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Abstract: The perception of sound greatly impacts users’ emotional states, expectations, affective
relationships with products, and purchase decisions. Consequently, assessing the perceived quality
of sounds through jury testing is crucial in product design. However, the subjective nature of
jurors’ responses may limit the accuracy and reliability of jury test outcomes. This research explores
the utility of facial expression analysis in jury testing to enhance response reliability and mitigate
subjectivity. Some quantitative indicators allow the research hypothesis to be validated, such as the
correlation between jurors’ emotional responses and valence values, the accuracy of jury tests, and
the disparities between jurors’ questionnaire responses and the emotions measured by FER (facial
expression recognition). Specifically, analysis of attention levels during different statuses reveals a
discernible decrease in attention levels, with 70 percent of jurors exhibiting reduced attention levels
in the ‘distracted’ state and 62 percent in the ‘heavy-eyed’ state. On the other hand, regression
analysis shows that the correlation between jurors’ valence and their choices in the jury test increases
when considering the data where the jurors are attentive. The correlation highlights the potential of
facial expression analysis as a reliable tool for assessing juror engagement. The findings suggest that
integrating facial expression recognition can enhance the accuracy of jury testing in product design
by providing a more dependable assessment of user responses and deeper insights into participants’
reactions to auditory stimuli.

Keywords: affective computing; attention recognition; deep learning; facial expression recognition;
jury testing

1. Introduction

The auditory experience of a product is not just ‘a sensory response to an acoustical
stimulus.’ Users attribute characteristics, such as trustworthiness or a high-quality standard,
to products based on their sound production. The sounds of a product influence the users’
reasoning, their emotional state, the affective relationship they have with the product, their
purchase decisions, their preferences, and even their expectations regarding the product
and its performance. This is because product noise is a significant factor that contributes
to brand perceptions and ultimately affects customers’ decision-making [1,2]. Therefore,
customers are not only focused on a product’s functional specifications but also demand
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increasingly high-quality sound. The significance of sound in product design is evident in
a wide range of designed artifacts, such as car interiors and engines, household appliances,
and even architectural spaces [1].

In developing new products, understanding the perceived quality of sounds requires
considerable testing. This experimental activity is known as ‘sound quality jury testing’
(or simply ‘jury testing’). Jury tests involve asking individuals questions about the sound
quality of the products, and directly engaging with individuals who assume the role of
jurors. The goal of jury testing is to understand how a group of users perceive the sounds
and rate the sound quality in order to use the rating as feedback for future modifications
of the investigated products. Typically, the sounds used in the tests are recordings of a
product’s sound under different operating conditions or the sounds of different products in
the same operating conditions. By selecting a statistically representative group of potential
future customers of the product and asking them a series of questions after each sound
or group of sounds, the tests establish a clear relationship between sound and perceived
product quality [3–6].

The questions can be anything related to the sound quality and how humans perceive
the sounds, such as how annoying or pleasant the sounds are, and which one is more related
to a luxurious or robust product. The questions’ formulation depends on the test’s purpose.
The answers to the questions are subjective, so every answer is considered accepted. In
other words, the answers are the jurors’ opinions about the sound qualities, and there is no
correct or incorrect answer. Afterward, it is up to the test moderator to take some average
out of the answers, extract the answers from most jurors, and consider a rating of the sound
qualities [7–9].

The accuracy and reliability of the jury tests’ results are indispensable. It is crucial
in all products where sounds, such as car design, play a central role in users’ safety. For
instance, in the automotive industry, jury tests gained much attention in designing electric
vehicle engine sounds to alert pedestrians or to keep the driver’s attention high. This topic
has received high interest in the scientific acoustics community to verify the objectiveness
of subjective jury outputs. It is thus evident that a challenging issue in jury tests is to make
the measurement as reliable, repeatable, and objective as possible and limit the subjective
intervention of the moderator and jurors [10,11]. In this sense, Kim et al. employed a
decision error model to improve the reliability of acoustic subjective evaluation in jury tests,
particularly in the case of laser printers. They demonstrated that the chance of decision error
is negatively correlated with the normalized variations between the perceived acoustic
stimuli. They found that the suggested decision error model will help determine and
enhance the reliability of jurors’ answers [12]. This research work, however, is placed in a
different reference context concerning the one proposed, focusing on the decision errors
resulting from acoustic factors.

The present study aims to investigate the possibility of using facial expression evalua-
tion to ensure the reliability of jurors’ responses about the actual involvement expressed
during the test. The research hypothesis is that incorporating expression recognition re-
duces the subjectivity of jurors’ responses and even the moderator’s intervention. The
context of the research is automotive. More specifically, the target of the jury test is car
interior noise. Facial expression recognition methods can reduce bias in jury tests since
facial expressions are largely unconscious and involuntary. Therefore, facial expression
recognition methods can help to measure the jurors’ emotional responses more objectively
than self-reported ratings or evaluations, thus making it possible to reduce the statistical
sample of jurors typically used in jury tests. Furthermore, it is essential to consider the
context in which the answers are provided. In ref. [13], Özcan and Schifferstein argue that
more positive affective evaluation could be facilitated either by improved sound quality
(e.g., less loud or less rough) or by associations to positively laden meanings, and they
provide an example of a coffee machine. The sound of the Nespresso machine could be
influenced by the positive associations that the brand has created through its advertising
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campaigns. Therefore, the influence of the context and the participants’ expectations on
their responses must be considered.

The researchers in [14] studied the complexities of identifying sounds that evoke
positive reactions from customers, aiming to bridge the gap between subjective experiences
and objective engineering metrics. These advancements not only facilitate a deeper under-
standing of auditory preferences but also highlight the significance of integrating real-life
elements into sound evaluation for vehicles.

On the other hand, the researchers in [15] proposed a novel deep learning methodology
to evaluate the interior noise in vehicles on mechanical and affective levels by employing
small data sets to find a solution to challenges such as data scarcity, which adversely
affects the performance of neural networks in predicting sound quality metrics, and the
interpretation of the results. Understanding how neural networks make predictions and
identifying the most influential input features for sound quality prediction is crucial for
model transparency and decision-making.

However, some aspects, such as using a large and diverse sample of jurors which is
representative of the customer base for the product, ensuring the testing environment is
standardized and free of extraneous influences [16], and use of appropriate measures and
evaluation criteria [17], can increase the objectivity of jury testing. One such set of measures
consists of concordance and consistency. Concordance is the degree of agreement among
different jurors’ responses to the same stimulus [18]. Consistency refers to the degree of
agreement of a juror’s responses across different stimuli or evaluation sessions. It can be
assessed through test–retest reliability analysis, which compares a juror’s responses to the
same stimuli at different points in time [19]. Assessing these measures can identify sources
of variability in jurors’ responses and control for these factors in the analysis, which can
increase the reliability and validity of the results.

The investigation conducted so far has raised the main research question: is there
another set of measures and objective evaluation criteria that could be used to improve the
jury tests’ reliability and reduce the subjectivity of jurors’ responses?

1.1. Correlation between Sound and Emotions

Hu et al. studied the effects of exposing participants to different sounds on the
participants’ facial expressions. They applied a deep learning approach to facial expres-
sion analysis to detect emotions accurately. Then, they compared the facial expression
recognition results with the score given by participants through a questionnaire, and the
comparison results showed a surprisingly good agreement. In some cases, they even
found that the result of facial expression analysis worked better than the questionnaire [20].
Contrarily, Huang et al. generated facial expressions corresponding to the noise annoyance
threshold [21]. They made a face-to-face social survey of 7483 participants in a city in
China to provide a broad measure of noise perception by questionnaire and noise level
measurement by noise analyser. Then, by free-form deformation technique, the facial
expression was created according to the annoyance level calculated by the survey. Meng
et al. studied the effects of sound perception in the urban environment on facial expressions.
The participants were exposed to three typical urban sounds, namely, traffic noise, natural
sound, and community sound. A questionnaire on the evaluation of sound perception was
used to compare with the facial expression results. The results show that facial expression
recognition is an effective tool for sound perception research. They found happy, sad, and
surprised emotions to indicate the response to acoustic stimuli [22]. Park et al. studied
the effect of different soundscape stimuli on psychophysiological well-being, i.e., heart
rate, electrodermal activity, respiratory rate, and facial electromyography. Laboratory
experiments were performed in virtual reality (VR) and non-VR conditions. The result
showed that the rural setting helps to get superior psychophysiological recovery than the
urban setting. The differences between VR and non-VR conditions were insignificant in
psychophysiological recovery. However, VR conditions impacted some of the physiological
responses [23].
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Ozseven investigated emotion recognition by speech spectrogram image processing.
They estimated the spectrogram for different speeches and detected emotions using texture
analysis methods. Then, they studied the success rate experimentally by support vector
machines. The result showed a better success rate than emotion recognition using only
speech acoustic analysis [24]. Mauri et al. used the Implicit Association Test (IAT) and
emotional facial expression analysis to evaluate user experience (UX) in website naviga-
tion. Focusing on two automotive brand websites, the research involved about 160 Italian
university students who participated in a modified IAT and a website interaction task,
with their emotional responses recorded. The results demonstrated the efficacy of these
neuromarketing methods in UX assessment, indicating significant changes in user percep-
tions and emotions before and after website engagement [25]. Liu et al. used the software
programme FaceReader to study the emotions stimulated in older people with dementia
while listening to different sounds. They affirmed that FaceReader can correspondingly
recognise different emotions changing related to different sound stimuli. They found music
to be the most effective sound that can induce much more emotion than other sounds, i.e.,
birdsong and streams [26]. Busso et al. explored the interrelation between facial gestures
and speech, highlighting that this relationship varies with the linguistic and emotional
content of the message. Using an audiovisual database of an actress, they showed that
facial and acoustic features are highly correlated, but differ across expressive emotional
states (neutral, sadness, happiness, anger). A multilevel regression model is applied to
estimate facial features from speech acoustic properties, revealing that the correlation
between communicative channels is significantly influenced by emotional content [27].

1.2. Valence and Engagement Indicators

Literature reports several studies assessing user valence and engagement associated
with listening to a soundtrack and suggesting evaluating products’ pleasantness and
semantic associations, starting from [28]. Any sensory property of a product (e.g., auditory
loudness, shape, flavor of food) can modulate affective experiences, with pleasantness
and arousal being two key factors. For example, sharp sounds enhance the crispness
of potato crisps and make them more enjoyable [29], whereas the rough sound of an
epilator scares people. The researchers in [30] state that the perceived loudness of a sound
primarily determines auditory (un)pleasantness, whereas the perceived sharpness of the
sound mainly determines arousal. The pleasantness of noise can also be modulated by
introducing highly pleasant sounds [31]. Thus, studying the pleasantness and arousal of
products in jury testing is crucial, mainly to determine if these measures can be used to
separate the context of the test from jurors’ prior knowledge and also to understand when
jurors are losing focus during the test.

Russel and Mehrabian’s PAD model (pleasure, arousal, dominance) [28] explains how
affection is physically experienced and bodily expressed and how people verbally com-
municate the affective attributes of objects, events, and people. Pleasure is defined in the
PAD model as an indicator of how pleased a person feels and refers to a positive/negative
assessment (i.e., valence or hedonic tone) of a feeling caused by a person’s current condition.
Arousal indicates how intense the experienced feeling is and how this feeling stimulates a
person and refers to the extent of being active in and responsive to a situation. Ref. [30]
explains how pleasantness and arousal are related to sound.

Ref. [32] studied how facial expression analysis can be used to understand a person’s
emotional response by employing an engagement and valence model, where valence is the
intrinsic attractiveness (positive) or averseness (negative) of a situation expressed by the
person and is associated with the emotion being expressed [33]. Engagement is a weighted
average of the discrete set of emotions (anger, disgust, fear, happiness, sadness, surprise)
identified by Ekman. It indicates the active involvement of a person in the situation. Thus,
valence corresponds to pleasure in the PAD model, and engagement corresponds to arousal.

These results suggest that studying the emotional connection in user-product inter-
action is important and that valence and engagement are two of its main components.



Sensors 2024, 24, 2298 5 of 24

Those two metrics can be studied via observational methods such as facial expression
recognition [32].

1.3. Technologies for Valence and Engagement Evaluation

For a long time, the scientific community has studied the possibilities of giving an
objective and quantifiable representation of a person’s level of involvement, especially
analysing his/her emotional factors. Likewise, methods that classify and objectively cate-
gorise human emotions based on external signals, such as facial expressions, voice, and
physiological signals, that people use consciously or unconsciously to express their emo-
tions have been investigated. Among the best-known of these researchers, we undoubtedly
have Paul Ekman, who in 1971 theorised the presence of a discrete set of distinct emo-
tions: anger, disgust, fear, happiness, sadness, surprise, and their corresponding universal
facial expressions (hence the attribution of the name ‘Ekman’s Universal Facial Expres-
sion’), expressed in the same way all over the world, beyond a human being’s ethnicity or
geographical origin [34].

Research studies have suggested that analysing facial expressions could be a valuable
tool in evaluating the emotional impact of sounds on people, even outside the context of
jury testing [35].

Facial expression analysis aims to recognise patterns of facial expressions and link them
to emotions based on a specific theoretical model. The most widely used theoretical model
is the face action coding system model (FACS) [36], which allows for the identification
of six universal emotions (i.e., joy, surprise, sadness, anger, fear, and disgust) by tracking
the movements of the face muscles. Consequently, it is unsurprising that most algorithms
developed so far allow only these emotions to be recognised.

These technologies were successfully employed in the computation of valence and
engagement in [32] to evaluate metrics for satisfaction and productivity during usability
tests for web platforms.

Up to now, most of the available facial expression recognition (FER) systems make use
of deep neural networks [37], particularly convolutional neural networks (CNN), as in [38],
which take images of human faces as input and provide a prediction of the relevant Ekman
main emotions (i.e., happiness, surprise, sadness, anger, disgust, and fear) [39].

The system discussed in [40] integrated convolutional neural networks (CNNs) and
support vector machines (SVMs) to perform emotion classification and attention detection.
The CNN was used for facial landmark-based emotion classification, while pretrained
SVM models classified faces into emotion categories and attention levels based on the
calculated landmarks.

The toolkit discussed in [41] offers several key features for automatic analysis of
human behavior in HCI applications in the wild. However, some limitations of this
tool include the need for high-quality images for accurate facial expression recognition,
potential challenges in system calibrations for gaze tracking accuracy, and the reliance on
deep learning algorithms which may require significant computational resources.

Specifically, the research challenges in the field of face reader technology and emotional
metrics can be broadly categorized into technical and methodological challenges.

Firstly, the accuracy and reliability of facial expression recognition (FER) systems are
hindered by various factors such as illumination conditions and occlusions of face parts.
To combat these limitations, employing multiple observation channels and improving
illumination conditions are suggested [42]. Secondly, context interpretation is another
important aspect of understanding human emotions, and this can be a difficult task to
accomplish for artificial intelligence-based systems [43]. Recognizing micro-expressions,
which are brief and often involuntary facial movements, presents a significant challenge as
they require precise motion tracking and recognition algorithms [44,45]. Micro-expressions
can also constitute a genuine preamble to certain actions [46]. For instance, they can appear
during an interrogation indicating tense areas inside the psyche or they can be visible in
stressful situations. Thirdly, cultural and individual variability further complicate emotion
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recognition, as highlighted by studies emphasizing the profound differences in emotion
recognition across diverse populations [47–49]. The variability in how individuals express
emotions underscores the complexity of interpreting facial expressions accurately and
necessitates personalized approaches in emotion recognition systems.

Moreover, alternative approaches to emotion recognition involve analyzing electroen-
cephalography signals (EEG) with machine learning models. While these methods yield
competitive accuracy, a significant challenge lies in dataset creation due to constraints
associated with EEG recorders and human resources [50–52].

Methodological challenges involve the use of non-invasive measurement tools for
real-life acquisitions. It is known that the best way to recognise human emotions in real-
life environments is to process video and images captured by a camera without invasive
technologies such as wearable devices (e.g., helmets, bracelets) or distributed sensors.
In fact, despite being generally more accurate, the use of biofeedback tools, e.g., elec-
trocardiography (ECG) and galvanic skin response (GSR), are not suitable for real-life
acquisitions [53,54]. These reasons have led the scientific community to improve the ac-
curacy of non-invasive emotion recognition systems based on speech analysis and facial
coding in recent years. Among the various studies that have gone in this direction, [55]
introduces a robust multi-depth network for accurately recognizing facial expressions by
leveraging a multi-depth network and a multirate-based 3D CNN, demonstrating its effi-
cacy in understanding human emotions through facial expressions, while ref. [56] utilizes
self-supervised learning models, including universal speech representations with speaker-
aware pre-training, to evaluate different model sizes across sentiment and emotion tasks.

In exploring advancements in facial expression recognition (FER), the work of [57]
presents a notable development through a hierarchical attention network. Their approach
innovates by employing an attention mechanism that not only enhances expression-relevant
information but also suppresses extraneous data. Their method aggregates diverse features
through specialized feature aggregation blocks, leveraging both local and global context.
Furthermore, a hierarchical attention module (HAM) systematically enhances discrimina-
tive features while filtering out irrelevant facial features. Their experiments showcase that
this methodology outperforms existing FER systems, setting a new benchmark for the field.

Among the various emotion recognition methods, those based on speech analysis or
facial expressions are the least invasive. However, the effectiveness of systems based only
on speech-emotion recognition still needs to improve compared to systems based on facial
expression recognition [58].

In addressing the challenge of attention recognition, facial emotion detection has been
employed to forecast human attention allocation within visual saliency prediction scenarios,
yielding favorable outcomes [59,60]. The current attention recognition systems, which are
crucial for ensuring the reliability of emotional data, incorporate fuzzy logic to capture the
nuances of a user’s attention level [61].

Another challenge is dataset specificity. The system described in [62] leverages innova-
tive CNN models trained on merged datasets to improve accuracy in recognizing Ekman’s
universal emotions from human faces captured in real-world scenarios. The tool combines
lab-generated datasets with ‘in the wild’ datasets to create a more robust model capable of
handling diverse environments. However, some limitations of this tool include accurately
labeling datasets collected from the web, which may impact the model’s performance in
recognizing emotions from images with inaccurate labels.

Developing accurate and reliable emotion recognition systems is a challenging process.
Furthermore, in the case of jury tests, emotion recognition appears even more difficult.
One of its challenges relates to the monotony of the test itself and the little attention
jurors might end up placing during test execution if they are not totally committed to the
test. Usually, jury testing is performed for a specific product, so related sounds are often
alike and monotonous. It is challenging for jurors to decide how to answer the questions
because they generally find discriminating among them difficult. Commitment and focus
capabilities of the jurors are therefore key elements to a successful jury test; otherwise, the
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test itself can be biased and unreliable, as noted in [30]. Often, the subject can only realise
the actual level of liking of sounds if they specifically arouse certain well-marked feelings
related to the person’s memories or preferences (e.g., the roar of a sports car engine for a
luxury car enthusiast).

The use of FER technologies, coupled with other physiological measures if available,
can help provide more objective data on jurors’ emotional and cognitive responses to the
products or sounds in the case of jury tests being evaluated.

1.4. Research Aim

In the landscape of emotional response analysis to sound stimuli, significant strides
have been made, particularly through the employment of facial expression recognition
(FER) systems. Despite these advancements, a comprehensive review of the literature re-
veals several critical gaps in the application and scope of existing studies. These deficiencies
are outlined as follows:

1. Lack of application in jury testing: Previous research has extensively explored the
utilization of FER systems in various contexts but conspicuously lacks application
within the framework of jury testing. The innovative use of FER systems to gauge
emotional responses in a jury testing scenario remains unexplored, representing a
significant gap in the current body of knowledge.

2. Overlooking vehicle sound quality assessment: Another notable omission is the
application of FER systems in the assessment of vehicle sound quality. Given the im-
portance of sound quality in the automotive industry, especially concerning customer
satisfaction and perception, the absence of studies leveraging FER technology for this
purpose indicates a missed opportunity for a more nuanced analysis.

3. Neglecting juror involvement levels: The current literature does not adequately ad-
dress the potential impact of juror involvement levels on the outcomes of jury testing.
Understanding and quantifying the level of emotional engagement or detachment
of jurors can provide deeper insights into the reliability and validity of jury testing
results, yet this aspect remains under-investigated.

4. Failure to identify unfocused jurors: Equally important is the identification of jurors
who may not be fully concentrating during the testing process. The capability of FER
systems to detect subtle facial expressions indicative of distraction or lack of engage-
ment has not been utilized in the context of jury testing. This oversight undermines
the accuracy and efficacy of the results, as unfocused jurors can significantly skew
the data.

By addressing these gaps, this study significantly advances the field, offering more
robust and nuanced insights into people’s emotional responses to sound stimuli in jury
testing. Implementing FER systems in these unexplored areas could not only enhance the
methodological approach to jury testing and vehicle sound quality assessment but also
ensure more reliable and valid outcomes by considering juror involvement and focus levels.

Building upon the understanding that jurors’ facial expressions can illuminate their
levels of involvement and concentration, this approach offers a subtle method to enhance
the accuracy of jury testing outcomes by employing facial expression recognition (FER)
technology throughout the jury test, so that it becomes possible to monitor and predict
jurors’ engagement in real-time. This is valuable in the jury testing process, as the level
of juror involvement directly impacts the reliability of test results. Identifying moments
of reduced concentration allows for the segregation of data into more and less reliable
categories based on the jurors’ engagement levels. Consequently, this method leads to the
possibility of filtering jury test data, ensuring that conclusions drawn are grounded in the
portions of the test where jurors’ attention was most acute. Recognizing and adjusting
for fluctuations in jurors’ focus not only refines the validity of the testing process but also
offers insights into optimizing test design to maintain or regain juror engagement. This
approach underscores the importance of integrating advanced technologies like FER into
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jury testing frameworks to capture the depth and variability of human responses, leading
to more dependable and insightful outcomes.

The present research aims to enhance the current jury testing methodology by in-
troducing a new facial expression analysis component that leverages the calculation of
metrics, such as attention, valence, and engagement, to recognise which responses are
reliable and consistent during jury testing sessions. The goal is to introduce objectivity
to the responses and to establish a method to support sound quality evaluation that is
replicable and easily applicable by adding a FER system. The effective potential of using
automatic facial expression recognition systems to evaluate the level of user involvement
during jury tests has yet to be investigated, and so have the correlations between the
feedback’s reliability and the participants’ attention. This research adopts a case study
where valence and engagement have been used as objective parameters to evaluate sound
quality and investigate their role in jury test reliability assessment. The facial recognition
system allows both to be measured. Attention is also taken into consideration during the
computation of valence and engagement to investigate the correlations with participants’
answers’ reliability and provide an objective measure of it. A further purpose emerged
during the investigation regarding the support that these tools can provide to analysts in
understanding the reliability of subjective sound quality outcomes during jury tests.

Analysis and discussion of the results allow the research to highlight the limitations
found by the application and the potential and future developments for sound design.

2. Materials

The application of deep learning-based software and models trained for facial ex-
pression recognition are among the most promising methodologies to evaluate valence
and engagement parameters [32,63]. In recent years, the study of facial expressions has
garnered significant attention across various research domains, signaling a paradigm shift
in the methods used for understanding and interpreting human emotions. Traditionally,
the evaluation of emotional states relied heavily on verbal cues and self-reported measures,
which, while valuable, present limitations in terms of accuracy and objectivity [64]. The
wide spreading of machine learning (ML) technologies has ushered in a new era where
automated systems are increasingly taking the forefront in analysing facial expressions,
offering a more nuanced and precise window into human affect [65].

The analysis of facial parameters provides an objective method of assessing the level
of appreciation expressed by users [66], where techniques requiring direct feedback to users
introduce considerable subjectivity and bias. Therefore, for this research, two software
programs based on deep learning and computer vision models are proposed to extrapolate
indicators of the parameters of valence and engagement that are manifested by the users
during the auditory stimulation in the case study.

2.1. A Facial Expression Recognition Tool for Valence and Engagement Evaluation

A tool based on a CNN implemented in Python using the Keras and TensorFlow
frameworks has been adopted for this particular research [62]. The current task of this
network is to recognise Ekman’s six universal emotions (i.e., happiness, surprise, sadness,
anger, fear, and disgust) from images of faces as input and output a percentage probability
for each emotion. As described in [37], two types of datasets are generally used to train
deep neural networks for facial expression recognition: datasets created in a laboratory
with high accuracy and datasets collected ‘in the wild’ with lower accuracy. The CNN
developed for the expression recognition software aims to combine the strengths of both
datasets to create a new merged dataset. The public datasets CK+ [67], FER+ [68], and
AffectNet [69] were used for this purpose as references, pre-processed to have consistent
characteristics for all photos in the new dataset, and cleaned of any photos not suitable
for training.

In the last layer of the proposed CNN, a softmax function returns Ekman’s emotion
scores, predicted from every camera video frame, normalised to a percentage value of
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100. Following the method derived from Russel’s classification of Ekman’s emotion in his
valence/arousal (Circumplex) model [33], and tested in [32], valence and engagement are
calculated from the percentages predicted for each Ekman’s emotion. As a result, valence
ranges from −100 to 100, indicating the total positivity or negativity expressed by the
participants, while engagement ranges from 0 to 100, giving a measure of how far the
expressiveness of the face deviates from neutrality.

Valence and engagement are determined using Formulas (1) and (2):

Valence = Happiness(%) − Sadness(%) − Anger(%) − Fear(%)− Disgust(%). (1)

Engagement = Happiness(%) + Surprise(%) + Anger(%) + Fear(%) − Sadness(%). (2)

2.2. A Proposed Attention Recognition Tool to Improve Jury Test Reliability

The study exploits the facial expression recognition system and software capable
of detecting whether the user is attentive or not during the test, using a combination
of parameters that concern the level of rotation of the head to the camera mounted on
top of the screen, the direction of gaze and percentage of eyelid opening to improve the
reliability of the valence and engagement evaluation. The assumption is that where the
juror has shown to be inattentive, the emotional data extrapolated from the facial expression
recognition CNN for that particular instant could be less reliable than the others, mainly
because the emotion resulting from the facial expressions could be driven by events or
memories not relevant to the current test.

The third-party library Dlib has been used to retrieve a mapping of the user’s facial
characteristics and, hence, to evaluate the attention level. Figure 1 shows the map of the 68
landmarks detected through the Dlib face landmark predictor model.
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In particular, the distances between five pairs of points (i.e., 2–31, 16–31, 28–31, 37–40,
43–46) were considered to estimate the head orientation to the screen (Figure 1). Based on
the usual symmetric characteristic of a face, such distances should remain constant between
the left and right sides. Consequently, the division ratio between the distances constructed
in the left part of the face and those in the right part should remain in the neighbourhood
of 1. Following this approach, an estimate of the head rotation values defined as yaw and
pitch values was provided, i.e., movement around the vertical and horizontal axes to a
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hypothetical position in front of the camera. Yaw was estimated as the absolute value ratio
between distances A and B. At the same time, pitch was the ratio between distance D (or
distance E if D cannot be obtained) and distance C in absolute value. The thresholds for
determining whether yaw and pitch values indicate a lack of attention were determined
empirically from a sample of 54 users with monitors in different configurations (different
camera positions and different sizes), by assessing the yaw and pitch values at which users
turned their faces to the screen. Used thresholds are defined in Algorithm 1:

Algorithm 1

1. Result: Face attention binary value, ear value
2. Inputs: Facial landmarks X-Y coordinates
3. horizontal_left_distance = Euclidean distance between landmarks 2 and 31
4. horizontal_right_distance = Euclidean distance between landmarks 31 and 16
5. yaw = absolute value of the division between horizontal_left_distance and
horizontal_right_distance
6. If yaw is greater than 1, then yaw = the reciprocal of yaw
7. yaw_attention_threshold = 0.4
8. If yaw is less than yaw_attention_threshold, face_attention = 0, otherwise face_attention = 1
9. horizontal_distance_pitch = Euclidean distance between landmarks 28 and 31
10. vertical_distance_pitch = Euclidean distance between landmarks 37 and 40 (if not null) or 43
and 46
11. pitch = absolute value of the division between horizontal_distance_pitch and
vertical_distance_pitch
12. pitch_attention_threshold = 5
13. If pitch is less than pitch_attention_threshold, face_attention = 1, otherwise face_attention = 0
14. ear_attention_threshold = 0.10
15. If ear is less than ear_attention_threshold AND pitch is greater than pitch_attention_threshold,
face_attention = 0

Moreover, the study adds further control to prevent users from looking downward
during the jury test.

For this reason, a measure called eye aspect ratio (EAR) is considered and computed
according to the method to detect eye blinking proposed in [71]. Although this method
was proposed to detect eye closure, it has also been considered helpful for detecting
users’ frontal head tilting. A significant decrease in the value of this ratio was empirically
observed during the test phase in people looking downwards and away from the camera. To
avoid false positives derived from the analysis of camera frames recorded while the user is
blinking, this feature was combined with pitch evaluation. The user is considered distracted
if both the EAR and Pitch are under certain thresholds, defined as indicated above.

The attention tool integrates a gaze tracker [41] to predict the direction the user is
looking. The gaze detection is performed by a CNN whose architecture is similar to the
one proposed in [72]. The CNN for gaze tracking was implemented and trained using the
Python programming language, running Keras API upon TensorFlow library support and
with GPU acceleration.

To predict the gaze position on the screen, the CNN needs the face image (sized
224 × 224), and the two eyes images (sized 224 × 224) cropped using the Dlib [70] frontal
face detector and 68 landmarks predictor, respectively, and also a 1 × 4 face grid vector,
expressing the portion of the entire image occupied by the face. The output is a two-
dimensional vector containing the X and Y coordinates of the estimated display point
(in centimeters), referring to the top left corner as the origin of the axes. This CNN has
been tested for a web-based HCI analysis tool (version 1.1) [32]. In this study, the network
predictions are only used in relation to empirically defined thresholds to assess whether
the user is maintaining a direction toward the monitor or not. The poor accuracy shown by
the model in deriving the Y-axis gaze coordinates was not considered influential for this
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case study, as only the X-axis gaze direction was taken into account. This information is
then added to the previous algorithm:

1. Result: Attention binary value
2. Inputs: Face attention value, gaze x-y coordinates
3. If gaze_x_coordinate <25 and gaze_x_coordinate > 1 and face_attention = 1 than

attention = 1

The attention level values could be used to filter the data, providing evidence that the
tester is not paying attention in the corresponding frame, avoiding analysing emotional
data probably elicited by events, distractions, or thoughts not related to the current test.

The system was tested on 20 participants, comparing the real and predicted coordinates.

3. Methods

The experiment was conducted at the Polytechnic University of Marche, involving
40 participants, predominantly students and university employees across various age
groups, with an almost one-to-one male–female proportion (21 females, 19 males). The
average age of the participants was 28 years (SD 6). During the test, a webcam, mounted
on the top of the monitor, recorded every face without affecting the perception of different
auditory stimuli. The following tools were used: the Windows Camera app to store the
video stream taken by a Logitech HD C925E webcam connected to a PC with a recording
frequency of 30 Hz at 1080 p, a software developed in Matlab for the management of the
audio stimuli and for times synchronisation with the recording software, and finally, the
software developed in Python v3.7 described in paragraph 3 to analyse the recorded videos.
Analysis of the recorded videos involved processing 14 frames per second with the Python
algorithm, yielding probabilities for each of Ekman’s expressions for each frame. The data,
including probability percentages, timestamp, and attention values (Boolean true/false
values) were finally stored in CSV format. A desktop PC with Intel i9 10900 CPU, Nvidia
Quadro P2200 video card, and 128 GB of RAM was adopted for the image processing
step. An environment designed to capture the jurors’ attention and focus on the content
presented on the display has been prepared for this test. In particular, it was carefully
designed to ensure participants’ attention and focus, with a dimly lit setting, reduced
ambient noise through headphones, and an enclosed space free from external stimuli or
sources of distraction. To maximise the immersiveness of the subject, a 49-inch Samsung
Odyssey G9 curved screen was used to display a graphic interface developed in Matlab for
the simulation of a driving scenario. Participants, upon arrival, were familiarized to the
testing environment and provided clear instructions regarding the test protocols and their
roles. This also included reading and signing an informed consent form, ensuring that all
participants were well informed, willing to partake in the experiment voluntarily, and fully
aware of what they agreed to, including potential risks and benefits. Figure 2 depicts the
test environment.

The experiment aimed to determine whether a facial expression recognition tool can be
used in the context of a jury test to enhance the reliability of the test. The jury test performed
was designed according to an AB comparison approach augmented by AB–BA repetition
and was intended to analyse the jurors’ reaction to seven different interior car noises, a
technique already implemented in [19]. The sounds utilised in this study encompass those
emitted by two different diesel engines operating in stationary mode, a sports racing car
during a race, an electric vehicle in run-up operation, and three standard petrol vehicles
in motion on roads. Even though this can be considered less demanding from an acoustic
jury test point of view, given the marked differences in the noises involved, the validity of
the test still holds. Moreover, the final goal was more related to understanding whether
the FER approach can be used to increase the accuracy associated with a standard jury test
rather than performing a selection of sounds based on a subjective jury test.
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All seven sounds were systematically compared and repeated against each other,
resulting in a comprehensive test sequence consisting of 42 sound pair comparisons. The
sounds were taken from different car engines, some of which were chosen to elicit responses
on an expressive level (in particular with old engines’ annoying noises). Two primary
questions guided the sound comparison: ‘Which sound is more annoying?’ and ‘Which
one appears to be from a higher-quality car?’. The participants were asked to answer both
questions after each pairwise comparison. This approach allows the study to uncover
insightful data regarding the subjective acoustic quality of different car interiors. A primary
trial part was incorporated at the beginning of the test to familiarise the jurors with the test
mechanics and expectations. This trial segment comprised only one sequence, including
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a single sound pair comparison. This initial step aimed to introduce the jurors to the test
environment and process, ensuring they clearly understood the test itself. Including this
preliminary trial sequence was crucial in promoting a smooth transition for jurors into the
primary test.

Furthermore, to ensure a seamless and focused interaction with the experiment, jurors
engaged with a user-friendly interface developed in Matlab. The interface application was
developed using the Matlab App Designer platform to facilitate the jurors’ experimenting,
offering graphical instructions and an interactive platform. The user interface design was
explicitly crafted to enhance the jurors’ comfort and concentration during the experiment.
Jurors were advised to maintain a relaxed demeanour, minimising extraneous movements,
and focus on the acoustic test. During the experiment, the app automated the presentation
of sound pairs, termed A and B, to the jurors (Figure 3). The app managed and collected
the jurors’ responses to comparison questions with an external Bluetooth mini keyboard.
The decision to use this device stemmed from its convenience advantages. Jurors could
easily hold the keyboard in their hands, allowing for a more natural and relaxed posture
during the experiment. This setup minimised eye or hand movements, enabling jurors to
focus intently on the sounds and respond effortlessly by pressing the keyboard buttons
corresponding to their choices. Preventing eye and head movements strengthens the
accuracy of facial expression analysis, which could be spoiled by fast movements.

After the jurors finished the test, they were directed to a questionnaire accessed via a
QR code. This questionnaire was designed to understand when the jurors were actually
focused and involved during the experiment. It served as a tool for them to reflect and
provide feedback about the test.

The questionnaire contained questions about demographic information and specific
questions addressing participants’ attention. The jurors were asked for some information
regarding their state of mindfulness at the beginning of the test, during the test, and at the
end of the test. In particular, the jurors were asked to express their concentration levels
during the different test stages. The responses to these questions could be selected on a
scale ranging from ‘fully focused’ to ‘feeling mentally fatigued’, adding further insight into
participants’ awareness and focus during the experiment. The provided scale included the
following options:

• Fully focused
• Actively involved
• Partially focused
• Distracted
• Feeling bored
• Heavy-eyed
• Feeling mentally fatigued.

4. Results

The data analysis process comprised several steps, as shown in Figure 4: following
the jurors’ participation in the test via the AB comparison approach, an analysis of their
responses to the questionnaires was conducted. Subsequently, a correlation analysis be-
tween the time series data of valence and the jurors’ responses to the AB comparisons was
performed, taking into account attention data from the facial recognition tool to distinguish
between objective responses to the jury test.

The analysis of the questionnaires answered by the jurors was used to enhance our
understanding of the jurors’ cognitive state throughout the experiment and, at the same
time, to obtain feedback about the reliability of the results reported by the attention recog-
nition tool. These results, depicted in Figure 5, revealed a trend in jurors’ concentration
levels throughout the test. Initially, jurors mainly reported being ‘fully focused’ or ‘actively
involved.’ However, as the test progressed, a shift was observed, with jurors indicating
lower concentration levels, feeling ‘partially focused’ or ‘bored’. Especially after the middle
of the test, towards the end, jurors predominantly expressed feelings of being ‘heavy-eyed’
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and ‘mentally fatigued,’ meaning a decreased overall alertness and focus. This trend sug-
gests that jurors started the test with a high level of freshness and active involvement but
experienced a gradual decline in concentration, attributed partly to the lengthy duration of
the test. The analysis of the questionnaires is complemented by the concurrent analysis
of attention time series data. This dual approach yielded similar results, confirming that
jurors exhibited reduced attentiveness toward the end of the test.
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Figure 5. Radar chart to represent the jurors’ concentration levels throughout the test campaign.

Understanding jurors’ concentration levels is pivotal in accurately interpreting a jury
test’s results. The observed trends could influence the jurors’ perception and evaluation
of the sound qualities, making this an essential aspect to consider when analysing and
drawing conclusions from the collected data.

The attention recognition tool computes the jurors’ attention levels, expressed as binary
values, as an original computation of head rotation and gaze direction estimation. The
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attention prediction values were extracted and arranged according to the periods reported
in the questionnaires.

In this way, by correlating the tool’s calculated values with the questionnaires’ re-
sponses, we were able to evaluate the emotional values associated with different men-
tal/concentration states from a statistical perspective.

The predicted attention, in fact, has been considered a representative metric of jurors’
concentration levels and involvement in the experiment.

In Figure 6, the binary values obtained from the attention recognition tool were
examined in conjunction with the questionnaire feedback provided by jurors, focusing
specifically on three distinct concentration statuses: fully focused, distracted, and heavy-
eyed. These three statuses were selected for analysis as they were the most frequently
reported states of mindfulness in the jurors’ responses to the questionnaire. By evaluating
these specific states, the study aims to enhance the understanding of the dependability of
jurors’ responses.
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Specifically, in Figure 6 the Y-axis represents the values from the tool, while the X-axis
displays the categories of questionnaire responses. The figure reports the median attention
values calculated across all users who responded in the three categories and across the three
different periods considered in the test (beginning, during, and near the end of the test). In
this way, each box plot symbolises the range of attention values associated with a specific
state of mindfulness, visually representing the jurors’ attention variations corresponding
to their self-reported mental states. The differences become more apparent by subtracting
the attention values associated with a ‘fully focused’ status from all other attention values
linked to each concentration status and setting the ‘fully concentrated’ status as a baseline
with fixed zero values.
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Accordingly, positive values in Figure 6 indicate increased attention levels when
transitioning from a ‘fully concentrated’ status to another, while negative values signify
a decrease. An observable shift below zero in the box plots related to the ‘distracted’
and ‘heavy-eyed’ statuses suggests a reduction in attention levels compared to the ‘fully
concentrated’ status. It reveals an overall discernible decrease in attention levels, calculated
from facial expression analysis when jurors felt distracted or heavy-eyed compared to when
they were fully concentrated. Specifically, about the ‘distracted’ status, it was observed
that 70 percent of jurors exhibited a reduction in attention levels as calculated by the
tool. Similarly, for the ‘heavy-eyed’ state, 62 percent of jurors demonstrated a decrease in
attentiveness. These insights are particularly valuable for jury test assessments, serving a
dual purpose. Firstly, they contribute to a more comprehensive understanding of the overall
reliability of jurors’ responses in the entire test. Secondly, they allow for an individual
assessment of each juror’s reliability. This facilitates a nuanced approach where more
reliable responses can be assigned greater weight in future studies and applications of
sound-quality jury testing. Such differentiation not only enhances the overall accuracy of
these assessments but also fine-tunes the process for more effective results.

Then we proceeded to analyse the time series data for valence across the jurors. The
preprocessing steps involved cleaning the data to ensure the quality of the analysis. Firstly,
frames where no data were collected from the expression recognition tool were removed
from the dataset. Additionally, frames containing null values or otherwise unusable
data from the same tool were excluded. In total, they accounted for a small percentage
(less than 5%) of the usable data. Furthermore, frames captured at the beginning and
end of the test, when jurors were either sitting down or standing up and their facial
expressions were not pertinent to the test, were also eliminated. Lastly, since attention and
emotions data were both outputs of the same analysis, we did not need to employ data
fusion techniques. Analysis of the time series data for valence across the jurors revealed
a consistent decline in attentiveness levels as the tests advanced, in agreement with the
results reported from the analysis of the questionnaires. This decline in attentiveness
was prominently indicated by the shift from red, representing attentive states, to yellow,
indicative of reduced attentiveness, as depicted in Figure 7. The valence data used in these
and the following figures were collected through video recordings captured at a frame
rate of 14 frames per second (FPS) during the entirety of the jury testing process. The data
was smoothed via a moving average approach to represent the valence signals in Figure 7.
Moreover, the attention signal was embedded in the valence graph. For representation
purposes, the attention data was averaged as well with the same time window, yielding a
range of values in the interval [0,1] extremes included. The colour was chosen based on
several thresholds, when the attention is above 0.8 the valence line is red, when the attention
value is below 0.2, the line is yellow, otherwise, the line is orange. An attention value equal
to 1 means the juror was attentive or looking straight at the camera/monitor, whereas an
attention value equal to 0 means the juror was not attentive. Thus, when the juror’s attention
diminishes, its valence is represented by the colour yellow. The grey vertical bars separate
each pair of audio signals administered in the AB comparison with the AB–BA repetition
approach. The green vertical lines separate the two signals in every pairwise comparison.
These visual representations provide clear evidence of the diminishing attention spans of
some jurors for the trial, thereby emphasising the significance of utilising facial expression
recognition (FER) techniques in understanding and assessing the dynamics of jury testing.

Further analysis of the collected data involved the application of various statistical
techniques, including linear regression, to gain insights into the relationship between the
valence signal extracted from facial expressions and the jurors’ choices between each pair
of audio signals in the AB comparison with the AB–BA repetition approach. Among the
methods employed, utilising a ruleset based on linear regression analysis of the valence
data computed at each audio signal via a segmentation analysis approach presented the
most promising results, revealing a correlation between the fluctuations in valence and
the jurors’ choices in each pairwise comparison. In Figure 8, we show the results of such a
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linear regression analysis of the time series data for valence data. The text at the bottom
of the chart represents the audio signals in each pairwise comparison, where bold means
the audio selected by the user to answer the first question, ‘Which is the most annoying
sound?’ (top), and the second question, ‘Which one appears to be from a higher-quality
car?’ (bottom). When no text is bold, the juror did not choose either the first or second
audio. Table 1 shows summaries of the regression analysis, i.e., R2 score, and correlation (
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computed using uncorrected (normalised by N) standard deviations for each audio signal.
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sub-selection of raw time series data between the seconds 1000 and 1300 containing complete data
about 9 pairwise comparisons. Grey vertical bars separate each pair of audio signals, green vertical
lines separate the two signals in each pair.
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9 0.03 0.19
10 0.00 0.02
11 0.16 0.40
12 0.16 0.39
13 0.24 −0.49
14 0.36 0.60
15 0.03 −0.18
16 0.03 0.18
17 0.21 −0.46
18 0.59 0.77
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The regression analysis was conducted using the trends observed in the valence
data to generate a comprehensive list of choices, simulating the jurors’ responses during
each pairwise comparison, as shown in Figure 9. Figure 9 is a collection of ten pairwise
comparisons cropped from various jurors’ whole time series data. The criterion involved
‘choosing’ the signal based on the relative trend of the regression lines for each signal in
every pairwise comparison; i.e., an increase in the valence trend corresponds to the audio
signal chosen for the second question. In contrast, a decrease in valence corresponds to
the audio signal chosen for the first question. In the cases shown in Figure 9, valence and
jurors’ answers showed a good correlation. Table 2 shows summaries of the regression
analysis, i.e., R2 score, and correlation (
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valence and engagement, which inevitably led to a reduction in the correlation with the 
given answers. When jurors express a choice, they do not necessarily feel something on 
an emotional level, expressing it through a facial expression. In these cases, no significant 
correlation was found between the valence data derived from facial expressions and the 
jurors’ responses in the AB comparison methodology. These limitations underscore the 
complexity of accurately interpreting and analysing emotional data in a controlled jury 
testing environment. Moreover, an increase in correlation was found where the user 
appeared to be ‘concentrated’ through the attention recognition tool. 

Figure 9. Collection of linear regression analysis of time series data of several pairwise comparisons
of different jurors. Grey vertical bars separate each pair of audio signals, green vertical lines separate
the two signals in each pair.
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1 0.37 0.61 0.05 −0.22
2 0.35 0.59 0.40 −0.63
3 0.79 −0.89 0.78 0.88
4 0.23 −0.48 0.52 0.72
5 0.46 0.68 0.50 −0.71
6 0.01 0.09 0.81 0.90
7 0.20 0.45 0.12 −0.34



Sensors 2024, 24, 2298 19 of 24

Table 2. Cont.

R2 (Left)

Sensors 2024, 24, X FOR PEER REVIEW 18 of 24 
 

 

most promising results, revealing a correlation between the fluctuations in valence and 

the jurors’ choices in each pairwise comparison. In Figure 8, we show the results of such 

a linear regression analysis of the time series data for valence data. The text at the bottom 

of the chart represents the audio signals in each pairwise comparison, where bold means 

the audio selected by the user to answer the first question, ‘Which is the most annoying 

sound?’ (top), and the second question, ‘Which one appears to be from a higher-quality 

car?’ (bottom). When no text is bold, the juror did not choose either the first or second 

audio. Table 1 shows summaries of the regression analysis, i.e. R2 score, and correlation 

(⍴) computed using uncorrected (normalised by N) standard deviations for each audio 

signal. 

Table 1. R2 score and correlation ⍴ values of the linear regression analysis of time series data for the 

valence of ‘juror 4’ for each numbered section shown in Figure 8 below. 

 R2 ⍴ 

1 0.14 0.37 

2 0.31 0.55 

3 0.45 0.67 

4 0.63 −0.79 

5 0.26 −0.51 

6 0.62 0.79 

7 0.11 −0.33 

8 0.51 −0.71 

9 0.03 0.19 

10 0.00 0.02 

11 0.16 0.40 

12 0.16 0.39 

13 0.24 −0.49 

14 0.36 0.60 

15 0.03 −0.18 

16 0.03 0.18 

17 0.21 −0.46 

18 0.59 0.77 

19 0.01 0.10 

 

Figure 8. Linear regression analysis of time series data for the valence of ‘juror 4’. Valence data is a 

sub-selection of raw time series data between the seconds 1000 and 1300 containing complete data 

about 9 pairwise comparisons. Grey vertical bars separate each pair of audio signals, green vertical 

lines separate the two signals in each pair. 

(Left) R2 (Right)

Sensors 2024, 24, X FOR PEER REVIEW 18 of 24 
 

 

most promising results, revealing a correlation between the fluctuations in valence and 

the jurors’ choices in each pairwise comparison. In Figure 8, we show the results of such 

a linear regression analysis of the time series data for valence data. The text at the bottom 

of the chart represents the audio signals in each pairwise comparison, where bold means 

the audio selected by the user to answer the first question, ‘Which is the most annoying 

sound?’ (top), and the second question, ‘Which one appears to be from a higher-quality 

car?’ (bottom). When no text is bold, the juror did not choose either the first or second 

audio. Table 1 shows summaries of the regression analysis, i.e. R2 score, and correlation 

(⍴) computed using uncorrected (normalised by N) standard deviations for each audio 

signal. 

Table 1. R2 score and correlation ⍴ values of the linear regression analysis of time series data for the 

valence of ‘juror 4’ for each numbered section shown in Figure 8 below. 

 R2 ⍴ 

1 0.14 0.37 

2 0.31 0.55 

3 0.45 0.67 

4 0.63 −0.79 

5 0.26 −0.51 

6 0.62 0.79 

7 0.11 −0.33 

8 0.51 −0.71 

9 0.03 0.19 

10 0.00 0.02 

11 0.16 0.40 

12 0.16 0.39 

13 0.24 −0.49 

14 0.36 0.60 

15 0.03 −0.18 

16 0.03 0.18 

17 0.21 −0.46 

18 0.59 0.77 

19 0.01 0.10 

 

Figure 8. Linear regression analysis of time series data for the valence of ‘juror 4’. Valence data is a 

sub-selection of raw time series data between the seconds 1000 and 1300 containing complete data 

about 9 pairwise comparisons. Grey vertical bars separate each pair of audio signals, green vertical 

lines separate the two signals in each pair. 

(Right)

8 0.35 0.59 0.68 −0.82
9 0.46 0.68 0.45 −0.67
10 0.81 0.90 0.12 −0.35

However, in other cases, the software could not detect significant variations in valence
and engagement, which inevitably led to a reduction in the correlation with the given
answers. When jurors express a choice, they do not necessarily feel something on an
emotional level, expressing it through a facial expression. In these cases, no significant
correlation was found between the valence data derived from facial expressions and the
jurors’ responses in the AB comparison methodology. These limitations underscore the
complexity of accurately interpreting and analysing emotional data in a controlled jury
testing environment. Moreover, an increase in correlation was found where the user
appeared to be ‘concentrated’ through the attention recognition tool.

By exploiting the above-mentioned criterion of selecting the signal based on the
trend of the regression lines, the Spearman correlation between the jurors’ answers to
both questions and their valence trends using the corr function was computed in Matlab.
Figure 10 shows the correlations computed in such a manner. The lines with dots represent
the correlation between the valence time series data and the answers to the first question,
and the lines with asterisks represent the correlation between valence data and the second
question. The blue lines were computed using all the data independently of the jurors’
attention value (i.e. with an attention value of either 1 or 0). The red lines were computed
using only the data where the jurors’ attention value was equal to 1 (i.e., the juror was
attentive or looking straight at the camera/monitor).
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= 0.7, we see that six jurors’ data exhibited such a correlation
contrary to data from twelve jurors if we select only data where attention equals 1. The
increase in the number of jurors exhibiting good correlations, when considering attention
data, suggests that heightened attention levels may play a role in the reliability of the
answers given by the jurors and, at the same time, in facilitating the recognition and
interpretation of emotional cues. The data points to the importance of considering the
contextual factors surrounding individual jurors’ engagement levels and attention spans
during the testing process, as these factors significantly impact the reliability and accuracy
of the emotional data collected.

Although not every juror exhibited trends in their valence data, most correlations
were low. The observed correlations emphasize the pivotal role of attentiveness in facilitat-
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ing a more accurate and nuanced understanding of emotional responses within the jury
testing framework.

The identified correlations instill confidence in the potential application of facial
expression analysis as a reliable tool for assessing juror engagement but also underscore
the potential of leveraging such methodologies to enhance our understanding of people’s
behaviour when faced with dichotomous choices.

5. Discussion and Conclusions

This study highlights the potential of facial expression recognition tools as a new
method for enhancing the accuracy of sound quality jury testing in the products’ de-
sign process.

The research’s main objective is to investigate how expression recognition tools could
support understanding participants’ levels of valence, engagement, and attentiveness in
jury testing. The results highlight the limitations of facial expression recognition software
but, at the same time, demonstrate a correlation with the responses given by the jurors
in case of recording fluctuations in terms of valence and engagement. Furthermore, the
study demonstrates that attention recognition can further increase the statistical correlation
between valence and the responses given when the user appears to be attentive.

Expanding from the methodology described for estimating the effective sample size,
the decision to include 43 participants in the experimental campaign, exceeding the cal-
culated requirements for both parametric (36) and non-parametric (38) tests derived by
G*Power 3 (version 3.1.9.7) analysis, underscores a commitment to robust statistical anal-
ysis. This approach not only accommodates the recommended sample sizes determined
through G*Power 3 analysis but also provides a buffer to account for potential dropouts or
outliers that could affect the study’s power. The inclusion of additional participants ensures
that the study maintains its statistical integrity even in the face of unforeseen challenges,
enhancing the reliability of the findings. Furthermore, the careful consideration given to
the power level and significance level in the experimental design highlights the study’s
precision in hypothesis testing. By setting a high power level (1-β) of 0.95 and a stringent
significance level (α) of 0.05, the study minimizes the risks of Type II and Type I errors,
respectively. Using singular group has been decided by the experimental campaign, and
the 7 sounds are representative of the number of measurements. This subtle statistical
framework ensures that the study is well equipped to detect true effects, if they exist, while
also safeguarding against the identification of false positives.

Regarding the technological limitations of emotion recognition systems from facial
expressions, it is essential to cite the results of a recent review study by Barret et al. [49].
They demonstrated that the current ‘emotional facial expression recognition’ technologies
are more skilled in detecting facial expressions than emotions. It is well-known that
people convey their emotions through facial expressions, such as smiling when happy and
frowning when angry. However, this mode of communication can vary depending on
cultural differences, specific situations, and individual differences, as only some people
display the same facial expressions in response to the same emotions. The interpretation and
perception of emotions can vary between individuals, making it challenging to generalise
facial expression recognition results to the general population [49]. Another limitation
regards the lack of context. Users may have a neutral facial expression when evaluating
sound quality, making it difficult to identify any emotional response to the sound. The use
of different affective media results in an asymmetry of emotional responses [1]. The same
authors experienced this challenge when conducting the tests for this research.

Future studies could improve the reliability and validity of the expression recognition
model by using more context-specific datasets integrating other signals, such as biofeedback.
Further integration may also be required to improve the attention recognition system
currently extracting Boolean values. A fuzzy filter could be added to handle an additional
level of uncertainty given by the results of gaze direction and degree of face rotation.
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Additionally, a wider sample size could help improving the generalizability of the results
of the future studies.

However, despite the described limitations, this study has shown the potential of the
proposed approach where there is the possibility of having a sufficiently large sample of
users or the sounds allow emotional states to be stimulated so that sufficient data emerge
to evaluate the jurors’ response in an automated and above all objective manner, without
the onset of bias due to distraction.
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