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Abstract: The demand for precise positioning in noisy environments has propelled the development
of research on array antenna radar systems. Although the orthogonal matching pursuit (OMP)
algorithm demonstrates superior performance in signal reconstruction, its application efficacy in
noisy settings faces challenges. Consequently, this paper introduces an innovative OMP algorithm,
DTM_OMP_ICA (a dual-threshold mask OMP algorithm based on independent component analysis),
which optimizes the OMP signal reconstruction framework by utilizing two different observation
bases in conjunction with independent component analysis (ICA). By implementing a mean mask
strategy, it effectively denoises signals received by array antennas in noisy environments. Simulation
results reveal that compared to traditional OMP algorithms, the DTM_OMP_ICA algorithm shows
significant advantages in noise suppression capability and algorithm stability. Under optimal condi-
tions, this algorithm achieves a noise suppression rate of up to 96.8%, with its stability also reaching
as high as 99%. Furthermore, DTM_OMP_ICA surpasses traditional denoising algorithms in practical
denoising applications, proving its effectiveness in reconstructing array antenna signals in noisy
settings. This presents an efficient method for accurately reconstructing array antenna signals against
a noisy backdrop.

Keywords: masking; noise reduction; orthogonal matching pursuit (OMP); independent component
analysis (ICA); array antenna; signal reconstruction

1. Introduction

The frequency-modulated continuous-wave (FMCW) radar positioning system based
on an antenna array achieves target localization by transmitting and receiving echo signals
with varying frequencies due to object reflections. The determination of frequency com-
ponents in the signals is a critical aspect of this technology [1–3]. However, in practical
scenarios, the received echo signals by the antenna array are often accompanied by noise
interference, making it challenging to accurately analyze the frequency and phase from the
mixer [4,5]. This ultimately affects the localization accuracy of the FMCW radar positioning
system [6–8].

Therefore, effectively reducing the interference of noise in the echo signals to achieve
accurate frequency and phase have become hot research topics. Traditional methods are
intermediate frequency signal filtering [9] or windowing [10] to address this issue. The
discrete-time signal processing theory proposed by Oppenheim, Schafer, and Buck laid
the foundation for signal sampling and reconstruction [11]. Parks and Burrus introduced
methods for designing digital filters [12] to cope with the complexity of signal processing,
but the complexity of filter design also increased accordingly. Hayes’s statistical digital
signal processing approach emphasizes signal analysis in the presence of random inter-
ference [13] and uses probability models to describe the relationship between signals and
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noise. While this method can effectively reduce the interference of noise to some extent, its
accuracy is not ideal. In order to achieve effective denoising of the echo signals received by
the antenna array in a complex noise interference environment, more advanced techniques
are needed compared to traditional methods.

Compressed sensing (CS) [14–18] exploits the sparsity of signals or their sparsity in
a certain transform domain, breaking the limitations of the traditional Nyquist sampling
theorem. By compressing signal sampling, CS allows for perfect reconstruction of signals
even at sampling frequencies far below twice the highest Nyquist frequency. In the context
of FMCW radar positioning systems based on antenna arrays, the sparsity of the target
object relative to the positioning background [19] made compressed sensing suitable.
The frequency count of the intermediate signals, formed by the echoes received by the
antenna array after reflecting off the target object, is only related to the number of target
objects. This aligns with the sparsity of the frequency of intermediate signals in FMCW
radar systems based on antenna arrays, which is equivalent to the sparsity of the target
relative to its background. This similarity makes the application of compressed sensing
technology essential for signal processing in antenna array FMCW radar systems [20,21].
The literature [22] introduces a radar signal processing method based on compressed
sensing, providing new approaches and technical support for reconstructing radar signals
in complex environments. However, it is found that this method yields unstable results in
reconstructing noisy radar signals.

The OMP algorithm [23], as a classic method in compressed sensing, has been widely
studied due to its advantages, such as low algorithm complexity, fast computation speed,
and high reconstruction accuracy for sparse signals. However, it is sensitive to noise, par-
ticularly in scenarios where the reconstructed signal contains substantial noise interference,
leading to unstable reconstruction results. Additionally, the algorithm’s performance in
reconstructing sparse signals depends on prior knowledge of signal sparsity. When apply-
ing the OMP algorithm to reconstruct the intermediate signals formed by the noisy signals
received by antenna arrays, a key challenge arises in enhancing the algorithm’s resistance
to noise interference and determining the sparsity of intermediate signals to optimize the
construction of the sensing matrix [24]. Thus, addressing the challenging task of setting
prior knowledge to determine the sparsity of intermediate signals and eliminating noise
interference to achieve accurate reconstruction of noisy signals using the OMP algorithm
becomes crucial.

This paper proposes an improved algorithm, DTM_OMP_ICA, for the orthogonal
matching pursuit (OMP) algorithm under a masking strategy [25], based on independent
component analysis (ICA) [26,27]. This algorithm enhances the traditional OMP framework.
It does so by employing OMP algorithms based on two distinct observation bases to
derive two different sparse representations of the input signal. These representations
are then used as dual inputs to the ICA algorithm, aimed at bolstering the robustness of
the signal’s sparse representation. Furthermore, the algorithm integrates a mean mask
strategy to accomplish denoising reconstruction of the input signal. The goal of this
novel signal processing approach is to ensure the robustness and stability of the algorithm
while accurately reconstructing the intermediate frequency signals constituted by noisy
echo signals received by array antennas. The organization of the paper is as follows:
Section 1 introduces the research motivation, significance, and content. Section 2 provides
an overview of the process strategy of the orthogonal matching pursuit algorithm. In
Section 3, the improved algorithm based on the masking strategy for the orthogonal
matching pursuit algorithm (DTM_OMP_ICA) is proposed, and its theoretical feasibility
is validated through mathematical formula derivation. Section 4 analyzes the frequency
characteristics of signals reconstructed by the DTM_OMP_ICA algorithm under different
noise environments, verifying the accuracy and stability of the algorithm. Additionally,
the DTM_OMP_ICA algorithm is applied to denoise and reconstruct simulated signals
received by continuous modulation wave radar array antennas in noisy environments
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to explore its performance in practical applications. Section 5 summarizes the proposed
algorithm and provides prospects for future research.

2. The Principle of CS

CS exploits the sparsity of a signal in a certain transformed domain to achieve signal
reconstruction with only a small number of compressed projection data. The core idea of
its reconstruction algorithm is to project the signal into a lower-dimensional space and
then solve an optimization problem to reconstruct the original signal. The objective of this
optimization problem is to find the sparsest representation of the signal, minimizing the
difference between the projected data and the original signal. In this way, compressed
sensing can significantly reduce sampling and storage requirements while maintaining a
high level of reconstruction quality.

2.1. The Sampling Process of Compressed Sensing

According to compressed sensing theory, signal compression encoding does not di-
rectly measure the signal itself. Instead, it involves projecting the signal onto a set of
measurement matrices to obtain observed values. A one-dimensional signal, denoted as x
(with a length of N), can be represented using an orthogonal transform basis (sparse basis)
ψ and sparse representation θ, where the sparsity level is K, as shown in (1):

x = (ψ × θ)T (1)

where ψ ∈ N × N, θ ∈ N × 1, and “(·)T” represent the matrix transpose operation.
Assuming an observation basis φ, which is uncorrelated with the transform basis ψ,

allows for the compression of the signal x. This compression is achieved by applying φ,
resulting in a one-dimensional observation signal y of length M. Consequently, this process
compresses signal x from its original length N to M, as outlined in Equation (2).

y = φ × x (2)

where φ ∈ M × N, x ∈ N × 1, y ∈ M × 1.
To ensure precise signal reconstruction, the design of the observation basis φ requires

that during the transformation of the signal from x to y, the M observed values obtained
should not destroy the essential information of the original signal x. This means that the
number of observed values M should satisfy the following equation, and it should hold
that K ≪ M ≪ N:

M ≥ K × log
(

N
K

)
(3)

Combining (1) and (2), we can obtain (4):

y = φ × x = φ × ψ × θ = A × θ (4)

where A represents the sensing matrix. A = φ × ψ, AϵM × N.
Due to the fact that the number of equations represented by (4) is much smaller than

the number of unknowns, the solutions are non-unique, affecting the precise reconstruction
of the signal x. However, because the signal x is k-sparse in its orthogonal transform basis
ψ, if the φ in (4) satisfies the restricted isometry property (RIP) [28,29], then the signal x
can be accurately reconstructed by the optimal solution from M observed values. The
equivalent condition for RIP property is that the observation basis φ and the sparse basis ψ
are uncorrelated.

2.2. Compressed Sensing Signal Reconstruction Algorithm

When the observation basis φ satisfies the RIP criterion, the compressed sensing
signal reconstruction algorithm can obtain the sparse representation θ of the signal through
solving the inverse problem of (4). Subsequently, it can precisely reconstruct the length-N
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signal x with K sparsity in the orthogonal transform basis ψ from the length-M observation
vector y. Its mathematical expression is:

min
θ
∥θ∥0 s.t. y = A × θ (5)

Currently, to effectively solve for θ to achieve signal reconstruction, algorithms are
mainly divided into three major categories: convex optimization algorithms [30–32], greedy
matching pursuit methods, and combination algorithms [33].

Among them, the greedy matching pursuit method iteratively searches for the support
set of the sparse vector and reconstructs the signal using a constrained support least-squares
estimate. Due to its low complexity, this algorithm can rapidly reconstruct signals and
is suitable for real-time computing scenarios. Such algorithms mainly include matching
pursuit (MP) [34], orthogonal matching pursuit (OMP), the compressive sampling matching
pursuit (CoSaMP) algorithm [35], and the regularized OMP (ROMP) [36,37] algorithm,
among others. However, these algorithms are sensitive to noise, and their noise resistance
performance can be improved by combining them with other methods, such as preprocess-
ing with wavelet transforms [38] or improving the sparse representation of signals through
various dictionary learning methods [39].

2.3. Orthogonal Matching Pursuit (OMP)

The core challenge of OMP lies in determining which column ai of the matrix A
contribute significantly to the vector y in (6). The distance between two vectors can be
measured using the inner product of vectors. Therefore, vector y can be projected onto the
column vectors of matrix A, and the numerical value of the inner product is used to assess
the contribution of the column vectors of matrix A to vector y.

Contribution(y, ai) =

∣∣∣∣ ⟨y, ai⟩
|ai|

∣∣∣∣ (6)

where ai represents the i-th column of matrix A. θ in (4), as the projection of signal x onto
its orthogonal transformation basis ψ, is K-sparse; therefore, the algorithm only needs to
iterate K times to find the K column vectors in matrix A that contribute the most to y, along
with their positions. This allows for solving the current optimal solution θ to complete the
reconstruction of signal x. The above describes the workflow of the orthogonal matching
pursuit algorithm, and the pseudo-code for the algorithm is shown as follows:

In the pseudo-code shown in Algorithm 1, the input A represents the sensing matrix,
y is a one-dimensional observation vector of length M, and K denotes the sparsity level of
the original signal x (typically, the choice of K is related to the energy distribution of the
one-dimensional signal x in its orthogonal transform basis ψ). The output θ represents the
sparse representation of the signal x.

Algorithm 1: Orthogonal matching pursuit (OMP)

Input: A, y, K
Output: θ

1 Initialization r0 = θ, Λ0 = ∅;
2 Normalize all columns of A to unit L2 norm;
3 for k = 1,2, . . ., K do

4 Step 1: λk =
argmax|⟨aj ,rκ−1⟩|
j/∈Λk−1

;
5 Step 2: Λk = ΛK−1 ∪ λk;

6 Step 3: xk(i ∈ Λk) =
argmin∥AΛk x−y∥

2
x ;

7 Step 4:
∼
θk = Axk;

8 Step 5: γk = θ −
∼
θk;

9 end
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The above algorithm illustrates that the composition of the sensing matrix A is crucial
for the reconstruction performance of the orthogonal matching pursuit algorithm [23]. It
has been proven [40] that independently and identically distributed Gaussian random
measurement matrices can serve as universal compressed sensing observation basis. There-
fore, random Gaussian matrices are commonly used as observation basis. In addition
to random Gaussian matrices, other commonly used observation basis include random
Bernoulli matrices [41], random orthogonal matrices [42], Toeplitz matrices [43], and sparse
random matrices [44], among others.

The theory of compressed sensing (CS) and its applications in denoising and signal
reconstruction continue to garner interest among researchers. Particularly, due to its
efficacy in processing sparse signals, the orthogonal matching pursuit (OMP) algorithm
has emerged as a focal point of study. In environments characterized by the presence
of noise, the robust recovery algorithm proposed by V Meena and G Abhilash, which
improves upon the OMP algorithm, has demonstrated the effectiveness of compressed
sensing under conditions of high signal-to-noise ratios [45]. Similarly, TJ Thomas and
colleagues developed a new algorithm that not only enhances the recovery capabilities of
OMP but also offers a new direction for the denoising of ECG signals [46].

Further, the comprehensive review by L Li et al. evaluates the potential applications
of the OMP algorithm and its variants in noisy settings, providing valuable perspectives on
the feasibility of compressed sensing across various application scenarios [47]. Moreover,
the research by C Cheng and D Lin, applying the OMP algorithm in the process of image
restoration, showcases the potential and challenges of compressed sensing theory in the
field of image processing [48].

These developments indicate that while compressed sensing and the OMP algo-
rithm have proven effective in multiple application scenarios, signal reconstruction in
high-noise environments remains a challenge. To address these challenges effectively, the
DTM_OMP_ICA algorithm introduced in this paper differs from traditional OMP algo-
rithms in that it does not rely on a priori assumptions about signal sparsity. The algorithm
can adaptively determine the sparsity level of the input signal, enhancing its flexibility
and efficiency in processing signals with unknown or variable sparsity. Furthermore, by
employing a threshold masking technique, the DTM_OMP_ICA algorithm significantly
improves the accuracy and stability of signal reconstruction in noisy conditions.

3. Dual-Threshold Mask OMP Based on ICA
3.1. Principle of ICA

Independent component analysis (ICA) [24,25] is a multivariate statistical analysis method
that aims to separate mutually independent components from mixed multidimensional data
based on the independence assumption. Its mathematical expression is shown in (7).

S = W × X (7)

where S represents the data matrix of independent components, X is the original obser-
vation matrix, and W is the mixing matrix used to transform the original data X into the
independent components S.

In the ICA algorithm model, the core objective is to estimate the mixing matrix W. This
objective is achieved by maximizing the independence between components. Typically, the
independence between components is measured through information entropy or higher-
order statistics, serving as a guide for extracting independent components. In practical
scenarios, noisy signals are often a mixture of source signals and additive noise. In other
words, the original observation matrix X in (7) can be represented as follows:

X = α1x1 + α2x2 (8)

where X represents the noisy signal, x1 is the pure signal, x2 is the additive noise, α1 and α2
represent the energy proportions of the pure signal and additive noise in the noisy signal
X, and their values are determined by the signal-to-noise ratio of the noisy signal X.
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Assuming that the clean signal x1 and additive noise x2 come from mutually indepen-
dent, different sources, which satisfy the independence assumption of the ICA algorithm,
this allows for the ICA algorithm to effectively capture the independence information
between the original signal and additive noise in the noisy signal by estimating the mixing
matrix W in (8). This provides strong support for signal denoising processing.

3.2. DTM_OMP_ICA

When using the OMP algorithm to reconstruct the noisy signal X in (8), its observed
that signal y can be expressed as follows:

y = φ × X = φ × (α1x1 + α2x2) = A × θ (9)

where φ, α1, α2, A, θ, x1, and x2 have the same meanings as defined in (2), (4), and (8).
In the theory of compressed sensing, random matrices are commonly chosen as the

observation basis φ, and the Fourier transform matrix is used as the orthogonal transform
basis ψ. Moreover, for the observation basis φ, the number of rows M and the number
of columns N satisfy (3). This implies that the row vectors of the observation basis φ are
usually linearly independent, making the observation basis φ typically full-rank in rows.
Additionally, the Fourier transform basis, being the Fourier transform of the identity matrix
E, is also a full-rank matrix. Therefore,

r(φ) = M, r(ψ) = N (10)

At the same time, the sensing matrix A = φ × ψ. Therefore, it is inevitable that the
sensing matrix A is a full-rank matrix in rows, i.e.,

r(A) = r(φ) = M (11)

For sensing matrix A, there must exist a pseudo-inverse matrix A+ such that (12) and (13)
hold as follows:

A × A+ × A = A (12)

A+ × A × A+ = A+ (13)

Therefore, (9) can be rewritten as

θ = A+ × y = A+ × φ × (α1x1 + α2x2) = C × (α1x1 + α2x2) (14)

where C = A+ × φ.
Since the term C in (14) involves only matrix correlations, the sparse representations

(θRGM, θSRM) obtained by OMP algorithms based on two different random matrices as
observation bases (φRGM, φSRM) for the noisy signal X can be considered as different linear
transformations of the noisy signal X, as shown in (15) and (16):

θRGM = A+
RGM × φRGM × (α1x1 + α2x2) = CRGM × (α1x1 + α2x2) (15)

θSRM = A+
SRM × φSRM × (α1x1 + α2x2) = CSRM × (α1x1 + α2x2) (16)

These distinct sparse representations of the noisy signal X correspond to different
weighted mixtures of the clean signal x1 and the additive noise x2. Simultaneously, x1
and x2 originate from independent sources, satisfying the independence assumption of
the ICA algorithm. Therefore, θRGM and θSRM can be used as inputs to the ICA algorithm.
Leveraging the ICA algorithm allows for obtaining sparse representations, namely, θ1
related solely to the clean signal x1 and θ2 related exclusively to the additive noise x2, from
the noisy signal X. Subsequently, θ1 will be utilized for denoising and signal reconstruction
of the noisy signal X.

Based on the above theory, the present paper proposes the DTM_OMP_ICA algorithm
to eliminate or reduce the impact of noise on signal reconstruction. The flowchart of the
DTM_OMP_ICA algorithm is shown in Figure 1.
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In Figure 1, when denoising and reconstructing the noisy signal X_Noise, the proposed
DTM_OMP_ICA algorithm employs OMP algorithms based on two different observation
bases (RGM-OMP and SRM-OMP) to construct a dual-path process. This results in obtain-
ing distinct sparse representations, namely, θRGM and θSRM, for the noisy signal X_Noise.
The algorithm combines the usage of the ICA algorithm (Fast ICA) to decouple and obtain
sparse representations most correlated with the X_Clear component in the noisy signal
X_Noise, achieving denoising and reconstruction of X_Noise. To ensure that the recon-
structed signal retains the frequencies and corresponding amplitudes of X_Clear from
X_Noise as much as possible, a mean mask technique is applied based on the frequency do-
main mean of the reconstructed signal. This technique generates a mask matrix suitable for
the frequency domain of X_Noise, multiplies it with the spectrum of X_Noise, and employs
inverse Fourier transform for denoising and reconstructing the noisy signal X_Noise.

The pseudo-code for DTM_OMP_ICA is shown as follows:
In the pseudo-code shown in Algorithm 2, “path 1” and “path 2” represent the

dual-path process constructed using OMP algorithms with different observation bases.
“Orth(rand(·))” is utilized to generate a random Gaussian matrix. “SparseRandomMtx(·)”
is employed to generate a sparse random matrix. “OMP(·)” indicates the use of the
OMP algorithm.

Algorithm 2: Dual-threshold mask OMP based on ICA (DTM_OMP_ICA)

Input: X_Noise
Output: Reconstructed X_Clear
1 Initialization K = 0, M = 0, N = len(X_Noise);
2 do
3 Step 1: K = OutLine_Extra(X_Noise);
4 Step 2: M = K × log(N/K);
5 Step 3: ψ = 1√

N
× FFT(I);

6 path1 do
7 Step 1: φRGM = Orth(rand(M, N));
8 Step 2: yRGM = φRGM × X_Noise; ARGM = φRGM × ψ;
9 Step 3: θRGM = OMP(ARGM, yRGM, K);
10 end path1
11 path2 do
12 Step 1: φSRM = SparseRandomMtx(M, N, d = 4);
13 Step 2: ySRM = φSRM × X_Noise; ASRM = φSRM × ψ;
14 Step 3: θSRM = OMP(ASRM, ySRM, K);
15 end path2
16 Step 4: θ1 = corr(FastICA(θRMG, θSRM));
17 Step 5: Reconstructed_X = ψT × θ1

T ;
18 Step 6: Mask = MeanMask(FFT(Reconstructed_X));
19 Step 7: FX = dot(FFT(X_Noise), Mask);
20 Step 8: Reconstructed X_Clear = iFFT(FX);
21 end
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The pseudo-code function OutLine_Extra represents the outlier detection algorithm [49],
used to identify anomalies in the signal spectrum and determine the signal’s sparsity level. Its
definition is as follows:

OutLine_Extra def
=

1
N ∑N

i=1|Xi − median(X)| (17)

where N represents the size of the data to be examined X, Xi denotes the i-th sample point
in the data X.

The function MeanMask represents the generation of a mask matrix using the fre-
quency domain mean of the input signal. It is defined as follows:

MeanMask(i) def
=

{
0, Fx(i)− mean(Fx) < 0
1, Fx(i)− mean(Fx) ≥ 0

(18)

where “Mask” represents the generated mask matrix; “Fx” is used to denote the spectrum
of the noisy signal x after Fourier transformation, and “Fx” and “Mask” have the same
length; “mean(·)” indicates the mean calculation; and “i” represents the i-th spectral line.

4. Experiments and Results

This paper conducted two sets of simulation experiments. The first set evaluated the re-
construction performance of a noisy multi-frequency signal, focusing on accuracy, stability,
and processing time. The second set involved the reconstruction experiment of a noisy array
antenna. The comparative algorithms for both sets were the RGM-OMP and SRM-OMP
algorithms. Each experiment category consisted of 100 rounds of independent repetitions.

4.1. Multi-Frequency Signals with Noise Experiment
4.1.1. Data

The experiment simulated a multi-frequency signal with four different frequencies and
added noise with varying SNR. This was carried out to validate the stability and accuracy of
the proposed DTM_OMP_ICA algorithm in denoising and reconstructing multi-frequency
signals in the presence of noise.

The multi-frequency signal used in this paper was represented as:

x′ = cos(2π f1t) + 0.7cos(2π2 f2t) + 1.6cos(2π f3t) + 1.2cos(2π f4t) (19)

where f1 = 500 Hz, f2 = 1000 Hz, f3 = 1500 Hz, f4 = 2000 Hz.
The main parameter settings of the algorithm were shown in Table 1.

Table 1. Initial parameter settings for the experiment.

Parameter Value Introduction

K 8
The sparsity of the signal in its orthogonal
transformation basis (since the Fourier transform is
two-sided, the sparsity is 4 × 2).

N 1024 The original number of sampled points in the signal.
t 128 (unit: ms) Duration of the Signal.

fs 8000 (unit: Hz)
The signal’s sampling frequency based on the Nyquist
sampling theorem will be used for subsequent
frequency domain analysis of the reconstructed signal.

The noisy signal used in this paper is represented as

x = x′ + noise (20)

where noise represents Gaussian white noise. Four sets of noisy signals with different SNRs
(0 dB, 3 dB, 5 dB, and 9 dB) were used to compare in the experiments. The time-domain
waveforms of all multi-frequency signals used in this paper are shown in Figure 2.
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Figure 2. Time−domain waveform plots of the multi−frequency signal. (a) Original clean
multi−frequency signal x′. (b) Noisy multi−frequency signal x at 0 dB SNR. (c) Noisy
multi−frequency signal x at 3 dB SNR. (d) Noisy multi−frequency signal x at 5 dB SNR. (e) Noisy
multi−frequency signal x at 9 dB SNR.

In Figure 2, the time-domain waveform graphs from left to right represent the clean
multi-frequency signal x′ and the noisy multi-frequency signal x at SNRs of 0 dB, 3 dB,
5 dB, and 9 dB, respectively.

4.1.2. Results of Multi-Frequency Signal with Noise
Spectral Analysis of Reconstructed Signals

After 100 rounds of independent repeated experiments, the spectra of the reconstructed
signals S using three different algorithms for the signals at the mentioned five different
SNRs were shown in Figure 3.
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Figure 3. The spectrum of signals reconstructed by different algorithms. (a(1)–a(5)) Spectrum
of the original multi-frequency signal x′ and its noisy counterparts at SNRs of 0 dB, 3 dB, 5 dB,
and 9 dB, respectively. (b(1)–b(5)) Spectrum of the signal reconstructed by RGM-OMP under the
same SNRs. (c(1)–c(5)) Spectrum of the signal reconstructed by SRM-OMP under the same SNRs.
(d(1)–d(5)) Spectrum of the signal reconstructed by DTM_OMP_ICA under the same SNRs.
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Figure 3 presents a comparative analysis of the signal reconstruction capabilities
of RGM-OMP, SRM-OMP, and the DTM_OMP_ICA algorithm proposed in this paper
under various noise conditions. The first row of five spectral graphs (Figure 3(a(1)–a(5)))
displays the spectrum of the multi-frequency signal x′ and its noisy counterparts x under
different signal-to-noise ratios (SNRs of 0 dB, 3 dB, 5 dB, and 9 dB, respectively). Following
these, the next three rows correspond to the spectra of the reconstructed signal S after
processing by the RGM-OMP, SRM-OMP, and DTM_OMP_ICA algorithms, respectively,
for the aforementioned multi-frequency signals.

Figure 3 clearly demonstrates that in an ideal noise-free environment, all three algo-
rithms exhibit excellent reconstruction performance, successfully retaining the original
frequency components of the signal in the spectrum of the reconstructed signal S (as shown
in Figure 3(b(1),c(1),d(1))). However, as the noise level increases, the reconstructed signal
spectra of the RGM-OMP and SRM-OMP algorithms begin to show evident frequency
components arising from noise interference (as depicted in Figure 3(b(2)–b(5),c(2)–c(5))),
and the number of interference frequency components appearing in the spectra of the
signals reconstructed by the RGM-OMP and SRM-OMP algorithms increases with the
noise, largely due to the randomness of the observation basis they employ. In contrast,
the signal reconstructed by the DTM_OMP_ICA algorithm not only retains the integrity
of the original pure signal x′ frequency components in its spectrum from the noisy multi-
frequency signal x but also significantly reduces the frequency components arising from
noise interference (as shown in Figure 3(d(2)–d(5))). The experimental results indicate that
the DTM_OMP_ICA algorithm surpasses traditional OMP algorithms in robustness when
reconstructing noisy multi-frequency signals.

Evaluations of Reconstructed Signals

To objectively assess the noise-resistant reconstruction stability of the algorithm, this
paper proposed the following stability evaluation.

(i) Evaluation of Signal Reconstruction Accuracy
This paper employs statistical parameters ((21)–(23)) to perform algorithm stability analysis.

A. The accuracy of reconstructed signal frequencies, denoted as AccF:

AccF =

(
AccFNum
TotalNum

)
× 100% (21)

where AccFNum represents the number of times the correct frequencies appear in the
reconstructed signal and TotalNum is the total number of frequency components in
the reconstructed signal.

B. The error rate of reconstructed signal frequencies, denoted as ErrF:

ErrF =

(
ErrFNum
TotalNum

)
× 100% (22)

where ErrFNum represents the number of times incorrect frequencies appear in the
reconstructed signal.

C. The accuracy of both the frequency and amplitude of the reconstructed signal,
denoted as AccFA:

AccFA =

(
AccFANum
AccFNum

)
× 100% (23)

where AccFANum represents the number of times both the correct frequency and amplitude
appear in the reconstructed signal.

After 100 rounds of independent repeated experiments, the line charts illustrating the
frequency statistical parameters of the reconstructed signals using three different algorithms
are shown in Figures 4, 5, and 6, respectively.
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Figures 4–6 depicted line charts of frequency statistical parameters, including AccF,
ErrF, and AccFA, for the signals reconstructed by three different algorithms in 100 rounds
of independent repeated experiments. Subplots (a–d) in Figures 4–6 corresponded to
the frequency statistical parameters of the reconstructed signals for different SNRs of
the noisy multi-frequency signals x (SNR of 0 dB, 3 dB, 5 dB, and 9 dB, respectively)
using each algorithm. In each subplot, the orange dashed line represents the proposed
DTM_OMP_ICA algorithm, while the purple and blue solid lines correspond to the RGM-
OMP and SRM-OMP algorithms, respectively. To simplify and visualize the frequency
statistical parameters of the reconstructed signals, the values of the parameters shown in
(18), (19), and (20) were averaged every 10 rounds of independent repeated experiments.

Figures 4–6 indicated that the reconstruction performance of the traditional OMP
algorithm was affected by changes in the SNR values of the noisy multi-frequency signals.
In comparison, the algorithm proposed in this paper exhibited a relatively stable denoising
and reconstruction capability for noisy multi-frequency signals, and it had a higher prob-
ability of reconstructing the frequency components of the pure signals within the noisy
multi-frequency signals.

After 100 independent repeated experiments, this paper conducted an overall analysis
of the frequency statistical parameters of the reconstructed signals using three different
algorithms at different SNRs, as shown in Figure 7.

In Figure 7, the x-axis represents three different frequency statistical parameters,
and the y-axis represents the mean values of frequency statistical parameters of signals
reconstructed by different algorithms after 100 rounds of independent repeated experiments
with four different signal-to-noise ratios (SNRs) for noisy multi-frequency signals. The
purple, blue, and orange bars represent the RGM-OMP, SRM-OMP, and DTM_OMP_ICA
algorithms, respectively.
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The results shown in Figure 7 indicate that the proposed DTM_OMP_ICA algo-
rithm excelled in the accuracy of reconstructing signal frequencies (AccF), achieving an
average accuracy of 96.8%, significantly surpassing RGM-OMP with 45.01% and SRM-
OMP with 44.38%. In terms of the error rate of reconstructed signal frequencies (ErrF),
DTM_OMP_ICA was at 3.18%, much lower than RGM-OMP at 54.99% and SRM-OMP at
55.62%. Additionally, DTM_OMP_ICA attained an accuracy of 79.88% in reconstructing
the frequencies and amplitudes of signals (AccFA), surpassing other algorithms by 15.94%
and 15%, respectively.

(ii) Evaluation of Signal Reconstruction Stability

The mean and variance of the reconstructed frequencies implemented by the algorithm
were statistically analyzed using 100 experiments. First, k-means clustering was used to
cluster the reconstructed frequencies obtained by the algorithm. Since the signal X was a
linear combination of four frequencies, the number of clusters was set to 4. The statistical
results of the three algorithms mentioned above are shown in Figure 8.

Figure 8 meticulously illustrates the frequency clustering results of the reconstructed
signal S after processing the noisy multi-frequency signal x through RGM-OMP, SRM-
OMP, and the DTM_OMP_ICA algorithm proposed in this paper under different signal-to-
noise ratio (SNR) environments (0 dB, 3 dB, 5 dB, and 9 dB). Each row of four subfigures
corresponds to the same algorithm, with the three rows of subfigures from top to bottom,
respectively, showcasing the frequency clustering results of the reconstructed signal S
after using the RGM-OMP, SRM-OMP, and DTM_OMP_ICA algorithms (for example:
Figure 8(c(1)) displays the frequency clustering result of the reconstructed signal S after
processing through the DTM_OMP_ICA algorithm in a noise environment with an SNR of
0 dB).

A comparative analysis of the results shown in each subfigure of Figure 8 clearly
reveals that after reconstructing the noisy multi-frequency signal x using traditional OMP
signal reconstruction algorithms based on two different observation bases, the frequency
clustering results of the reconstructed signal S demonstrate that the average value of each
frequency cluster deviates from the frequency of the original noise-free signal. Additionally,
the variance within each frequency cluster in the clustering results is considerable, especially
more pronounced in environments with stronger noise interference. For example, in a
noise environment with an SNR of 0 dB, the frequency distribution variance within the
four frequency clusters of the signal reconstructed by the RGM-OMP algorithm are 32,355,
24,389, 10,043, and 7251, as shown in Figure 8(a(1)), where each frequency cluster is
surrounded by numerous outlier frequencies with a wide distribution range. Similarly, in
the frequency clustering results of the signal reconstructed by the SRM-OMP algorithm
shown in Figure 8(b(1)), each frequency cluster is also surrounded by outlier frequencies
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with a large distribution range, with variances within each cluster of 10,587, 12,967, 19,081,
and 4697. These experimental results indicate that the stability of the frequency distribution
of the reconstructed signal weakens as noise interference increases after reconstructing the
noisy multi-frequency signal using traditional OMP algorithms.
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the corresponding SNRs.

In contrast, the frequency clustering results of the signal S reconstructed by the
DTM_OMP_ICA algorithm proposed in this paper show that the average value of each
frequency cluster is closer to the frequency of the original noise-free signal, and the vari-
ance within the four frequency clusters is near zero. Even in a strong noise interference
environment with an SNR of 0 dB, the frequency clustering results of the signal recon-
structed by the DTM_OMP_ICA algorithm demonstrate that the average values of the four
frequency clusters are closer to the frequencies of the original noise-free signal, with the
variance within each cluster being significantly low (0.07, 0, 0.0042, 0.005), as illustrated
in Figure 8(c(1)). The occurrence of outlier frequencies within each clustered frequency
is greatly reduced compared to Figure 8(a(1),b(1)). Similarly, under noise interference
of 3 dB, 5 dB, and 9 dB, the frequency clustering results of the signal reconstructed by
the DTM_OMP_ICA algorithm show that the average value within each frequency clus-
ter matches the original noise-free signal frequency exactly, and the variance is closer to
zero. The experimental results indicate that the DTM_OMP_ICA algorithm’s stability in
reconstructing noisy multi-frequency signals surpasses that of traditional OMP algorithms.

Based on the observations, it can be concluded that the DTW_OMP_ICA algorithm
proposed in this paper exhibited superior noise resistance and stability compared to tradi-
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tional OMP algorithms. In noisy environments, it excelled at reconstructing the original
signal frequencies more accurately.

(iii) Time Consumption

In order to exclude the effect of computer hardware chance on the running time of
the algorithm, the experiment was conducted with 10 sets of 100 rounds of independent
repetitive experiments with the same settings as before. The computer was configured
with CPU: AMD Ryzen 7 5800H (8 cores, 16 threads, 3.2 GHz); RAM: DDR4-3200 16 GB;
and the final algorithmic runtime results were averaged over the 10 groups of recorded
durations, and counted using the durations of a single round, ten rounds, fifty rounds, and
one hundred rounds of different algorithmic-based runs, the results of which are shown in
Table 2.

Table 2. Algorithm runtime summary.

Algorithm
Round

Round 1 Round 10 Round 50 Round 100

RGM-OMP 45.41 (ms) 227.62 (ms) 880.43 (ms) 1839.89 (ms)
SRM-OMP 46.43 (ms) 277.01 (ms) 926.09 (ms) 1915.21 (ms)

DTM_OMP_ICA 91.14 (ms) 414.41 (ms) 1446.20 (ms) 2785.59 (ms)

Table 2 shows the statistics of the length of time the algorithms were run independently,
where the first column shows the three different algorithms used, and columns 2, 3, 4,
and 5 show the time consumed by each algorithm in different rounds of independently
repeated experiments.

Table 2 indicates that the RGM-OMP algorithm had the lowest time cost for recon-
structing noisy multi-frequency signals, followed by the SRM-OMP algorithm, but the
difference is minimal. The proposed algorithm, which employs both RGM-OMP and
SRM-OMP to construct a dual-path process and combines them with ICA to find the most
relevant sparse representation of the clean signal in the noisy signal, incurred the highest
time cost. However, it was still less than the sum of the time taken by the RGM-OMP and
SRM-OMP algorithms.

While the DTM_OMP_ICA algorithm incurred a time cost approximately 1.7 times
that of the traditional OMP algorithm, considering its overall performance in denoising
and reconstructing noisy multi-frequency signals, the DTM_OMP_ICA algorithm still
maintained a certain advantage over the traditional OMP algorithm.

4.2. Array Antenna Signal Denoising Experiment

To verify the denoising and reconstruction performance of the proposed DTM_OMP_ICA
in practical applications, this paper applies it to the denoising process of signals received by an
array antenna. Furthermore, to comprehensively evaluate the performance of our algorithm
in real-world scenarios, this paper also conducts a comparative analysis using two orthogonal
matching pursuit algorithms based on different observation bases—RGM-OMP and SRM-
OMP—as well as two classic signal denoising techniques—the singular value decomposition
denoising algorithm [50] and the wavelet threshold denoising algorithm [51].

4.2.1. Data

The array antenna signal data used in this paper were derived from the simulated
data provided in Problem A of the 2022 China Postgraduate Mathematical Modeling
Competition. The data were generated from the echo signals received by a simulated
FMCW (frequency-modulated continuous-wave) radar with 86 array antennas in a noisy
environment. The specific parameters of the signals received by the array antenna are
shown in Table 3.
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Table 3. Parameters and significance of signals received by array antennas.

Variables Significance

T = 3.2 × 10−5 (s) Represents the chirp period, pulse time
Ts = 1.25 × 10−7 (s) Sampling interval
N f = 32 N f represents the number of chirp cycles
L = 0.0815 (m) The aperture of the array antennas
γ = 78.986 × 1012 (Hz/s) γ represents the frequency modulation slope
Na = 86 The number of equivalent virtual antenna arrays
C = 3 × 108 (m/s) Speed of light
f0 = 78.8 × 109 (Hz) Represents the carrier frequency

4.2.2. Results of Simulated Radar Signal Processing

This paper employed the proposed DTM_OMP_ICA algorithm, along with the RGM-
OMP algorithm, SRM-OMP algorithm, SVD decomposition denoising algorithm, and
wavelet threshold denoising algorithm used for comparative experiments, and applied
them to denoise and reconstruct the noisy echo signals received by 86 array antennas in a
simulated FMCW radar system. The reconstructed signals were then subjected to Fourier
transform for frequency domain analysis, and the results are presented in Figure 9.

Sensors 2024, 24, x FOR PEER REVIEW 18 of 21 
 

 

   
(a) (b) (c) 

   
(d) (e) (f) 

Figure 9. Spectrum of signals before and after reconstruction. (a) Original signal. (b) RGM-OMP. 
(c) SRM-OMP. (d) DTM_OMP_ICA. (e) SVD denoising. (f) Wavelet thresholding denoising. 

Figure 9a displays the spectral graph of the noisy echo signal S1 received by 86 array 
antennas. Subsequently, Figure 9b–f each present the spectral graphs of signals processed 
through various denoising algorithms, including RMG-OMP, SRM-OMP, 
DTM_OMP_ICA, SVD decomposition denoising, and wavelet threshold denoising. The 
signals reconstructed by these algorithms are, respectively, denoted as S3, S4, S2, S5, and 
S6. 

Figure 9 indicates that, after denoising and reconstructing the noisy signals received 
by the array antennas using the DTM_OMP_ICA algorithm proposed in this paper, the 
reconstructed signals effectively reduced the majority of interference from noise while 
preserving the original frequency characteristics of the signals. Since the positioning per-
formance of FMCW radar systems relies on the effective frequencies of received signals, 
the DTM_OMP_ICA algorithm could provide assistance in achieving precise localization 
of target objects for radar systems in noise-disturbed environments. 

5. Conclusions and Discussion 
This paper proposed the DTM_OMP_ICA algorithm to validate and eliminate the 

potential negative impact resulting from the strong randomness of the observation matrix 
used in the OMP algorithm. Unlike traditional OMP algorithms, the DTM_OMP_ICA al-
gorithm does not directly reconstruct the signal. Instead, it generates a denoising mask 
matrix to perform denoising on the noisy signal. This approach effectively addresses the 

Figure 9. Spectrum of signals before and after reconstruction. (a) Original signal. (b) RGM-OMP.
(c) SRM-OMP. (d) DTM_OMP_ICA. (e) SVD denoising. (f) Wavelet thresholding denoising.



Sensors 2024, 24, 2291 17 of 19

Figure 9a displays the spectral graph of the noisy echo signal S1 received by 86 array
antennas. Subsequently, Figure 9b–f each present the spectral graphs of signals processed
through various denoising algorithms, including RMG-OMP, SRM-OMP, DTM_OMP_ICA,
SVD decomposition denoising, and wavelet threshold denoising. The signals reconstructed
by these algorithms are, respectively, denoted as S3, S4, S2, S5, and S6.

Figure 9 indicates that, after denoising and reconstructing the noisy signals received
by the array antennas using the DTM_OMP_ICA algorithm proposed in this paper, the
reconstructed signals effectively reduced the majority of interference from noise while
preserving the original frequency characteristics of the signals. Since the positioning
performance of FMCW radar systems relies on the effective frequencies of received signals,
the DTM_OMP_ICA algorithm could provide assistance in achieving precise localization
of target objects for radar systems in noise-disturbed environments.

5. Conclusions and Discussion

This paper proposed the DTM_OMP_ICA algorithm to validate and eliminate the
potential negative impact resulting from the strong randomness of the observation matrix
used in the OMP algorithm. Unlike traditional OMP algorithms, the DTM_OMP_ICA
algorithm does not directly reconstruct the signal. Instead, it generates a denoising mask
matrix to perform denoising on the noisy signal. This approach effectively addresses the
limitations of traditional OMP algorithms in noise resistance. The reconstructed signal,
while preserving the original signal’s characteristics, reduces interference from most of the
noise, making this algorithm significantly superior when reconstructing noisy signals.

This paper conducted comparative experiments by designing the same simulation ex-
periments and contrasting them with the OMP reconstruction algorithm based on two differ-
ent observation matrices. The experimental results demonstrate that the proposed method
exhibits outstanding noise resistance, with a maximum noise resistance performance of up
to 98%. Additionally, this algorithm showcases excellent stability, with a maximum stability
performance of up to 99%, which is significantly better than traditional OMP algorithms.
Admittedly, the above superior performance comes at the cost of time: the time consump-
tion of the DTM_OMP_ICA algorithm is about 1.7 times that of two traditional algorithms.
In practical applications, this method provides an innovative approach to the problem of
reconstructing noisy signals and holds promising prospects in the relevant fields.

Additionally, the experiments found that the threshold setting for the mean mask in
the proposed algorithm has an impact on the experimental results. When the threshold
is set from 5 times to 30 times the mean energy of the reconstructed signal’s frequen-
cies for constructing the mask matrix, the algorithm demonstrates good reconstruction
performance. However, setting a threshold exceeding 50 times the mean energy of the
reconstructed signal’s frequencies may result in the loss of some frequency features of the
signal itself. On the other hand, setting a threshold less than five times the mean energy
of the reconstructed signal’s frequencies for the mask matrix may lead to reduced noise
resistance when reconstructing noisy signals with a high SNR. Therefore, effectively setting
the mask threshold will be studied in our future work.
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