model and Problem Formulation
2.1. System Model

The maritime communication system model is shown in Figure 1. A uniform an-
tenna array with a total of Nt = Nh

t ×Nv
t antennas is deployed on the base station (BS).

There are Nh
t antennas in the horizontal direction and Nv

t antennas in the vertical direction.
Based on the characteristics of the antennas, a total of N beams are generated. After di-
viding the maritime environment using the grid-based method, we can get M grids. Now,
N = {1, . . . n, . . . N} and M = {1, . . . m, . . . M} represent the set of beams and grids, respec-
tively. Here, n and m denote the index of beams and grids. When we obtain the distance
dm and horizontal angle θm from grid m to the BS, we can describe the grid information by
using the set sm = {dm, θm}. And the received signal at the m-th grid with the n-th beam
can be expressed as

ym,n =

√
PtGm

dα
m

hmwnxm +

√
PtGm

dα
m

∑
b∈N
b ̸=n

∑
a∈M
a ̸=m

hmwbxa + n0 (1)

where Pt represents the transmit beam power, Gm denotes the antenna gain for grid m, α
is the path loss coefficient, and hm and wn denote the channel from grid m to the BS and
the unit-norm precoding vectors of beam n, respectively, which satisfy ||wm|| = ||wb|| = 1.
Let xm and xa denote the transmission signal from the BS to the grid m and a; moreover,
the n0 ∼ CN

(
0, 1

)
is the additive complex white Gaussian noise.

2.2. Problem Formulation

From Equation (1), when we transmit a signal from the BS to the grid m with beam n,
we can get the received SINR of the users at time slot t using the following equation:

SINRm,n(t) =
PtGmd−α

m |hm(t)wn(t)|2

1 + PtGmd−α
m ∑b∈N

b ̸=n |hm(t)wb(t)|2
(2)

The communication rate can be expressed as

Rm,n(t) = log2(1 + SINRm,n(t)) (3)
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Consequently, the achievable communication sum-rate of the maritime communication
system model is given by

Rsum(t) = ∑
m∈M

∑
n∈N

Rm,n(t) (4)

Mh AntennasMh Antennas

Access Link

Nearshore 

BS
Terrestrial

Network

Maritime 

Ship

Figure 1. Maritimecommunication system model.

To maximize the accumulated communication throughput in a period set T = {1, 2, . . . , T},
the optimization problem can be expressed as

max ∑
t∈T

∑
m∈M

∑
n∈N

Rm,n(t)Km,n(t) (5)

s.t. Km,n(t)(1−Km,n(t)) = 0, ∀m ∈M, n ∈ N, t ∈ T, (5a)

∑
m∈M

Km,n(t) ≤ P, ∀m ∈M, n ∈ N, t ∈ T, (5b)

∑
n∈N

Km,n(t) ≤ P, ∀m ∈M, n ∈ N, t ∈ T, (5c)

Rm,n(t)Km,n(t) ≥Rth(t)Km,n(t), ∀m ∈M, n ∈ N, t ∈ T. (5d)

where Rth(t) denotes the minimum achievable communication rate for an m user in time
slot t, and Km,n(t) represents whether the communication of beam n for grid m in the
current time slot t was successful.

Constraints (5a) ensure that the value of Km,n(t) can be either 0 or 1. Constraints (5b)
and (5c) denote that a maximum of P beams can be used to serve P grids at any given time
slot. Constraint (5d) means that when the current communication rate is greater than the
minimum rate or equal to the minimum rate, the value of Km,n(t) is 1, otherwise, the value
of Km,n(t) is 0.

2.3. Deep Reinforcement Learning Model

For the optimization equation described above, it is impossible to obtain real-time
channel state information hm(t) to adjust beam allocation schemes. The beam allocation
problem is constructed as an RL system model and the RL algorithm can optimize the
action-choosing behavior through massive interactions between the agent and environment.
However, when the dimensions of the state space and action space are too large, traditional
tabular-based RL algorithms face issues such as being time-consuming. The DRL addresses
the limitations of traditional RL algorithms by using deep neural networks to select actions;
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it updates the weight parameters by minimizing the loss function to optimize the action-
choosing behavior. The structure of the DRL model is shown in Figure 2.
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Figure 2. Deep reinforcement learning model.

2.3.1. State Definition

In our model, we can obtain the state information of the grid that needs commu-
nication, namely as sm = {dm, θm}. The set of state information can be denoted as
S = {s1, ...sm, ...sM}. Moreover, the BS can handle communication requirements from
P grids at any given communication time slot t, and the system state s(t) ∈ RP×1 ⊆ S.

2.3.2. Action Definition

We define A(s(t)) as the set of available actions under state s(t). For any available
action a∗, we have a∗ ∈ A(s(t)). Additionally, we use a(t) to denote the beam chosen
scheme at time slot t.

2.3.3. Reward Definition

We use reward r(t) to describe the degree of goodness or badness of taking an action
a(t) in the current state s(t). In our model, we use r(t) to denote the condition of the
communication rate. Typically, the reward value should be normalized in range r(t) ∈ [0, 1].

2.3.4. Action Selection

To avoid the local optimum of DRL, the resource allocation decision is made by
adopting the ϵ-greedy strategy, where the action is randomly selected with a probability of
ϵ, while the action with largest action-values is selected with a probability of 1 − ϵ. We use
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Q(s(t), a(t); θ) to denote the chosen action through the Q-network. Action selection with
the ϵ-greedy strategy can be expressed as:

a(t) =

random, with probability ϵ

arg max
a∗

Q(s(t), a∗; θ), otherwise (6)

2.3.5. Replay Memory

To alleviate the problems of related data and non-stationary distributions in our
system model, a replay memory technique, which randomly samples previous transitions,
and, thereby, smooths the training distribution over many past behaviors, is adopted.
The experience item is stored in the form of quad-tuples (s(t), a(t), r(t), s(t + 1)).

2.3.6. Loss Calculation

In order to improve the deep neural network performance, we use Q(θ−) to denote
the target network. During Q-network training, we update the weight parameters of the
Q-network θ by minimizing the loss function, as given in Equation (3):

L(θ) = E[(Qtarget −Q(s(t), a(t); θ))2] (7)

where the Qtarget is the target value defined below:

Qtarget = r(t) + γmax
a∗

Q(s(t + 1), a∗; θ−) (8)

γ is the discount factor.

3. VQDRL Resources Allocation Scheme

In this section, a VQDRL resources allocation scheme is proposed to address the beam
resource management problem in the maritime communication system. First, a virtual
queue method is introduced to choose the grids of communication [30]. Then, the BS
allocates the beam to the selected communication grids by using the proposed VQDRL
resources allocation scheme, which can maximize the communication rate.

3.1. Virtual Queue Method

In communication, we can use DRL to select beam and grid pairs to maximize the
communication rate. However, each grid has a different CSI, and directly using DRL to
allocate beams may result in some grids with poorer channel conditions being unable to
communicate. To address this issue, the method of virtual queue is introduced. By recording
communication requirements and queue lengths in different grids, this method can ensure
that communication is implemented in grids with poor channel conditions.

When we transmit signals to maritime users with communication requirements, we
also need to allocate beam resources as frequently as possible to ensure the communication
quality of those users with higher requirements. Meanwhile, we aim to send signals fairly
to each maritime area with communication requirements. By recording the requirements of
different grids, the virtual queue method can more frequently select grids with higher com-
munication requirements for communication; it also ensures fairness in the communication
among grids.

Let r = [r1, . . . , rm, . . . , rM] represents the vector of communication requirements of
maritime users within each grid, and, for any grid m, we can calculate the proportion of a
user’s requirement to the total grid requirements as follows:

pm =
rm

∑M
i=1 ri

(9)
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Now, for each grid m, we create a virtual queue Vm to denote the queue length at the
beginning of the communication; it can be seen as the accumulated length of communication
requirements up to the current communication time slot. The virtual queue length Vm(t) is
denoted according to the following dynamics:

Vm(t) =
[
Vm(t− 1) + pm − dm(t− 1)

]+ (10)

where
[
x
]+

≜ max{x, 0}, dm(t− 1) denotes whether the communication rate in the current
grid at time slot t− 1 meets the communication rate requirement; it can be denoted as
dm(t− 1) = η ∑N

n=1 Km,n(t− 1), and η is a coefficient to avoid excessively queue length.
At any given time slot t, the BS selects the grid to be served by beam resources and

obtains the grid information sm using the following equation:

sm ∈ arg max
i∈M

(Vi(t)) (11)

3.2. VQDRL Resources Allocation Scheme

After obtaining the communication grids for the current time slot using the virtual
queue method, we aim to maximize the communication rate by applying the DRL algorithm
for beam allocation in these grids. However, the obtained grid information cannot be
directly used as inputs for the neural network. In this case, the VQDRL resources allocation
scheme is proposed to effectively utilize the obtained grid information and employ it
as input to the neural network to obtain beam allocation schemes that maximize the
communication rate.

According to Equation (11), when we obtain the transmitted grid information sm in
the current time slot t, the VQDRL algorithm uses s(t) = sm = {dm, θm} as an input to the
neural network to obtain the output, which is the index of the allocated beam.

We can get different Q(s(t), a∗; θ) values through the Q-network after inputting the
state information s(t). In order to avoid the local optimum of VQDRL, we choose the
action a(t) taken by the agent in the current state to allocate beam based on the probability
of ϵ. When a randomly generated value is more than ϵ, we randomly select an action a,
otherwise, we choose the action arg max

a∗
Q(s(t), a∗; θ).

After selecting the action a(t) for the current time slot, when the BS sends beams to
the grids, the maritime users will get their communication rates Rm,n(t). The reward r(t) is
used to describe the condition of the communication rate, and we can obtain the next state
s(t + 1). It is obvious that when the constraint condition (5d) is satisfied under condition
∑m,n Rm,n(t)Km,n(t) = ∑m,n Rth(t)Km,n(t) = 0, the reward r(t) = 0. Otherwise, we define
the function of reward r(t) as follows:

r(t) =

1 if ∑
m,n

Rm,n(t)Km,n(t) ≥ ∑
m,n

Rth(t)Km,n(t)

0 otherwise
(12)

To further train our neural network while avoiding the issue of local optimization, we
often use the replay memory D to store training data. Let us use the buffer size to describe
the maximum amount of data stored in D and store the data set (s(t), a(t), r(t), s(t + 1))
from the communication process into D. When the amount of data set stored is larger than
the pre-defined batch size, we can randomly select a batch size of data from D to update
the neural network. Otherwise, we continue the aforementioned communication process
until the amount of data stored in D exceeds the batch size.
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After selecting the data to be used for training, we update the weight parameters of
the Q-network through the following process. We typically use the Bellman equation to
update the Q-values like Equation (13) in RL:

Q(s(t), a(t))←− Q(s(t), a(t)) + β[r(t) + γ max
a∗∈A(s(t))

Q(

s(t + 1), a∗)−Q(s(t), a(t))]
(13)

where β is the learning rate. Similar to RL, in DRL, based on the Bellman equation, we can
obtain the weight update through gradient descent using the loss function. According to
Equations (7) and (8), the gradient of loss function is calculated by calculating parameters
as follows:

dL(θ)
dθ

= E[Qtarget −Q(s(t), a(t); θ)
dQ(s(t), a(t); θ)

dθ
]. (14)

In our model, we used the Adaptive Moment Estimation (Adam) optimizer to solve
the gradient descent problem. It can adaptively adjust the learning rate to more effectively
update the model’s weights. As a hyperparameter, the learning rate has a significant impact
on weight updates for different values. In this model, we used a learning rate of 10−3 to
train the model at the beginning of the training period and hyperparameter γ represents
the discount factor.

After updating the weights of the Q-network, we determine whether it is time to up-
date the weights of the target network for the current time slot. Typically, the target network
parameter weights update every Nt step. The parameter weights of the Q-network are
assigned to the target network’s parameters, completing the update of the neural network.

4. Simulation Result

In this section, we simulated a maritime environment and deployed an antenna array
at the BS, constructing beam resources firstly, then we employed the VQDRL algorithm
to obtain the beam allocation schemes and observed the communication rate within the
beam coverage area through simulation results, further demonstrating the effectiveness of
our algorithm.

4.1. Simulation Enviroment Configuration

We deployed Uniform Planar Array (UPA) antenna arrays at the BS, and considered
taking the Kronecker product of the Discrete Fourier Transform (DFT) codebook in the
horizontal direction and vertical direction by using the Kronecker-product method. The 3D
Kronecker-product-based codebook can select the appropriate beam to enhance the channel
gain for the grid in both the horizontal and vertical direction [31]. It is generated as

Cv = [1, e
j2πm
ξNv , . . . , e

j2π(Nv
t −1)m

ξNv ]T

Ch = [1, e
j2πn
Nh , . . . , e

j2π(Nh
t −1)n

Nh ]T (15)

C = Cv ⊗Ch

where m = 0, 1, . . ., Nv − 1, n = 0, 1, . . ., Nh − 1, Nv, and Nh are the number of codewords
in the vertical direction and horizontal direction, respectively, ⊗ denotes the Kronecker
product, and ξ is a parameter to adjust the proportion which is determined by the maxi-
mum downtilt.

According to Equations (3) and (12), we need to simulate the maritime communication
channel model to obtain the communication rate and the reward value to train the neural
network. The maritime communication channel is assumed to follow the Rician distribution,
expressed as follows:

hm =

√
K

K + 1
hm +

√
1

K + 1
ĥm (16)



Sensors 2024, 24, 2247 9 of 16

where K is the rice factor, ĥm is the complex Gaussian random variables with zero mean
and unit variance, which belong to a set of C1×Nt , and hm is the channel mean vector. When
we consider the antenna array arranged in a UPA, the channel mean vector of the m-th grid
vector is expressed by [32,33]:

hm = [1, . . . , ej 2π
λ d(nh

t sin θm sin ϕm+nv
t cos ϕm),

. . . , ej 2π
λ d(Nh

t sin θm sin ϕm+Nv
t cos ϕm)]

(17)

where λ is the wavelength, d is the inter-antenna spacing, and θm is the horizontal angle
of the BS to the m-th grid, while ϕm is the vertical angle of the BS to the m-th grid, which
can be calculated based on the distance from the grid to the BS under the condition of
determining the height of the BS and the antenna, nh

t = 0, 1, . . . , Nh
t , nv

t = 0, 1, . . . , Nv
t .

For the convenience of distinction, the above model parameters and channel transmis-
sion parameters are represented in Table 1.

Table 1. Summary of Key Notations.

Notations Meaning

M; N Set of grids and beam resources
θm; ϕm Horizontal and vertical angle from grid m to BS
ym,n Receive signal from beam n to grid m
xm Transmit signal to grid m

Pt; α Transmit power and path loss coefficient
Gm Antenna gain for grid m
n0 Additive complex white Gaussian noise
h Channel transfer matrix
w Unit-form precoding vector

S;A Set of state information and available action
r(t) Reward function
Rm,n Communication rate of grid m with beam n

Q(θ); Q(θ−) Q-network and target network
rm Requirements of maritime users within grid m
pm Communication requirement of grid m

Vm; K Virtual queue length of grid m and rice factor

4.2. Average Communication Rate Analysis

The effectiveness of the VQDRL algorithm under this model will be proven by analyz-
ing the average communication rate with the entire grid and the average communication
rate with different grids. All simulations were conducted on a desktop equipped with
an Intel Core i7-10700 2.9 GHz CPU(Intel, Santa Clara, CA, USA), with each iteration of
1× 105 time slots taking approximately 12 min in our model.

We divided the coverage area of the nearshore BS communication into grids of size
10 × 10. The parameters of each grid and model value can be represented as follows in
Tables 2 and 3.

Table 2. Grid parameters.

s0{5 km, 1
6 π} ... s4{5 km, 0} ... s9{5 km, − 1

6 π}

. . . . . . . . . . . . . . .

s50{2.5 km, 1
6 π} . . . s54{2.5 km, 0} . . . s59{2.5 km, − 1

6 π}

. . . . . . . . . . . . . . .

s90{0.5 km, 1
6 π} ... s94{0.5 km, 0} . . . s99{0.5 km, − 1

6 π}
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Table 3. Simulation parameters and values.

Parameters Values

Nh
t ; Nh

t Nh
t = 8; Nh

t = 8
Nh; Nv Nh = 4; Nv = 4
M; N M = 100; N = 16
Pt; Gm Pt = 1000; Gm = 1

α; β α = 1; β = 0.001
ϵ; γ ϵ = 0.9; γ = 0.99

ξ; Rth ξ = 4; Rth = 1
buffer size; batch size buffer size = 512; batch size = 64

learning rate; K learning rate = 1× 10−4; K = 9
Nt; η Nt = 20; η = 10

To observe how the communication rate of the entire maritime environment changes
with the communication time slots, we used the average communication rate to show the
variation in Figure 3. Here, we employed random beam allocation and round robin beam
allocation schemes as comparative simulation results. The scheme that randomly allocates
a beam to the current communication grid is called the random beam allocation scheme.
Meanwhile, the scheme that allocates a beam to the current grid in ascending order by
beam index, and restarts the cycle when the maximum beam index is reached, is called the
round robin beam allocation scheme.

0 10000 20000 30000 40000 50000
Time slot

0

1

2

3

4

5

A
ve

ra
ge

 c
om

m
un

ic
at

io
n 

ra
te

 (b
ps

/H
z)

VQDRL scheme
Round robin scheme
Random scheme2000 4000

2

4

Figure 3. The average communication rate variation of different beam allocation schemes with
entire grids.

It is shown that, as the time slots increase, the difference in average communication
rates between the three beam allocation schemes becomes larger. In particular, the round
robin beam allocation scheme and random beam allocation scheme do not show a significant
difference in the average communication rate for entire maritime grids. Furthermore,
with the increase of time slots, the average communication rate for the entire maritime
environment under the two schemes essentially remains consistent. Compared to the
other two beam allocation schemes, the proposed VQDRL resources allocation scheme
significantly improves the average communication rate for the entire maritime environment,
and it gradually converges with the increase of the time slot.

To further analyze the average communication rate of the maritime environment, we
sampled some grids to observe their average communication rate. In Figure 4, we take two
grids, Grid55 and Grid95, as our observation points to observe the average communication



Sensors 2024, 24, 2247 11 of 16

rate. The left subplot shows the variation of the average communication rate over time for
Grid55, while the right subplot shows the variation of the average communication rate over
time for Grid95. It is shown that, as the time slots increase, the average communication rate
of the proposed VQDRL algorithm gradually increases until it stabilizes and converges.
Meanwhile, the average communication rates of the two beam schemes in the comparative
simulation gradually converge and eventually become consistent as the number of time
slots increases. The performance of the random and round robin beam allocation schemes
is worse than the performance of the proposed VQDRL algorithm. This trend aligns with
the observations in Figure 3.
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Figure 4. The average communication rate of different beam allocation schemes with different grids.
(a) Grid55. (b) Grid95.

4.3. Awaiting Time per Transmission and Average Virtual Queue Length

In this subsection, we discuss the waiting time per transmission and the average
virtual queue length of different grids. Let us set an upper bound on the length of the
virtual queue, denoted as Vmax, for all grids. When the virtual queue length of any grid
exceeds this value, we consider the grid to be in a communication waiting state. Here, we
set Vmax = 1, and Figure 5 shows the average waiting time per transmission of different
grids over 5× 104 time slots.
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Figure 5. The average waiting time slot of different grids.
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Meanwhile, we sampled some grids to obtain the average virtual queue length and
the confidence interval for the average queue length in Figure 6. The average virtual queue
length denotes the growth trend of virtual queues for different grids. It can be calculated

by ∑t
k=1 Vm(k)

t . The average virtual queue lengths and their respective confidence intervals
under multiple simulations for Grid55, Grid53, and Grid95 are displayed in red, blue, and
green, respectively. The purple line represents the upper bound of the virtual queue,
and the grids whose virtual queue length exceeds the line at any time slot are considered to
be in a waiting state until they are successfully communicated, reducing the virtual queue
length to below that line. We observed that the average virtual queue length under these
three different grids increases with the growth of time slots and eventually converges to
around 0.6, which is often associated with the ability to communicate in each time slot.

0 250 500 750 1000 1250 1500
Time slot

0.0

0.2

0.4

0.6

0.8

1.0

A
ve

ra
ge

 v
irt

ua
l q

ue
ue

 le
ng

th
 

Vmax

Grid 55
Grid 53
Grid 95

Figure 6. The average virtual queue length over communication time slots.

4.4. Hyperparameters Analysis

In this subsection, we adjust buffer size, learning rate, and batch size to observe the
variation of the average communication rate.

We adjust the buffer size in Figure 7. At the beginning of the simulation, the average
communication rate with a buffer size of 256 is significantly higher than that of the other
two batch sizes. As the number of time slots increases, the average communication rate of
the buffer size 512 gradually increases and converges near the average communication rate
of the buffer size 256. The average communication rate of the largest buffer size remained
much lower than the aforementioned two buffer sizes throughout the simulation. This is
because when the buffer size is too large, selecting data randomly from replay memory
may include some outdated data, which affects the effectiveness of the simulation. In the
simulation, we can adjust different buffer sizes to improve the average communication rate
in the maritime environment.

As shown in Figure 8, when we set the learning rate to 1× 10−3 and 1× 10−5 , we can
see that the convergence curves of the average communication rate are relatively less for
both grids. However, when the learning rate is set to 1× 10−4, the average communication
rate shows the best performance. This is because a learning rate that is too large or too small
can cause the beam selection to get stuck in local optima, resulting in poorer performance.
We can set a moderate learning rate value to obtain the best performance.
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Figure 7. The average communication rate with different buffer sizes.
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Figure 8. The average communication rate with different learning rates.

In Figure 9, we adjust the batch size. We can see that when the batch size is 64,
the average communication rate performs better compared to the case with a batch size
of 32 and 256, as the number of communications increased. This is because, when the
batch size is 32, the training data is not sufficient to adequately represent the data features
stored in the replay memory, leading to poor performance. And when the batch size
is 256, a larger batch size will rely on training data that are too “old” and degrade the
convergence performance. Furthermore, a large batch size will consume more time when
training neural networks. Therefore, an appropriate batch size plays a crucial role in
training neural networks.
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Figure 9. The average communication rate with different batch sizes.

5. Conclusions

In this paper, a VQDRL resources allocation scheme was proposed and investigated in
the maritime environment, and we discussed the average communication rate performance.
Firstly, a maritime communication model with grid-based partitioning was employed,
and we utilized VQDQN for allocating beam resources. Secondly, the average commu-
nication rate of all grids and the average communication rates of different grids were
simulated and the simulation results demonstrate the effectiveness of our beam allocation
scheme. Additionally, we discussed the performance of average waiting per transmission,
average virtual queue length, and confidence intervals of different grids. Finally, we ad-
justed hyperparameters to obtain a better performance on the average communication
rate. The simulation results demonstrated that we can construct suitable beam allocation
schemes to maximize the communication rate in the maritime environment using our
algorithm. Furthermore, further work can be conducted by adopting the objective function
of our proposed scheme to analyze various network performance metrics, including energy
efficiency and spectrum utilization. Moreover, improving the generalization performance
of our proposed scheme requires further investigation.
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