
Citation: Liu, D.; Park, Y. Anonymous

Traffic Detection Based on Feature

Engineering and Reinforcement

Learning. Sensors 2024, 24, 2295.

https://doi.org/10.3390/s24072295

Academic Editor: Tomás Mateo

Sanguino

Received: 29 January 2024

Revised: 13 February 2024

Accepted: 21 February 2024

Published: 4 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Anonymous Traffic Detection Based on Feature Engineering
and Reinforcement Learning
Dazhou Liu and Younghee Park *

Faculty of Computer Engineering, Charles W. Davidson College of Engineering, San Jose State University,
San Jose, CA 95192, USA; dazhou.liu@sjsu.edu
* Correspondence: younghee.park@sjsu.edu

Abstract: Anonymous networks, which aim primarily to protect user identities, have gained promi-
nence as tools for enhancing network security and anonymity. Nonetheless, these networks have
become a platform for adversarial affairs and sources of suspicious attack traffic. To defend against
unpredictable adversaries on the Internet, detecting anonymous network traffic has emerged as
a necessity. Many supervised approaches to identify anonymous traffic have harnessed machine
learning strategies. However, many require access to engineered datasets and complex architectures
to extract the desired information. Due to the resistance of anonymous network traffic to traffic
analysis and the scarcity of publicly available datasets, those approaches may need to improve their
training efficiency and achieve a higher performance when it comes to anonymous traffic detection.
This study utilizes feature engineering techniques to extract pattern information and rank the feature
importance of the static traces of anonymous traffic. To leverage these pattern attributes effectively,
we developed a reinforcement learning framework that encompasses four key components: states,
actions, rewards, and state transitions. A lightweight system is devised to classify anonymous and
non-anonymous network traffic. Subsequently, two fine-tuned thresholds are proposed to substitute
the traditional labels in a binary classification system. The system will identify anonymous network
traffic without reliance on labeled data. The experimental results underscore that the system can
identify anonymous traffic with an accuracy rate exceeding 80% (when based on pattern information).

Keywords: Tor; anonymous traffic; feature engineering; unsupervised learning; reinforcement learning

1. Introduction

Anonymous networks play an important role in safeguarding user identities and
privacy. Existing anonymous networks include onion routing (Tor) [1], garlic routing [2],
the Mix Network [3], and the Invisible Internet Project (I2P) [4]. Notably, Tor and the
Mix Network are two common types of anonymous networks. Tor routes data through
a series of intermediary nodes, in which it emphasizes preventing the associations of
communication partners [1]. On the other hand, the Mix Network employs multiple routers
to shuffle and randomize encrypted messages [3]. By using these networks, both ends can
communicate without sharing identities such as IP addresses.

The demand for using anonymous networks has increased. For instance, approxi-
mately two million users accessed Tor in the first quarter of 2020 [1]. In legitimate cases,
users may access services like file sharing while preserving anonymity. On the other hand,
anonymity can result in misbehavior in cyberspaces, which includes cyber attacks. For
example, packets targeting the Darknet are suspicious and usually generated by malware
or attackers searching for vulnerabilities [5]. Moreover, investigations into the Tor network
unveiled that malware and counterfeits have been circulating [6]. The authors proposed to
detect distributed denial of services (DDoSs) by evaluating Darknet traffic [7]. Not only
do attackers exploit anonymous networks to attack non-anonymous entities, but the Tor
network itself is subject to denial of service (DoS) attacks, which may lead to the loss of

Sensors 2024, 24, 2295. https://doi.org/10.3390/s24072295 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072295
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s24072295
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072295?type=check_update&version=2


Sensors 2024, 24, 2295 2 of 22

bandwidth resources [8]. Furthermore, attempts to deanonymize clients, locate servers
within the Tor network, and reduce the service availability of the Tor network have become
the targets of attackers [9]. These trends imply that attackers have abused anonymous
networks, although there are legitimate use cases. Therefore, efforts to detect anonymous
traffic are necessary for preventing adversarial affairs, and our work assumes anonymous
traffic is an anomaly.

Blocking the IP addresses that are involved in anonymous traffic has been one tac-
tic [10]. When encountering suspected anonymous traffic, the IP address of the incoming
traffic is compared against each blocked IP address. However, this approach can be expen-
sive and performs poorly whenever the list is outdated [11]. Alternatively, in research, there
have been attempts to trace clients that use the Tor network. In this study, the researchers
controlled a Tor router and a server in the Tor network to generate purposefully modified
packets. When the controlled Tor router observes modified packets, the client’s identity can
be linked and confirmed. Nonetheless, this approach requires control over Tor routers and
over the deployment of servers in the Tor network, which can undermine the Tor network’s
functionalities. In summary, these aspects demonstrate that detecting anonymous traffic
remains a challenge.

To improve the efficiency of traffic analysis, researchers have inspected anonymous
traffic by focusing on packet characteristics and stream patterns [12]. Recently, machine
learning and deep learning-based methods have been explored for analyzing anonymous
traffic. Extensive studies have been performed on supervised learning [12–14]. In super-
vised learning approaches, the objective is to learn an approximation of P(y|x), where the
given datasets are represented as [xi, yi]

n
i=1, where xi is the feature set and where yi denotes

the corresponding label [15]. Classifiers, a subset of supervised learning algorithms, are
heavily employed to compute boundaries that categorize samples into distinct regions. In
the deep learning field, classifiers are constructed with complex structures that are capable
of processing features in high dimensions. While classifiers achieve high performance
on static data, those types of models exhibit shortcomings upon deployment in real time.
For instance, their real-time deployment in the realm of IDS shows vulnerability to the
obfuscated features of dynamic network traffic [16]. The performance evaluation of some
machine learning- and deep learning-based models displayed a high false positive rate in
classifying Darknet traffic [13]. Moreover, due to the limited availability of public datasets,
researchers have needed help accessing data about anonymous network traffic [17,18].
Consequently, training detection models can be challenging.

Regarding the existing challenges, the motivations can be summarized as follows:

1. The generation of anonymous traffic, often linked to adversarial activities on the
Internet, underscores the necessity of its detection for maintaining cybersecurity.

2. While supervised learning algorithms are widely utilized to examine anonymous
traffic, especially classifiers designed for predictive tasks, they still face challenges.
These challenges include limitations in adapting to unpredictable network conditions
and significant time and resource demands, such as a lengthy training time and
dependence on labeled data. By applying feature engineering, we focus on extracting
packet- and timing-related features, which are crucial for differentiating between
anonymous and non-anonymous traffic.

3. By addressing the adaptability of the Markov decision process (MDP) to dynamic
environments, we implement a classification system based on the MDP principles and
outcomes of feature engineering. The result is a robust classification system that can
efficiently detect anonymous traffic with a simplified architecture.

Based on the motivations, the contributions are summarized as follows. In this work,
we differentiated between anonymous and benign network traffic by incorporating packet
and timing features. These features distinguish effectively between anonymous and benign
traffic, as well as pave the way for subsequent experiments in anonymous traffic detection.
Furthermore, we applied the Markov decision process (MDP) framework to the classifica-
tion system, thereby enhancing decision-making tasks and system resilience by strategically



Sensors 2024, 24, 2295 3 of 22

designing actions, states, and rewards. We also introduced a classification model charac-
terized by a simplified structure with reduced resource demands. The efficiency of these
reductions is validated through decreased training times and performance evaluations. An
accuracy rate exceeding 80% is anticipated by leveraging our framework’s architecture.

We arrange the structure of the paper as follows. Initially, Section 2 delves into
the Tor network and Darknet technical details. This section also introduces supervised
learning-based detection approaches and explains the applications of reinforcement learn-
ing frameworks in the network domains. Subsequently, Section 3 discusses the proposed
reinforcement learning-based system. Following Section 3, Section 4 explains the system
development and testing processes. Finally, the paper is concluded by summarizing critical
findings related to the proposed system.

2. Related Work
2.1. Overview of the Tor Protocol and Darknet Protocol
2.1.1. The Tor Network

The Tor network is a distributed overlay network aiming to anonymize TCP-related
activities such as web browsing and message sending [1]. Further, the Tor network consists
of relay nodes run by volunteers spanning the globe [19]. Each relay node operates as a
router that facilitates the reception of incoming traffic and the routing of outbound traffic
to the intended destination.

The Tor network routes through a chain of no less than three relay nodes. Each relay
node in the chain is executed as a regular process and knows only its immediate predecessor
and successor [1]. This design ensures that no intermediary can deduce the identity of the
destination entity from the source entity and vice versa.

The Tor network encrypts and decrypts data layer by layer. Specifically, plain texts
are encrypted to create a ciphertext. The ciphertext is encrypted once more. Similarly,
the ciphertext is decrypted layer by layer until the plain text is derived. When the client,
e.g., the Tor browser, transmits data through the Tor network, the local proxy encrypts the
data layer by layer. When a relay node in the Tor network receives data, it decrypts one of
the layers.

Due to the routing and encrypting mechanism, data routed through the Tor network
attains high anonymity and privacy. In summary, the Tor network has been designed to
refrain from traffic analysis and tracing. When attackers abuse the Tor network, the target
entities risk being attacked.

2.1.2. The Darknet Protocol

The surface web is a subset of the web that indexes web content on the publicly
available part of the Internet, which can be accessed using standard search engines such as
Bing [20]. In addition to visiting surface webs, the Tor network contains servers hosting web
pages, which are referred to as the Onion Services. The servers’ network supporting Onion
Services can be considered the Darknet. As the Darknet is restricted to be accessed through
tools such as the Tor network, the Tor browser has become one gateway to the Darknet.

2.1.3. Features of Darknet and Tor Protocol

Differentiating Darknet and Tor traffic facilitates the detection of malevolent anony-
mous traffic. By examining the open source codes of the Tor browser [19], we identified four
differences between the Darknet protocol and the Tor protocol. These differences include
the locations of destination servers, the number of relay nodes in a circuit, IP addresses,
and the DNS resolution time.

For the location of destination servers, the Tor protocol directs user data to servers
outside the Tor network. In contrast, the Darknet protocol routes user data to servers within
the Tor network. The feature of the circuit length describes the number of hops to reach a
public server or a Darknet server. The path to a public server consists of three Tor relay
nodes, while the path to a Darknet server contains six. As for the IP address, the Darknet



Sensors 2024, 24, 2295 4 of 22

servers conceal their IP address from the clients. Visiting servers outside the Tor network
requires a DNS resolution through the local proxy or at the exit relay node on behalf of the
client. However, in general, Darknet protocols do not involve DNS resolutions.

Table 1 summarizes the four features.

Table 1. Darknet protocol vs. Tor protocol.

Server Location Circuit Length Server IP Address DNS Resolution

Tor protocol Outside the Tor network 3 relay nodes Public By clients or exit relay nodes
Darknet Protocol Within the Tor network 6 relay nodes Concealed No resolution

Based on investigations of the Darknet protocol, ten features were identified as Darknet
traffic characteristics. The ten features are listed in Table 2:

1. The first feature is related to irregular domain names. Owing to the Darknet protocol’s
encryption features, the domain name of a Darknet website is typically derived from
an encryption key (e.g., AES) and represented as a random string.

2. The second feature is about relay node bandwidth. Due to the distributed architecture
of the Tor network, relay nodes in the Tor network are expected to route a vast amount
of network traffic. As a result, the bandwidth of each Tor router can be significantly
higher than the bandwidth of a regular home router.

3. The third feature is the size of the packets transmitted within the Darknet. Notably,
these packets, or cells, have a fixed length of 512 bytes.

4. Regarding server locations, Darknet servers are typically housed within the Tor
network, meaning that developers often deploy them on relay nodes within the Tor
network. The identification of servers in unusual placements can serve as an indicator
of Darknet traffic. Such server location anomalies help distinguish Darknet activities
from regular Internet traffic.

5. Darknet servers are not expected to interact with public users on the publicly available
part of the Internet.

6. Attackers tend to use irregular port numbers to deceive intercept policies.
7. A circuit is a path formed by relay nodes from the client to the server. As for the circuit

length, the circuit length originating from the client to a Darknet server is typically
six, while the circuit length from the client to an external server is three [21].

8. The eighth feature is related to the Domain Name Service (DNS) and is summarized as
the DNS delay time. Conventionally, the domain names or Uniform Resource Locators
(URLs) are resolved by the DNS to IP addresses, and known DNS queries can be
cached to improve efficiency and scalability [22]. Since visiting websites through
different relay nodes in the Tor network may require new resolutions, Darknet and
Tor traffic are expected to exhibit a long DNS resolution time.

9. The IP addresses of the Darknet tend to be unreachable since these IP addresses
are typically not assigned to legitimate servers [23]. Consequently, attackers can
engage in malicious activities such as backscatter for vulnerabilities by utilizing these
unassigned IP addresses.

10. Data flows dealing with Tor network servers often contain more packets compared to
those involving external servers. This discrepancy could be due to attackers sending
more packets within the Tor network to obscure their malicious activities.

According to the ten features outlined in Table 2, the Darknet protocol attained high
anonymity. Hence, forensic analysis of Darknet traffic is inherently complex. A more viable
approach is to focus on pattern analysis. Nonetheless, the values of these ten features are
unavailable due to the limitations of capturing real-time Darknet traffic with tools such as
the Wireshark packet analyzer. In future work, we aim to extract pattern information to
distinguish between malicious anonymous and benign traffic.



Sensors 2024, 24, 2295 5 of 22

Table 2. Ten characteristics of the Darknet traffic.

Number Feature Name Number Feature Name

1 Domain name 6 Range of port numbers

2 Relay node bandwidth 7 Number of relay nodes

3 Cell (packet) size 8 DNS delay time

4 Server location 9 Invalid IP addresses

5 No interactions with external servers (Passive) 10 Quantity of cells

2.2. Detecting Tor Traffic by Supervised Learning

As discussed in Section 2.1, reading or tracing anonymous Tor traffic is highly com-
plicated. This aspect poses challenges to identifying Tor traffic by packet inspections. To
address this issue, researchers calculated flow-level features and developed supervised
learning-based approaches.

Lashkari et al. generated eight types of network traffic (e.g., browsing, chat, streaming)
and captured Tor traffic between the client and entry node [24]. In their approach, they
extracted eight categories of timing-related statistics. Those features include the time
between the arrival of two packets, the time a flow remains active or idle, flow duration,
and the number of bytes or packets in one second. The Zero Rule, C4.5 decision tree, and K
Nearest Neighbor were applied to classify network traffic into the Tor or benign classes.
Based on the analysis, the C4.5 decision tree can detect 93.4% of the Tor samples. These
findings indicate that timing-based features contribute to unveiling Tor traffic patterns,
even without accessing the packet contents.

To address the reliance of many classifiers on extensive labeled training data, an
enhanced decision tree algorithm was introduced [25]. The authors identified four specific
features that serve as the unique characteristics of Tor traffic. These four features are
entropy related to packet length, the frequency of appearance of packets with a length of
600 bytes, the number of packets with zero data in the first ten packets, and the average
time between the arrival of two packets. For the supervised model, a decision tree was
constructed. Instead of adopting the splitting attributes in traditional C4.5 and ID3 decision
trees, information gain is employed to select the most informative attributes. Specifically,
attributes with the highest information gain are chosen as the splitting attributes. The
authors collected network traffic and gathered 50,000 samples during the testing phase.
The results indicate that the modified decision tree achieved an accuracy of up to 99% for
detecting Tor traffic.

Due to privacy concerns and the limited availability of the dataset on anonymous traffic,
researchers often gather private data or generate traffic within simulated environments [17].
In response to this challenge, the authors introduced the Anon17 dataset, logging features
associated with Tor and other anonymous network traffic instances [17]. These features
encompass packet header information, packet counts, and the length in bytes of each flow.
Leveraging the Anon17 dataset, the researchers probed how ML techniques can identify
anonymous traffic [18]. The classification algorithms include Naive Bayes, Bayesian Networks,
C4.5, and random forest. The results show that classifiers can classify Tor and other types of
network traffic instances with an accuracy close to 100%.

Most supervised models for detecting anonymous traffic rely on classification tasks.
The efficacy of these models depends on the quality of data preprocessing, feature engi-
neering, and the training process. When trained with sufficient data and crafted features,
those models can detect anonymous traffic with an accuracy of over 90%. Conversely, the
performance of supervised models may degrade due to inadequate data and non-relevant
features. This aspect prompts the exploration of alternative decision-making paradigms.



Sensors 2024, 24, 2295 6 of 22

2.3. Reinforcement Learning

Reinforcement learning involves sequential decision making. In sequential decision
making, the goal includes learning what actions to take at a state to maximize the expected
returns. The mapping of a state to an action is referred to as a “policy”. Unlike instruc-
tive approaches, reinforcement learning-based methods involve the assessment of their
behaviors. The evaluations of policies are quantified in terms of a value or the probability
of taking an action at a state.

2.3.1. Value-Based Learning

Upon following a policy, the policy is evaluated by value. The value metric represents
the expected cumulative return of being in a state. In value-based learning, the value of a
state can be updated iteratively. When the environment model is not unknown, model-free
learning is an approach to solving MDP problems, for example Q-learning and State–
Action–Reward–State–Action (SARSA). Q-learning and SARSA utilize Q-values to learn
optimal policies that lead to the highest expected returns by updating temporal difference
(TD) errors. The TD error is as follows [26]:

Q(S, A)← Q(S, A) + α[R + γmaxaQ(S
′
, a)−Q(S, A)]. (1)

The Q-value of the action taken at the current state is updated by the TD error of
R + γmaxaQ(S

′
, a)−Q(S, A). Equation (1) is practical in scenarios where the state–action

space is discrete. To solve problems involving continuous state–action spaces, researchers
studied substituting tables with neural networks [27]. A Deep Q Network is introduced to
learn policies for controlling Atari 2600 games. Within their model, Q-values are param-
eterized as Q(s, a; θi), where θi is the weight set of a convolutional neural network. The
temporal difference formula was harnessed to update the parameters of the neural network.
When evaluating the Deep Q Network using Atari games, their framework outperforms
human players and baselines in 29 games in terms of game scores.

2.3.2. Applications in the Network Environment

Reinforcement learning frameworks have many applications for optimizing the net-
work topology and developing counter-attack strategies.

Researchers developed a reinforcement learning-based approach to make optimal
routing decisions while satisfying security requirements [28]. In the proposed method, each
state represents a switch on the data plane of the Software-Defined Network. In addition,
security devices are deployed on some of the switches. The agent’s goal is to traverse from
the source switch to the destination switch while avoiding paths with high latency, jitter,
and packet drop rates. The proposed method utilizes a Q table and defines the reward
function as the weighted sum of the delay, jitter, traffic rate, and packet loss. Compared to
existing link stability-based Q-routing, the results exhibit a reduced delay time, regardless
of the number of security constraints.

A Deep Q Learning technique is applied to counter jamming attacks in cognitive ra-
dio networks (CRNs) [29]. In a CRN system, the participants include primary users (PU),
secondary users (SU), and jammers. The proposed method represents each state as the appear-
ance of PUs and the signal-to-interference-plus-noise ratio (SINR). The agent is an SU, and its
action is to choose to either leave the jamming area or defeat the jammer. A deep convolutional
neural network is leveraged to approximate the Q-values by addressing the limitations of
Q learning to ample state space. The result shows that the proposed method has a faster
convergence time and achieves a higher SINR than the naive Q learning-based method.

According to the applications of reinforcement learning, we define the actions, states, and
rewards so that these definitions fit the characteristics of a finite and discrete state–action space.



Sensors 2024, 24, 2295 7 of 22

3. Methodology

This section explains the network environment in which the proposed detection system
will be deployed and the adapted MDP framework to detect anonymous traffic.

3.1. Network Environment
3.1.1. Pattern Information Processing

In network environments, detecting anonymous traffic in real time is challenging
due to its encryption features. Rather than examining each packet, our system identifies
patterns based on sequences of packets, or ‘flows’, characterized by consistent source and
destination IP addresses and ports [12]. Within this context, the pattern information is
related to packet statistics, such as flow length in bytes and timing statistics, including the
flow duration and time elapsed between the arrival of consecutive packets. As real-time
training data are unavailable, the system computes these features as soon as it captures a
flow. For instance, to determine the average packet size within a flow, it divides the total
byte counts by the total packet counts.

3.1.2. Flow Pattern Visualization

Figures 1 and 2 visualize the differences in the timing and packet patterns of anonymous
and regular traffic flows, respectively. The horizontal axis marks the number of samples, while
the vertical axis records the feature value of each sample. The feature values are standardized
to unit variance to minimize the bias imposed by the maximum and minimum values.

0 10000 20000 30000 40000
Sample Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fw
d 

Pa
ck

et
 L

en
gt

h 
M

ea
n 

(B
yt

es
)

Anonymous Traffic-Mean Packet Length
Anonymous

0 10000 20000 30000 40000
Sample Number

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

Fw
d 

Pa
ck

et
 L

en
gt

h 
M

ea
n 

(B
yt

es
)

Regular Traffic-Mean Packet Length
Regular

Figure 1. Packet dynamic of flows.

Figure 1 displays the mean packet length in a flow. It can be seen that the feature
values of approximately 40,000 samples vibrate in the range between 0 and 12.5. For regular
traffic, the majority of samples range from zero to five, although some feature values exceed
five along the vertical axis.

0 10000 20000 30000 40000
Sample Number

0

2

4

6

8

10

12

14

Fw
d 

IA
T 

M
ea

n

Anonymous Traffic-Mean IAT Fwd
Anonymous

0 10000 20000 30000 40000
Sample Number

0

2

4

6

8

10

12

14

Fw
d 

IA
T 

M
ea

n

Regular Traffic-Mean IAT Fwd
Regular

Figure 2. Timing dynamic of flows.



Sensors 2024, 24, 2295 8 of 22

Figure 1 displays the mean packet length in a flow. In the figure, the feature values of
approximately 40,000 samples vibrate between 0 and 12.5. Most samples range from zero to
five for regular traffic, although some feature values exceed five along the vertical axis.

Figure 2 displays one of the timing-based features, or the mean inter-arrival time of
two consecutive packets in the forward direction. The plot of anonymous traffic in Figure 2
indicates that the feature values of approximately 40,000 anonymous traffic samples range
between 0 and 14. For regular traffic, the feature values of all regular traffic samples range
from zero to eight.

The results imply that anonymous traffic flows exhibit different timing and packet-
based patterns than non-anonymous traffic. Hence, analyzing the packet and timing-based
features of anonymous traffic paves the road toward detecting anonymous traffic.

3.2. MDP Environment Descriptions

MDP is a standard framework for addressing sequential decision-making problems [30].
An MDP framework consists of a quadruple denoted as (S, A, r, p). In the quadruple,
element S represents a state space with a finite set of states, A represents the action space
with a finite set of actions, r is the reward value received upon executing an action, and
p is a transition probability. Subsequently, the proposed detection system simulates the
MDP framework, as depicted in Figure 3. In Figure 3, the process involves selecting a
set of features, e.g., the average length of packets in a flow, by the system, according to
the current policy. Next, following the execution of action At, the environment sends the
reward to the agent, resulting in a transition to another state. This design addresses the
interactions between the agent and the environment.

Figure 3. MDP scheme description.

1. State S: The state space contains three states: Tor, non-Tor, and ambiguous. The state
space is interpreted as S = {s1, s2, s3}. In S, s1 represents a vague state, s2 represents a
Tor state, and s3 represents a non-Tor state. The initial state of the agent is ambiguous,
meaning that the agent has no clue about the behavior of the detected traffic. As such,
the agent’s goal is to identify an answer to leave the ambiguous state. Accordingly,
the Tor and non-Tor states are considered goal states. The agent assumes that the Tor
network generates the current traffic when reaching the Tor state. The current traffic
flow is recognized as non-Tor when transiting to the non-Tor state.
This design replaces the conventional labels used for classification tasks with these
model states, allowing the system to process the observed network traffic differently.

2. Action A: The agent’s action is to select features. The action space is defined as
A = {a1, a2, a3, ..., an}, where ai ∈ A and ai = { f1, f 2, f3, ..., ft}. The subscript n
represents the number of actions, and t is the number of features each action selects.
To rank features based on feature importance, the feature selection techniques pro-
vided by the Scikit-learn library [31] are used to select features. Those selection tech-
niques include Recursive Feature Elimination (RFE), Recursive Feature Elimination



Sensors 2024, 24, 2295 9 of 22

with Cross-Validation (RFECV), the random forest classifier, the mutual information-
based SelectKBest library, and Support Vector Machine (SVM). The rationale for
selecting these techniques will be revealed in Section 4.
Based on this design, the action space size is five. The first, second, third, fourth,
and fifth actions select features ranked by RFE, RFECV, the random forest classifier,
the SelectKBest API with mutual information, and SVM. Table 3 summarizes the
action space. We reveal and discuss the feature rankings and the selected features in
Section 4:

3. Heuristic reward function: The heuristic reward function reflects an agent’s action.
Our system calculates the reward value by taking the linear summation of weighted
feature values as the input to the hyperbolic tangent function. This design of the
reward function bounds the reward values within the range between −1 and 1.
Precisely, the scalar value of the immediate reward is calculated as:

r(s, a) = tanh(w1 × f1 + w2 × f2 + ... + wt × ft) (2)

In Equation (2), parameter w represents the weight of each feature, and variable f
is the feature value. The scalar sum of each product of the feature value and the
corresponding weight is the input to the hyperbolic tangent function. Specifically, the
formula of the hyperbolic tangent function is as follows:

tanh(x) =
ex − e−x

ex + e−x , (3)

where e is the natural exponent and the variable x is the input to the hyperbolic tangent
function, or (w1 × f1 + w2 × f2 + w3 × f3 + ... + wt × ft) in Formula (2). Finally, the
reward function is written as follows:

r(s, a) =
e(w1× f1+...+wt× ft) − e−(w1× f1+...+wt× ft)

e(w1× f1+...+wt× ft) + e−(w1× f1+...+wt× ft)
. (4)

4. Environment model: The model of the environment is the transition probability. The
conditional probability of transiting to the next state is P(s_next|s, a). Based on an
environment model, an agent’s interactions with the environment can be model-based
or model-free. For instance, the environment model in balancing a pendulum can be
approximated by knowledge about kinematics. However, an explicit model, given
the definitions of state, action a, and reward functions, has yet to be identified among
the recorded network flows in CIC-Darknet2020 [14]. Thus, the agent is expected
to make decisions and interact with the environment without being aware of an
environment model.

Table 3. Action space.

Number Action

1 Select features ranked by RFE
2 Select features ranked by RFECV
3 Select features ranked by random forest classifier
4 Select features ranked by mutual information
5 Select features ranked by SVM

3.3. Threshold Setting

A two-threshold system distinguishes between Tor and non-Tor traffic flow samples,
with each threshold tuned explicitly to its respective traffic type. Setting these thresholds
aims to calibrate the system’s sensitivity toward identifying Tor traffic. For example, a
higher threshold for Tor traffic may decrease the sensitivity, leading to fewer Tor traffic
flows being detected. Another goal is to minimize the dependence on labels. Instead of



Sensors 2024, 24, 2295 10 of 22

contrasting the computed results with predefined labels, the system compares the results
with tuned thresholds. This methodology enables the system to decide whether a specific
result exceeds or falls below the set threshold, which facilitates the identification of traffic
types in a lightweight manner.

Figure 4 illustrates the horizontal axis on which the Tor and non-Tor thresholds are
tuned. Since the experiment considers Tor samples as the Positive Class, the endpoint
with the value of 1 denotes Tor samples, and the endpoint with the value of −1 denotes
non-Tor samples. Additionally, the value of the Tor threshold is greater than that of the
non-Tor threshold. Besides, the segmentation forms three intervals. The first interval is
located on the left side of the non-Tor threshold. The middle interval is located between
the non-Tor and Tor thresholds. The third interval is situated on the right side of the Tor
threshold. Samples with reward values that are distributed on the right side of the Tor
threshold are identified as Tor. On the other hand, samples distributed on the left side of the
non-Tor threshold towards −1 are detected as non-Tor traffic. Lastly, the middle interval
indicates ambiguous samples, meaning the system cannot extract sufficient information
to decide. In the above configuration, the system distinguishes Tor and non-Tor flows
in an unsupervised mode by setting the thresholds, and the labels are substituted with
threshold values.

Figure 4. Threshold interval.

Note that the distances from each threshold to either endpoint do not contribute to the
decision-making process.

3.4. System Diagram

Initially, the agent is placed in the ambiguous state in Figure 5 and selects the first
action in the action space specified in Table 3. After choosing the first action, the environ-
ment assigns the immediate reward, and the agent compares it with the two thresholds.
There are three comparison outcomes: lower than the non-Tor threshold, higher than the
Tor threshold, and higher than the non-Tor threshold, but lower than the Tor threshold (the
middle interval in Figure 4).

Figure 5 illustrates the transition diagram consisting of three states (Tor, Non-Tor,
and Anonymous), where each vertex represents a distinct state and each edge denotes a
transition triggered by an action, or (a), along with the associated reward value, or (r(s, a)).

Figure 5. State transition diagram



Sensors 2024, 24, 2295 11 of 22

3.5. Detection Algorithm

The MDP framework is implemented as a modified transition probability set. Based
on the equation below, the probability of transiting to an ambiguous state is one if the
reward is less than the Tor threshold and more significant than the non-Tor threshold. The
probability of transiting to the Tor state is one if the reward value exceeds the Tor threshold.
The transition probability of transiting to the non-Tor state is one if the reward value is
lower than the non-Tor threshold. On the other hand, in either the Tor or non-Tor state, the
agent reaches the goal and re-initiates in the ambiguous state.

p(snext|s, a) =


p(snext = ambiguous) = 1, nonTor < r(s, at) < Tor− threshold
p(snext = Tor|s = ambiguous, at) = 1, r(s, at) ≥ Tor− threshold
p(snext = nonTor|s = ambiguous, at) = 1, r(s, at) ≤ nonTor− threshold.

Algorithm 1 describes the transitions between states according to the actions, rewards,
states, state transitions, and thresholds. In the adapted MDP framework, the agent aims to
arrive at either a Tor or non-Tor state from the ambiguous state. After executing an action,
a reward value higher than the Tor threshold or lower than the non-Tor threshold triggers
a decision, and the agent departs the ambiguous state. After departing the ambiguous
state, the workflow of the current traffic concludes. In turn, the agent moves back to the
ambiguous state to analyze the upcoming traffic flows. However, subsequent actions, i.e.,
the second through the fifth action, are selected until the agent exits the ambiguous state. If
the agent remains ambiguous after selecting all five actions, the agent cannot decide and
neglects the traffic flow.

Ambiguous traffic flows are recorded in a buffer. Elements in the buffer require further
analysis, depending on factors such as respective Intrusion-Detection System policies.

Algorithm 1 Transitions between states.

1: procedure TRANSITION(threshold_Tor, threshold_nonTor, f eature_set, batch_size) ▷
Function

2: for i in range(0, len(feature_set), batch_size) do
// Create batches

3: batch_ f eatures = f eature_set[i : i + batch_size]
// Calculate reward value of each sample in the batch

4: r_batch = f irst_action(batch_ f eatures)
5: for j in range(len(batch_features), batch_size) do
6: if r[j] >= threshold_tor then ▷ Classified as Tor
7: State← Tor
8: else if r[j] <= threshold_non_tor then ▷ Classified as non_Tor
9: State← Non_Tor

10: else ▷ Classified as Ambiguous
11: while r[j] > threshold_non_tor and r[j] < threshold_tor do
12: if no actions remaining in action space then
13: Label (Anonymous && Malicious) ▷ Further processing required
14: break
15: State← Ambiguous
16: r_batch = next_action(batch_ f eatures) ▷ Select next action

4. Experiment

This section delineates the development and testing of the proposed method. The raw
dataset was preprocessed in the development phase, and features were ranked according to
the feature engineering techniques. In the last stage of the development phase, we trained
five single-layer perceptrons and utilized each perceptron’s corresponding weights in the
input layer as the reward function’s parameters in Equation (2). In the testing phase, the
system’s performance was gauged based on the accuracy, recall, and precision. Lastly, the
system performance was compared against the performance of conventional classifiers.



Sensors 2024, 24, 2295 12 of 22

4.1. Dataset Processing
4.1.1. Raw Dataset

The CIC-Darknet2020 dataset is a labeled dataset that summarizes the statistics of
bidirectional anonymous and non-anonymous traffic flows [14]. We used these historical
statistics to develop the MDP framework.

The researchers extracted packet- and timing-based features using the CICFlowMe-
ter [14] tool. Timing-based features include packet inter-arrival time, idle time, and bytes
per second. Packet-based features include pattern information about the packet size
and contents.

There are four types of labels: non-Tor, non-VPN, Tor, and VPN. We consider VPN traffic
anonymous because VPN traffic is encrypted, although VPN traffic is tunneled and generated
by different means than that of the Tor traffic. Therefore, the Tor and VPN labels are merged
as Tor types, while the non-Tor and non-VPN labels are incorporated into the non-Tor type,
resulting in two labels.

Table 4 summarizes the raw dataset.

Table 4. Raw dataset.

Total Samples Total Features Non-Tor Samples Tor Samples

141,530 83 117,219 24,311

To elaborate, the number of flow records is 141,530, while the number of features is 83.
The number of flows labeled as non-Tor and Tor is 117,219 and 24,311, respectively.

4.1.2. Cleaning and Preprocessing

The raw dataset was converted to a pandas dataframe for preprocessing and cleaning.
In the cleaning phase, samples that contain infinite values and “Not a Number” entries

were dropped. Then, the features that share the same value among all samples were dis-
carded. The resulting number of features was 62, and the number of samples was reduced
from 141,530 to 141,483. To further simplify the feature set, the Feature Selection with Vari-
ance Thresholding (VarianceThreshold) technique in the Scikit-learn library (abbreviated as
sklearn) [31] was applied. Specifically, the VarianceThreshold technique removes features
with a variance below a specified threshold. In the experiment, the threshold was set at
30%. After running the VarianceThreshold, four features were further eliminated, resulting
in 58 features.

The label distributions of the raw dataset are skewed, as shown in Table 4. Basi-
cally, samples labeled as non-Tor are quite abundant, while the number of Tor samples is
24,311 and only accounts for 17.18% of the 141,483 samples. To balance the dataset, the
non-Tor samples whose indexes range from 0 to 69,999 were eliminated. Next, we generated
20,000 synthetic data by duplicating the samples labeled as Tor or VPN.

After cleaning and balancing, the finalized dataset contains 91,483 samples and 58 fea-
tures. As Table 5 displays, the final dataset contains 47,172 Tor samples and 44,311 non-Tor
samples, both of which account for approximately 48.4% of the 91,483 samples. Lastly, the
number of features is 58.

Table 5. Raw dataset.

Total Samples Total Features Non-Tor Samples Tor Samples

91,483 58 47,172 44,311

4.1.3. Label Encoding

Since there are two types of labels, the Bernoulli Equation was applied. The Bernoulli
Equation is defined as P(X = 0) = 1− p and P(X = 1) = p, where X is a random variable
and p is the probability of X being equal to 1. As a result, an integer of either 0 or 1 replaces
each categorical label. Since anonymous traffic is defined as an anomaly, each Tor label is



Sensors 2024, 24, 2295 13 of 22

replaced with the integer 1 (Positive Class), and each non-Tor label is replaced with the
integer 0 (Negative Class). This step was achieved through the Label Encoding method in
the sklearn library.

However, to facilitate the separations between non-Tor and Tor samples, the labels
belonging to the Negative Class were converted from 0 to −1. To perform the conversion,
the formula applied is represented as follows: label_encoding = 2× label_encoding− 1.
After applying the formula, the labels in the Positive Class are represented as the integer 1,
and the labels in the Negative Class are replaced with the integer −1.

4.2. Action Space Construction

The dimensionality of our action space is two, encompassing a multitude of actions. Each
action within this space is defined as a feature selection technique in the sklearn library, and
each action selects a specific set of features. Upon processing the raw dataset, it is imperative
to finalize the total number of actions available within this action space along with the specific
number of features selected by each individual action.

4.2.1. Determining the Number of Actions

According to Table 3, the random forest classifier (RF), Recursive Feature Elimination
(RFE), Recursive Feature Elimination with Cross-Validation (RFECV), mutual information,
and Support Vector Machine (SVM) were chosen for defining each action and utilized to
rank the feature importance.

In the experiment, a higher importance ranking indicates that a feature is more likely
to contribute to the predictive performance. Since the feature importance ranking is based
on importance scores, the experiment adopts RF to generate the importance scores and
measure the amount of information contained in each feature to reduce the uncertainty.
Also, RF was applied to the RFE and RFECV APIs as their score function. Subsequently, the
RFE and RFECV techniques were leveraged to recursively eliminate features containing
less information about the target variables. Additionally, the mutual information technique
was employed to measure the relevance between a feature and the target variable. Lastly, as
58 features are involved, SVM was utilized to reduce over-fitting and improve robustness.

The experiment has determined the composition of the action space, which now
comprises five actions: Random Forest (RF), Recursive Feature Elimination (RFE), Recursive
Feature Elimination with Cross-Validation (RFECV), mutual information, and Support
Vector Machine (SVM).

4.2.2. Determining the Number of Features Selected by Each Action

After determining the number of actions, the number of features selected by each
action was determined. When selecting the number of features for each action, one explicit
method is to include as much information as possible, for example feeding all of the
58 features. However, this method may incur undesired data volume. Another approach
is to include fewer features. To determine the optimal number of features selected by
each action, we evaluated the accuracy by using the random forest classifier. The random
forest classifier was chosen as it generates importance scores. In addition, it is used as the
score function of the Recursive Feature Elimination and the Recursive Feature Elimination
techniques with Cross-Validation in the experiment.

The classification accuracy of the random forest classifier was measured regarding the
number of features. In the evaluation process, initiating the experiment with 15 features,
the number of features was increased gradually in increments of 15 until all 58 features
were used. Figure 6 depicts the resulting accuracy curve. The accuracy improved from
0.9746 when selecting 15 features to 0.9774 when selecting 30 features. Nonetheless, the
accuracy saturated when more than 30 features were selected. This trend indicates that the
accuracy improves as the number of features is increased within a specific range. However,
selecting more features did not improve the performance further. Therefore, the number of



Sensors 2024, 24, 2295 14 of 22

features selected by each action was determined to be 15. This decision balances between
maximizing input information while minimizing complexity and computational demands.

15 30 45 58
Number of Features

0.971

0.972

0.973

0.974

0.975

0.976
Ac

cu
ra

cy

Accuracy Curve

Figure 6. Accuracy trend of the random forest classifier regarding the number of features.

4.2.3. Determining the Specific Features Selected by Each Action

After determining the number of features each action should select, the experimen-
tation focused on identifying which 15 out of the 58 features would be most appropriate
for each action. We explored two main strategies: randomly selecting 15 features from
the 58 available features and the selection based on the highest importance scores. The
random selection approach revealed that the number of possible combinations for selecting
15 features from 58 is approximately 2.97× 1013, a figure that is impractical to solve due
to its vast scale. To address this challenge, we adopted a second approach that prioritizes
feature selection based on importance scores. This method utilized feature selection APIs
in the sklearn library, incorporating techniques such as Recursive Feature Elimination (RFE),
Recursive Feature Elimination with Cross-Validation (RFECV), mutual information, Ran-
dom Forest Classification, and Support Vector Machine (SVM). By selecting the top-15
ranked features as determined by each technique, the action space was refined to consist of
five actions, each selecting 15 features with the highest importance scores. This strategy
concluded the construction of the action space.

4.3. Feature Selection Process

The feature selection process was initiated by searching for the most appropriate
parameter set. The grid search on the random forest classifier was applied. The parameters
to be searched are displayed in Table 6.

Table 6. Search space for random forest classifier.

Number of
Estimators

Maximum
Depth

Minimum Number of
Samples to Split a Node

Minimum Number of
Samples in a Leaf Node

75 5 2 1
100 10 5 2
125 15 10 4



Sensors 2024, 24, 2295 15 of 22

The result of the grid search is as follows. The number of estimators is 125, the
maximum depth 15, the minimum number of samples to split a node 2, and the minimum
number of samples in a leaf node 1.

We used the resulting configuration of the random forest classifier as the score function
of RFE and RFECV. The number of folds of the cross-validations in RFECV was set to three.
Subsequently, the random forest classifier with the same parameter configuration, as
mentioned in Table 7, was built based on the processed dataset. As for the SelectKBest API,
the mutual information technique was used as its score function. Finally, an SVM with a
linear kernel was built based on the processed dataset.

Table 7. Results of grid search.

Number of
Estimators

Maximum
Depth

Minimum Number of
Samples to Split a Node

Minimum Number of
Samples in a Leaf Node

125 15 2 1

By applying these feature selection techniques, the 15 features with the highest
15 ranks were derived. Table 8 displays the ranking results.

For RFE, the most crucial feature was identified as Bwd Packet Length Min, while the
feature with the 15th rank was Idle Min. Similarly, for RFECV, the most crucial feature was
flow duration, while the feature ranked 15th was Flow IAT Mean. Furthermore, there are
standard features that RFE, RFECV, SelectKBest, and RF select. Features such as Bwd Packet
Length Min, Flow Packets/s, and Flow IAT Max were consistently determined as informative
for distinguishing between Tor and non-Tor traffic.

Table 8. Feature rankings by feature selection techniques.

Rank RFE RFECV SelectKBest RF SVM

1 Bwd Packet Length Min Flow Duration Flow IAT Max Flow IAT Min Bwd Init Win Bytes
2 Bwd Packet Length Mean Total Length of Fwd Packet Flow Duration Idle Max Bwd Packet Length Std
3 Flow Packets/s Total Length of Bwd Packet Flow IAT Mean Bwd Packet Length Min Fwd Packets/s
4 Flow IAT Mean Fwd Packet Length Min Flow Packets/s Flow IAT Mean PSH Flag Count
5 Flow IAT Max Bwd Packet Length Max Fwd Packets/s Bwd Segment Size Avg Packet Length Min
6 Flow IAT Min Bwd Packet Length Min Bwd Packets/s Subflow Bwd Bytes Flow Packets/s
7 Fwd Header Length Bwd Packet Length Mean Flow IAT Min Flow Packets/s Bwd IAT Total
8 Bwd Packets/s Flow Bytes/s Flow Packets/s Bwd Packet Length Mean Down/Up Ratio
9 Bwd Segment Size Avg Flow Packets/s Average Packet Size Idle Mean Subflow Fwd Bytes

10 Subflow Bwd Bytes Flow IAT Mean Packet Length Mean Fwd Header Length Bwd Packet/Bulk Avg
11 FWD Init Win Bytes Flow IAT Std Packet Length Max Flow IAT Max Bwd Packets/s
12 Fwd Seg Size Min Flow IAT Max Packet Length Std Bwd Packets/s FWD Init Win Bytes
13 Idle Mean Flow IAT Min Packet Length Variance Flow Bytes/s Bwd IAT Min
14 Idle Max Fwd IAT Total Bwd Segment Size Avg Fwd Packets/s Fwd Packet Length Min
15 Idle Min Fwd IAT Mean Bwd Packet Length Mean Idle Min SYN Flag Count

4.4. Reward Function Experimentation

At first, the reward function was defined as a linear equation. Furthermore, the
endeavor was to compute the weights of the linear equation such that the aggregate of
weighted feature values separates the Tor and non-Tor samples around a threshold of zero.
Nonetheless, the calculations imply that the correspondence between the weights and the
labels was intricate. Therefore, non-linearity was introduced to facilitate the separation of
Tor and non-Tor samples.

Hyperbolic Tangent-Based Reward Function

A single-layer neural network was harnessed to implement the reward function, as
mentioned in Equation (2). Specifically, the weights of the reward function were derived
from the trained neural network. The activation function at the output layer serves to
add the non-linearity. In each instance of the single-layer neural network, the input layer
contains 15 neurons, while the output layer has 1 neuron. The hyperbolic tangent function
is employed at the output layer to map the linearly weighted summation of feature values
onto a single value.



Sensors 2024, 24, 2295 16 of 22

Prior to the training process, the feature values of each sample underwent standard-
ization to reach unit variance. The reason for executing standardization is that many
feature values have a vast range. For instance, the idle max feature has a maximum value
of 1.44× 1015, whereas the Bwd Packet Length Min feature has a maximum value of 1350.
Accordingly, the StandardScaler class of sklearn [31] was leveraged to bring all feature values
to the same scale.

During the training phase, each neural network was trained in a supervised manner
using the PyTorch library. Stochastic gradient descent (SGD) with a learning rate of 0.001
was employed as the optimizer. It was observed that the loss stopped decreasing after
30 epochs. Consequently, each neural network was trained within 30 epochs in a trial.
However, another observation indicated that the weights in each training trial varied, even
when the same feature set was applied. To determine the influence of those variations on
the detection accuracy, the performance of each trained neural network was tested. The
result exhibited that varying weights across trials did not reduce the accuracy, provided the
feature sets were used consistently across trials. As a result, the weights produced by the
last run were finalized as the weights of each reward function. The results of the reward
functions are recorded in Table 9.

Regarding the correlations between the rankings of feature weights and the rankings of
feature importance, the results showcase that the rankings of the weights did not align with
the rankings of feature importance generated by the sklearn feature selection techniques.
For instance, within the feature set selected via RFE, Idle Min had the lowest ranking and
the third-highest weight of 0.1763. Meanwhile, Flow IAT Max was ranked at the top position
by SelectKBest. However, it had the third-highest weight. This discrepancy suggests that
the weights in a neural network and the importance of features are different metrics in
evaluating the contributions of the features to predictive performance.

Based on Table 9, the reward function corresponding to each action is represented as
R(s, at) = tanh(WT

t × at). Hence, the reward of a1 was calculated as R(s, a1) = tanh(WT
1 × a1),

where the weight set was transposed and multiplied by the features selected by action
a1. According to Equation (4), the reward value of selecting the features ranked by RFE is
calculated as

r(s, a1) = tanh(1.2904× Bwd Packet Length Min + . . . + 0.1763× Idle Min). (5)

Table 9. Reward function parameters.

Rank Weight Set of a1
(RFE)

Weight Set of a2
(RFECV)

Weight Set of a3
(SelectKBest) Weight Set of a4 (RF) Weight Set of a5

(SVM)

1 1.2904 0.2689 0.2543 −0.0083 2.6751 × 10−3

2 −0.0694 0.1872 0.6159 −0.2216 −3.2666× 10−2

3 −0.0365 −0.1440 −0.3229 0.1781 2.8813× 10−1

4 −0.0984 0.0584 −0.0131 0.1014 1.2825× 10−2

5 −0.0583 −0.1191 −0.2443 −0.1772 6.0968× 10−1

6 −0.3272 0.7849 −0.1869 −0.1262 1.9927× 10−1

7 0.1684 0.1817 −0.2665 −0.0275 2.2302× 10−1

8 −0.2140 −0.5075 0.1950 −0.0723 −4.0300× 10−3

9 −0.0785 −0.0699 −0.2263 −0.0743 −1.5365× 10−1

10 0.1425 −0.1312 −0.4022 −0.1299 −2.0000× 10−2

11 0.0707 −0.2003 −0.2983 0.1927 −2.6902× 10−1

12 0.4345 −0.1743 −0.1267 0.0887 3.4434× 10−1

13 0.0277 −0.2615 −0.3179 0.2001 −5.2559× 10−4

14 −0.2260 −0.0326 0.4655 −0.1554 6.3868× 10−1

15 0.1763 0.2427 0.6879 −0.2383 −3.8217× 10−2



Sensors 2024, 24, 2295 17 of 22

4.5. Threshold Probing
4.5.1. Adjusting Threshold Values

Adjusting the sensitivity to Tor traffic requires setting appropriate thresholds. We initi-
ated with the first action set to select features as ranked by Recursive Feature Elimination
(RFE), with the expectation that the target thresholds would be close to 0. The probing
began at this baseline. A nested loop was employed for the probing process, where the
outer loop adjusted the non-Tor threshold from −1 to 1 and the inner loop varied the Tor
threshold within the same range, both utilizing an incremental step of 0.02. The results
from this threshold probing indicated that the optimal accuracy was achieved when the
non-Tor threshold was set at −0.3.

As depicted in Figure 7, the highest accuracy was reached in the range between −0.25
and 0.2. Taking into account the width of this ambiguous interval and the intersection point
of accuracy, recall, and precision metrics, the Tor threshold was set at −0.3. Consequently,
the Tor and non-Tor thresholds were finalized at −0.1 and −0.3, respectively, marking the
end of the threshold optimization process.

Figure 7. Accuracy, precision, and recall trends regarding the Tor threshold Adjustments.

4.5.2. Adjusting the Action Sequence

We adjusted the sequence of actions to be applied at the ambiguous state to improve
accuracy. Different from Table 3, the action space can be arranged as in Table 10.

Table 10. Action space Alteration.

Number Action

1 Select features ranked by SVM
2 Select features ranked by RFECV
3 Select features ranked by random forest classifier
4 Select features ranked by mutual information
5 Select features ranked by RFE

The first action (Number 1) in the sequence had the highest impact on accuracy to the
extent of 5 to 10%. However, adjusting the action sequence while keeping the first action
fixed trivializes the accuracy improvement.

The experiment recorded the maximum accuracy of positioning the RFE, RFECV,
mutual information, random forest classifier, or SVM at the first. Figure 8 shows the trends.
Arranging Recursive Feature Elimination (RFE) as the first position in the action space



Sensors 2024, 24, 2295 18 of 22

yielded the highest accuracy at 82%, whereas employing features ranked by the random
forest classifier led to the lowest accuracy, recorded at 72.2%.

The final action space is defined as A = {a1, a2, a3, a4, a5}, where a1 is RFE, a2 is
RFECV, a3 is mutual information, a4 is SVM, and a5 is random forest.

Figure 8. Accuracy curve of feature selection techniques.

4.6. Model Deployment and Testing

The workflow of the testing procedure is divided into four phases as shown in Figure 9.

Figure 9. Phases of the deployment and testing procedure.

In phase 1, the saved and trained perceptrons were loaded from the .pth files, and the
training process was detailed in Section 4.4. Phase 2 involved extracting the features listed
in Table 8 from the cleaned dataset. These features were then standardized for processing
in the proceeding phases. In the third phase, a supervised testing procedure was conducted.
Specifically, a reward value was obtained in every step, and the reward value was compared
with the pre-defined thresholds. The state to which the agent transits was then compared
with the known label for the current sample. If the state and label matched, the sample
was correctly identified. Conversely, the samples would be misclassified if the state and
label did not match. In the final phase, the model performance was gauged based on the
precision, recall, and accuracy metrics. The results of these metrics are recorded in Table 11.

Table 11. Model performance evaluation.

Accuracy Precision Recall

0.82 0.8 0.83

Additionally, we visualize in Figure 10 the reward value distributions of Tor and
non-Tor traffic samples when the Tor threshold was set at −0.1 and the non-Tor threshold
was set at −0.3. Figure 10 demonstrates that the Tor and non-Tor thresholds effectively
separated the reward values of Tor and non-Tor samples into two regions.



Sensors 2024, 24, 2295 19 of 22

0 5000 10000 15000 20000 25000 30000 35000
Flow Number

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
wa

rd
 v

al
ue

Tor Distribution

correct_tor
threshold Tor

0 5000 10000 15000 20000 25000 30000 35000 40000
Flow Number

1.00

0.75

0.50

0.25

0.00

0.25

0.50

0.75

1.00

Re
wa

rd
 v

al
ue

Non-Tor Distribution
correct_non_tor
threshold non-Tor

Figure 10. Reward distributions of Tor and non-Tor samples.

4.7. System Performance Comparisons

In addition to model testing, the performance of the proposed system was assessed
against other baselines by the accuracy. The baselines included the CNN model (DeepIm-
age) described in [14], the stacking ensemble model developed by [13], the random forest
classifier implementation in our experiment, the improved decision tree algorithm (Tor-IDS)
mentioned in [25], and the random forest tested on the Anon17 dataset [18]. Table 12 lists
the comparison results.

Table 12. Model performance evaluation.

Model Architecture Dataset Accuracy

Proposed Real-Time System Single-Layer Perceptron CIC-Darknet2020 0.82
DeepImage [14] CNN CIC-Darknet2020 0.95

Random Forest by Grid Search Decision Trees CIC-Darknet2020 0.97
Ensemble Model [13] Decision Trees and KNN CIC-Darknet2020 0.98

Tor-IDS [25] Decision Trees Self-Collected Network Traffic 0.99
Random Forest [18] Decision Trees Anon17 0.99

The comparison results highlight the outstanding performance of supervised baselines
in identifying Tor traffic patterns. Among these models, the improved decision tree algo-
rithm [25] and the random forest implementation [18] had the highest accuracy at up to 0.99,
followed closely by the ensemble model at 0.98, the random forest classifier in our experiment
at 0.97, and the DeepImage model at 0.95. It is worth noting that, while the proposed model
trailed behind these supervised models in terms of accuracy, it achieved an accuracy level
exceeding 80%. This discrepancy indicates that ensemble and decision tree-based models in
fully supervised modes can process static data and predict patterns with a high efficiency. In
contrast, the proposed model targets operating in an unsupervised mode. This strategy ad-
dresses the challenges posed by the absence of labeled data in real-time network environments.
As a trade-off, the proposed model was developed with a single dataset and will function
in the absence of the labeled dataset upon deployment. Furthermore, each instance of the
single-layer neural network has a simple structure and rapid training time. With continued
improvements, the accuracy is considered satisfactory in this study. Ultimately, those aspects
make deployments of this system in real-time situations more practical and robust.



Sensors 2024, 24, 2295 20 of 22

5. Conclusions

Anonymous networks preserve user anonymity by relaying data through a distributed
network. Using tools such as the Tor network makes the transmitted data hard to read
and trace for third parties. However, traffic originating from anonymous networks can
be suspicious or malevolent. Therefore, the real-time detection of anonymous traffic
is crucial, yet inherently complex. This work has implemented a real-time system for
detecting anonymous traffic using a labeled dataset containing 141,530 samples. Instead of
relying on traditional classifiers, features most informative about Tor and non-Tor traffic
were extracted. These important features were then used to construct a tuple comprising
information about the system’s state, action, reward, and transition. Based on this tuple,
we implemented a system with a simplified structure utilizing a single-layer feed-forward
neural network for classification tasks. During deployment, the system continuously
monitors network flows and analyzes relevant features. It makes decisions by reward
signals and compares each reward signal against predefined thresholds. Depending on the
comparison results, the agent transitions to one of the following states: the Tor, Non-Tor, or
ambiguity. In the testing phase, the model was gauged in a supervised manner. The result
indicates that the model’s accuracy for detecting anonymous traffic is 82%, which could
have implications for network security and privacy.

In future work, we aim to develop robust methods for detecting traffic generated
by Darknet protocols within the Tor network, along with distinguishing between benign
and malicious anonymous traffic. This endeavor would involve refining the analytical
techniques, which may contribute to strengthening cybersecurity measures.

Author Contributions: Writing—original draft, D.L.; Supervision, Y.P. All authors have read and
agreed to the published version of the manuscript.

Funding: The APC was funded by Dr. Younghee Park.

Institutional Review Board Statement: Not applicable

Informed Consent Statement: Not applicable

Data Availability Statement: The original data presented in the study are openly available at
[https://www.unb.ca/cic/datasets/darknet2020.html (accessed on 1 December 2023)].

Conflicts of Interest: The authors declare no conflicts of interest.

Abbreviations
The following abbreviations are used in this manuscript:

Tor Onion Routing
TCP Transmission Control Protocol
IP Internet Protocol
API Application Programming Interface
IDS Intrusion-Detection System
AES Advanced Encryption System
DNS Domain Name Service
CNN convolutional neural network
KNN K Nearest Neighbor

References
1. Dingledine, R.; Mathewson, N.; Syverson, P. Tor: The second-generation onion router. In Proceedings of the 13th Conference on

USENIX Security Symposium, San Diego, CA, USA, 9–13 August 2004; Volume 13, pp. 303–320.
2. Parizi, R.M.; Homayoun, S.; Yazdinejad, A.; Dehghantanha, A.; Choo, K.R. Integrating privacy enhancing techniques into

blockchains using sidechains. In Proceedings of the 2019 IEEE Canadian Conference of Electrical and Computer Engineering
(CCECE), Edmonton, AB, Canada, 5–8 May 2019; pp. 1–4.

3. Peng, K. How secure are the main real-world mix networks - case studies to explore vulnerabilities and usability. In Proceedings of
the 2023 ACM Asia Conference on Computer and Communications Security, Melbourne, Australia, 10–14 July 2023; pp. 539–551.

4. The Invisible Internet Project. Available online: https://geti2p.net/en/ (accessed on 1 December 2023).

https://www.unb.ca/cic/datasets/darknet2020.html
https://geti2p.net/en/


Sensors 2024, 24, 2295 21 of 22

5. Ban, T.; Zhu, L.; Shimamura, J.; Pang, S.; Inoue, D.; Nakao, K. Behavior Analysis of Long-term Cyber Attacks in the Darknet.
Neural Inf. Process. 2012, 7667, 620–628. ._73. [CrossRef]

6. Biswas, R.; Fidalgo, E.; Alegre, E. Recognition of service domains on tor dark net using perceptual hashing and image classification
techniques. In Proceedings of the 8th International Conference on Imaging for Crime Detection and Prevention (ICDP 2017),
Madrid, Spain, 13–15 December 2017; pp. 7–12.

7. Kumar, S.; Vranken, H.; van Dijk, J.; Hamalainen, T. Deep in the dark: A novel threat detection system using Darknet traffic. In Proceedings
of the 2019 IEEE International Conference on Big Data (Big Data), Los Angeles, CA, USA, 9–12 December 2019; pp. 4273–4279.

8. Barbera, M.V.; Kemerlis, V.P.; Pappas, V.; Keromytis, A.D. CellFlood: Attacking Tor Onion Routers on the Cheap. In Proceedings
of the Computer Security—ESORICS 2013: 18th European Symposium on Research in Computer Security, Egham, UK, 9–13
September 2013; Volume 8134. ._37. [CrossRef]

9. Cambiaso, E.; Vaccari, I.; Patti, L.; Aiello, M. Darknet Security: A Categorization of Attacks to the Tor Network. In Proceedings of
the Italian Conference on Cybersecurity, Pisa, Italy, 12–15 February 2019.

10. Ghafir, I.; Svoboda, J.; Prenosil, V. Tor-based malware and tor connection detection. In Proceedings of the International Conference
on Frontiers of Communications, Networks and Applications (ICFCNA 2014—Malaysia), Kuala Lumpur, Malaysia, 3–5 November
2014; pp. 1–6.

11. Mamun, M.S.I.; Rathore, M.A.; Lashkari, A.H.; Stakhanova, N.; Ghorbani, A.A. Detecting malicious URLs using lexical analysis.
Netw. Syst. Secur. 2016, 9955, 467–482.

12. Draper-Gil, G.; Lashkari, A.H.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of encrypted and vpn traffic using time-related
features. In Proceedings of the 2nd international Conference on Information Systems Security and Privacy (ICISSP), Rome, Italy,
19–21 February 2016; pp. 407–414.

13. Mohanty, H.; Roudsari, A.H.; Lashkari, A.H. Robust stacking ensemble model for Darknet traffic classification under adversarial
settings. Comput. Secur. 2022, 120, 102830. [CrossRef]

14. Lashkari, A.H.; Kaur, G.; Rahali, A. DiDarknet: A contemporary approach to detect and characterize the Darknet traffic using
deep image learning. In Proceedings of the 2020 10th International Conference on Communication and Network Security, Tokyo,
Japan, 27–29 November 2020; pp. 1–13.

15. Xing, E.P. Probabilistic Graphical Models. Available online: http://www.cs.cmu.edu/~epxing/Class/10708-20/ (accessed on 1
July 2023).

16. Yu, K.; Nguyen, K.; Park, Y. Flexible and robust real-time intrusion detection systems to network dynamics. IEEE Access 2022, 10,
98959–98969. [CrossRef]

17. Shahbar, K.; Zincir-Heywood, A.N. Anon 17: Network Traffic Dataset of Anonymity Services; Dalhousie University: Halifax, NS,
Canada, 2017.

18. Montieri, A.; Ciuonzo, D.; Aceto, G.; Pescapé, A. Anonymity services tor, i2p, jondonym: Classifying in the dark. In Proceedings
of the 2017 29th International Teletraffic Congress (ITC 29), Genoa, Italy, 4–8 September 2017; Volume 1, pp. 81–89.

19. The Tor Project. Available online: https://github.com/TheTorProject (accessed on 7 January 2023).
20. Yannikos, Y.; Dang, Q.A.; Steinebach, M. Comparison of Cyber Attacks on Services in the Clearnet and Darknet. In Proceedings of

the Advances in Digital Forensics XVII: 17th IFIP WG 11.9 International Conference, Virtual Event, 1–2 February 2021; Volume 612,
pp. 39–61. ._3. [CrossRef]

21. Filiol, E.; Nicolas, J.; Delong, M. Statistical and combinatorial analysis of the TOR routing protocol: structural weaknesses
identified in the TOR network. J. Comput. Virol. Hacking Tech. 2019, 16, 3–18. [CrossRef]

22. Chang, S.Y.; Park, Y.; Kengalahalli, N.V.; Zhou, X. Query-Crafting DoS Threats Against Internet DNS. In Proceedings of the 2020
IEEE Conference on Communications and Network Security (CNS), Avignon, France, 29 June–1 July 2020; pp. 1–9. . [CrossRef]

23. Rawat, R.; Mahor, V.; Chirgaiya, S.; Shaw, R.N.; Ghosh, A. Analysis of Darknet Traffic for Criminal Activities Detection Using
TF-IDF and Light Gradient Boosted Machine Learning Algorithm. Innov. Electr. Electron. Eng. 2021, 756, 671–681._53. [CrossRef]

24. Lashkari, A.H.; Gil, G.D.; Mamun, M.S.I.; Ghorbani, A.A. Characterization of Tor traffic using time based features. In Proceedings of
the 3rd International Conference on Information Systems Security and Privacy, Porto, Portugal, 19–21 February 2017; pp. 253–262.

25. Lingyu, J.; Yang, L.; Bailing, W.; Hongri, L.; Guodong, X. A hierarchical classification approach for tor anonymous traffic. In
Proceedings of the 2017 IEEE 9th International Conference on Communication Software and Networks (ICCSN), Guangzhou,
China, 6–8 May 2017; pp. 239–243.

26. Sutton, R.; Barto, A. Temporal-difference learning. In Reinforcement Learning: An Introduction; MIT Press: Cambridge, MA, USA,
2018; Chapter 6, pp. 143–165.

27. Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A.A.; Veness, J.; Bellemare, M.G.; Graves, A.; Riedmiller, M.; Fidjeland, A.K.;
Ostrovski, G.; et al. Human-level control through deep reinforcement learning. Nature 2015, 518, 529–533. [CrossRef] [PubMed]

28. Jo, H.; Kim, K. Security service-aware reinforcement learning for efficient network service provisioning. In Proceedings of the 2022
23rd Asia-Pacific Network Operations and Management Symposium (APNOMS), Takamatsu, Japan, 28–30 September 2022; pp. 1–4.

29. Han, G.; Xiao, L.; Poor, H.V. Two-dimensional anti-jamming communication based on deep reinforcement learning. In Proceedings
of the 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), New Orleans, LA, USA, 5–9
March 2017; pp. 2087–2091.

.
http://doi.org/10.1007/978-3-642-34500-5_73
.
http://dx.doi.org/10.1007/978-3-642-40203-6_37
http://dx.doi.org/10.1016/j.cose.2022.102830
http://www.cs.cmu.edu/~epxing/Class/10708-20/
http://dx.doi.org/10.1109/ACCESS.2022.3199375
https://github.com/TheTorProject
.
http://dx.doi.org/10.1007/978-3-030-88381-2_3
http://dx.doi.org/10.1007/s11416-019-00334-x
.
http://dx.doi.org/10.1109/CNS48642.2020.9162166
http://dx.doi.org/10.1007/978-981-16-0749-3_53
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670


Sensors 2024, 24, 2295 22 of 22

30. Sutton, R.; Barto, A. Dynamic programming. In Reinforcement Learning: An Introduction; The MIT Press: Cambridge, MA, USA,
2018; Chapter 4, pp. 89–111.

31. scikit-learn: Machine Learning in Python. Available online: https://scikit-learn.org/stable/ (accessed on 7 January 2023).

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://scikit-learn.org/stable/

	Introduction
	Related Work
	Overview of the Tor Protocol and Darknet Protocol
	The Tor Network
	The Darknet Protocol
	Features of Darknet and Tor Protocol

	Detecting Tor Traffic by Supervised Learning
	Reinforcement Learning
	Value-Based Learning
	Applications in the Network Environment


	Methodology
	Network Environment
	Pattern Information Processing
	Flow Pattern Visualization

	MDP Environment Descriptions
	Threshold Setting
	System Diagram
	Detection Algorithm

	Experiment
	Dataset Processing
	Raw Dataset
	Cleaning and Preprocessing
	Label Encoding

	Action Space Construction
	Determining the Number of Actions
	Determining the Number of Features Selected by Each Action
	Determining the Specific Features Selected by Each Action

	Feature Selection Process
	Reward Function Experimentation
	Threshold Probing
	Adjusting Threshold Values
	Adjusting the Action Sequence

	Model Deployment and Testing
	System Performance Comparisons

	Conclusions
	References

