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Abstract: In recent years, the deformation detection technology for underground tunnels has played a
crucial role in coal mine safety management. Currently, traditional methods such as the cross method
and those employing the roof abscission layer monitoring instrument are primarily used for tunnel
deformation detection in coal mines. With the advancement of photogrammetric methods, three-
dimensional laser scanners have gradually become the primary method for deformation detection
of coal mine tunnels. However, due to the high-risk confined spaces and distant distribution of
coal mine tunnels, stationary three-dimensional laser scanning technology requires a significant
amount of labor and time, posing certain operational risks. Currently, mobile laser scanning has
become a popular method for coal mine tunnel deformation detection. This paper proposes a method
for detecting point cloud deformation of underground coal mine tunnels based on a handheld
three-dimensional laser scanner. This method utilizes SLAM laser radar to obtain complete point
cloud information of the entire tunnel, while projecting the three-dimensional point cloud onto
different planes to obtain the coordinates of the tunnel centerline. By using the calculated tunnel
centerline, the three-dimensional point cloud data collected at different times are matched to the
same coordinate system, and then the tunnel deformation parameters are analyzed separately from
the global and cross-sectional perspectives. Through on-site collection of tunnel data, this paper
verifies the feasibility of the algorithm and compares it with other centerline fitting and point cloud
registration algorithms, demonstrating higher accuracy and meeting practical needs.

Keywords: point cloud; underground tunnel; coal mine; deformation detection

1. Introduction

Coal mine tunnel deformation detection is a critical link to ensuring the safety of coal
mine workers. In order to ensure the stability of the tunnel structure, indicators such as
cross-section [1], convergence [2], and centerline settlement [2] are key factors in measuring
tunnel deformation. Tunnel deformation monitoring involves analyzing the health status,
change patterns, and development trends of the tunnel. The dim and humid conditions
inside coal mine tunnels impose significant limitations on long-term underground oper-
ations. Coal mine tunnels typically exhibit a narrow and tubular structure, with tunnel
cross-sections including rectangular, arched, and trapezoidal shapes. As anchor rods and
surrounding rock control technologies such as support systems mature in underground
coal mines, the predominance of arched tunnels in the early stages has gradually shifted
towards rectangular ones. This study focuses on rectangular tunnels.

Deformation analysis of tunnels is an important indicator for evaluating tunnel safety.
Currently, there are three main methods for deformation analysis: The first method involves
using direct measurement or high-precision measurement methods to obtain the true
values of points or surfaces within the tunnel. This allows for a comparison between the
measurement data and the actual data of the tunnel to analyze the local deformation of the
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tunnel. However, this method is limited by the actual measurement points, reflecting only
limited local deformations. Additionally, it requires a significant amount of manpower
and time, making timely and accurate deformation detection difficult. The second method
involves comparing measurement data with tunnel construction design values to obtain
the overall and local deformations of the tunnel. Due to the complex geological conditions
in underground coal mines and variations in the surrounding rock environment during
construction, discrepancies between the actual tunnel and the design drawings lead to
inaccurate deformation detection. The third method involves repeatedly collecting three-
dimensional structural data from different periods within the tunnel. By comparing data
from different periods, deformations at all positions of the tunnel can be accurately reflected.
Currently, the main measurement method for this approach is laser scanning, which
identifies locations with significant tunnel deformations by comparing point cloud data
from different periods. Based on three-dimensional laser scanning technology, deformation
detection algorithms are divided into direct comparison methods of point cloud data and
indirect comparison methods using point cloud fitting models. Since fitting models cannot
avoid fitting errors, this paper aims to improve the accuracy of the algorithm by using
point cloud data from different periods to calculate tunnel deformations.

Currently, tunnel deformation analysis methods based on three-dimensional laser
scanning are mainly divided into stationary and mobile LiDAR systems. Stationary LiDAR
systems offer high measurement accuracy but require long operation times and significant
manpower costs. Therefore, considering underground coal mine safety, mobile LiDAR sys-
tems are gradually becoming a popular measurement method. Mobile three-dimensional
laser scanning has higher measurement efficiency and can reflect specific deformations and
deformation trends of the tunnel. However, it imposes high demands on the registration of
point cloud data from different periods.

To address these challenges, this paper proposes a method based on mobile laser
scanning technology. It utilizes the centerline registration method to register the point
cloud data of tunnels from different periods into a unified coordinate system. Then, it
employs the k-nearest neighbor method to find corresponding point pairs in point clouds
from different periods, analyzing the deformation of both the overall and local cross-
sections of rectangular tunnels. The effectiveness of this method is verified using actual
tunnel point cloud data, demonstrating its compliance with point cloud measurement
accuracy and meeting practical production needs. The innovation of this paper lies in
the following:

1. This paper presents an algorithm for extracting the centerline of rectangular tunnel point
clouds. By projecting 3D point clouds onto two-dimensional planes in different directions,
the contours of rectangular tunnel point clouds are calculated based on the statistical
distribution pattern of points on the plane. The centerline of the entire tunnel is determined
based on the characteristics of the center points in the rectangular cross-section;

2. A method for point cloud registration based on the centerline of the tunnel is proposed
in this paper. Similarly, employing a projection method, the centerline of the tunnel
is projected onto different planes to calculate the rotation and translation matrices
in the x, y, and z directions for the centerline of the tunnel at different time periods.
Consequently, the entire tunnel point cloud is registered;

3. An analysis method for tunnel deformation based on both local and global features
is proposed in this paper. Utilizing the K-nearest neighbor (KNN) algorithm to find
neighboring points, corresponding point pairs in point clouds at different time periods
are determined. By computing the difference in distances between point pairs, the
deformation quantity of each point is determined, thereby obtaining the analysis of
the overall and cross-sectional deformation of the tunnel.
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2. Related Work
2.1. Laser Point Cloud Alignment Method

Three-dimensional LiDAR point cloud registration is crucial for LiDAR odometry and
LiDAR SLAM. It is the fundamental basis for simultaneously localizing and mapping with
LiDAR sensors. Achieving data association is the most commonly used method in LiDAR-
SLAM. Existing 3D LiDAR point cloud registration methods are mainly divided into three
categories: point-based methods, distribution-based methods, and feature-based methods.

The Iterative Closest Point (ICP) algorithm, based on point-based methods, is currently
one of the most researched, widely applied, and mature algorithms. In the ICP algorithm,
transformation between adjacent point clouds is computed iteratively by minimizing a
distance function. Besl [3] demonstrated that the ICP algorithm consistently converges
monotonically to local minima under the strong assumption that the number and rela-
tionships of corresponding point pairs remain unchanged during the iterative process. To
enhance the accuracy, efficiency, and robustness of point cloud registration algorithms,
researchers have proposed various improved ICP algorithms. Censi [4] introduced a
“point-to-point” ICP algorithm that starts searching for correspondences from geometric
points closest to the three-dimensional shape. Low [5] introduced a “point-to-plane” ICP
algorithm, which estimates the target model as a plane to obtain distance data. Chen [6]
proposed the P2Pl-ICP algorithm, which uses the point-to-plane distance instead of the
point-to-point distance as the error metric, thus improving the algorithm’s robustness.
Segal [7] introduced the Generalized ICP (GICP) algorithm, which leverages the local
continuity of point cloud surfaces, approximating the surface shape around point clouds as
a planar patch and considering the sensor’s noise model to effectively reduce the impact of
mismatches. Although this method exhibits strong effectiveness and robustness among
many improved ICP algorithms, its performance in scenarios of coal mine tunnels is not as
good as the original ICP algorithm.

The Normal Distributions Transform (NDT) algorithm, based on distribution-based
methods, is a typical approach initially proposed for two-dimensional LiDAR point cloud
registration. Laser point clouds are represented by a set of Gaussian distributions with dif-
ferent probability density functions. To avoid incorrect correlation issues between data, this
method provides a segmented smoothed normal distribution representation of laser scan
data. Its major advantage lies in not requiring explicit correspondences between features or
points. Therefore, the algorithm demonstrates good robustness. Magnusson [8] proposed a
P2D-NDT scan matching method, extending NDT from 2D to 3D. This algorithm divides
the reference frame LiDAR point cloud into small three-dimensional grid cubes, calcu-
lates the probability density function for each grid based on the shape containing internal
points, and solves the relative pose transformation problem by maximizing the points
scanned from the current frame LiDAR onto the reference frame surface. Magnusson [9]
further demonstrated through practical mining trials that NDT exhibits stronger adapt-
ability, accuracy, and robustness compared to ICP. However, this method relies on NDT
scan registration for localization and mapping, leading to inevitable error accumulation in
LiDAR odometry with increasing registration processes.

Feature-based methods extract simple features from LiDAR point clouds for efficient
feature matching, improving point cloud registration efficiency. These extracted features
are then used to determine the relative pose changes between points in point cloud regis-
tration. These simple features can be selected as points, lines, planes, or their combinations.
Point feature-based point cloud registration methods, which find corresponding points by
extracting feature points, are most suitable for two-dimensional point cloud registration.
However, many feature descriptors are designed for specific environmental conditions.
Line feature-based point cloud registration methods exhibit many simple and efficient line
features in indoor scenes. Liu [10] proposed a widely used segment merging method for
line feature-based point cloud registration in two-dimensional LiDAR point cloud data.
Point cloud registration methods based on face features complement the shortcomings of
extracting point and line features by detecting a large number of planes or surface features
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within a region, reasonably utilizing the extracted features for data association and point
cloud matching. For scenes containing curved surfaces, Nobili [11] used voxel filters to
uniformly downsample raw 3D LiDAR point cloud data, registered point clouds on feature
planes, and eliminated irrelevant interference outside the feature planes. It is noteworthy
that Zhang [12] proposed a typical approach to obtain accurate results and reduce computa-
tional complexity. This method matches feature points with edges or surfaces by extracting
edge and surface features from the environment, thereby achieving inter-frame point cloud
registration. However, while feature-based methods demonstrate good performance in
autonomous robot localization and mapping, they may produce errors due to the lack of
geometric features or feature degradation in certain scenes, significantly affecting point
cloud registration accuracy.

2.2. Method for Tunnel Deformation Detection Based on Laser Scanning

Tunnels are a type of special underground engineering characterized by their elongated
shape, complex construction environment, and the need to consider various factors. The
common three-dimensional laser scanning methods are classified into stationary and
mobile types. Stationary 3D scanners have been proven effective for tunnel deformation
detection [13–15]. Han [16] proposed an automatic and efficient method for estimating
tunnel centerlines and cross-sectional planes. This method estimates the tunnel centerline
by projecting the three-dimensional point cloud onto a horizontal plane to generate a
binary image. Based on the tunnel boundary points and centerline, the cross-sectional
planes are estimated and further adjusted by projecting nearby points onto the adjusted
plane to generate the final cross-section. Although the authors improved the efficiency of
measurement and data processing, they were unable to extract continuous contours due
to the lack of a parameter equation for the tunnel centerline. Additionally, this method
is sensitive to non-lining points, namely, pipes and equipment attached to the lining. To
overcome the limitations of this method, which include fitting straight lines, transition
curves, and curves to different segments of the tunnel centerline, Kang [1] fitted them jointly
and then applied global least squares adjustment to maintain consistency between adjacent
fitting models. To handle missing data, Kang used surface interpolation algorithms to
recover blank areas in the tunnel profile. For accurate orientation of cross-sectional planes,
Cheng [17] performed two optimizations on the initial sections using the total least squares
method and the Rodrigues rotation formula. Li [18] utilized stationary laser scanners in coal
mine tunnels, deploying target balls in the tunnels to register point clouds from different
periods in the same coordinate system, enabling continuous deformation analysis of section
point clouds at the same location over time, thus obtaining a more comprehensive and
intuitive understanding of overall tunnel deformation. However, the use of stationary 3D
scanning in coal mine tunnel scenes still has certain limitations, requiring high demands on
the tunnel environment and measurement time.

Currently, the detection of tunnel deformation based on mobile 3D scanning technol-
ogy has become a hot area. Lu [19] compared the accuracy and efficiency of stationary
and mobile laser scanning technologies. Stationary 3D scanning has higher accuracy, with
errors controlled at the millimeter level, while mobile 3D scanning has errors controlled
at the centimeter level. However, stationary 3D scanning operates at a slower speed. To
ensure scanning accuracy, the measurement range for each station of stationary scanning
is usually between 15 and 25 m. Without considering rest time for personnel and equip-
ment, the average measurement along the tunnel is 2.8 m per minute. Mobile 3D scanning
technology has higher operational efficiency, measuring approximately 33 m forward per
minute on average. Typically, a tunnel has a long distance. For example, for a tunnel
that is 3 km long, using stationary 3D scanning technology for tunnel monitoring would
require continuous operation for approximately 18 h to complete one full measurement
of the tunnel, whereas mobile 3D scanning would require approximately 1.5 h. Therefore,
mobile 3D scanning is more suitable for practical tunnel deformation monitoring in mining
production. Cheng [20] conducted deformation monitoring and analysis on a section of
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a subway operating in Hangzhou, China, using a Swiss company’s GRP5000 laser scan-
ning holographic system. They fitted the cross-sectional profile using the RANSAC-LSM
algorithm and analyzed the ellipticity and convergence deformation of the tunnel. The
algorithm validated that the results of mobile scanning were basically consistent with those
of total station measurements. Zhou [21] used the Riegl VZ-1000 mobile laser scanner to
collect point cloud data of tunnel surrounding rock. By comparing with conventional de-
formation measurement methods, they found that the deformation of tunnel surrounding
rock is closely related to its stress condition. They also validated the measurement accuracy
of mobile 3D laser scanning technology, meeting the requirements of tunnel deformation
monitoring in underground coal mines. Ye [22] proposed a tunnel point cloud deformation
detection method based on mobile laser scanning technology. They used point cloud data
collected by a vehicle-mounted laser radar to fit each cross-section of the tunnel into an
ellipse and compared it with the standard circle of the tunnel design section to analyze the
external forces of tension and compression acting on the tunnel.

Regardless of whether based on stationary or mobile three-dimensional laser scan-
ning technology, current deformation detection of tunnels largely relies on cross-sectional
analysis of the tunnels. The analysis method based on tunnel cross-sections always en-
tails some risk zones between adjacent sections that cannot be accurately tracked, where
deformations may easily be overlooked. Fekete [23] conducted triangulated mesh model-
ing of tunnel surface point clouds, transforming discrete points into continuous surfaces.
Dimitrov [24] utilized Non-Uniform Rational B-Spline (NURBS) functions to fit arbitrary
three-dimensional geometries within point clouds. Nahangi [25] proposed a method for
skeletonizing point cloud three-dimensional models, automatically quantifying the three-
dimensional structure of point clouds. Van [26] approximated the scanning surface of
a bore tunnel using a cylindrical model and conducted point-wise deformation analysis
by comparing surface patches. Although methods based on tunnel models can detect
minor differences by comparing tunnel models generated at different times, these methods
are highly sensitive to surface point cloud noise, leading to increased errors. Moreover,
fitting with models such as planes, cylinders, or spheres reduces algorithmic computa-
tional efficiency, failing to meet the deformation detection requirements of large-scale
point clouds.

2.3. Analysis Method of Deformation in Coal Mine Underground Tunnels

In underground coal mine tunnels, there is a significant accumulation of coal piles,
rock masses, etc. The surrounding rocks are prone to deformation, and the cross-sectional
shapes include rectangles, arches, trapezoids, and other shapes, making the environment
more complex compared to urban underground tunnel projects. The most common de-
tection methods include the crisscross measurement [27] and the roof separation meter
method [28], which are based on the principles of traditional mechanical transmission.
These methods transmit the deformation of the tunnel surface to the deformation of ropes or
metal components through devices, which are then displayed using measuring instruments
such as rulers.The mechanical three-coordinate measuring machine, by placing the probe
on the surface of the object to be measured, obtains three-dimensional data at the contact
point of the object. Measuring machines such as the Zeiss gantry measuring machine,
MICRO-HITE measuring machine, RPS articulated arm three-dimensional coordinate mea-
suring machine, and China DeRen articulated arm three-dimensional coordinate measuring
machine can all achieve a measurement progress of 1 µm. However, traditional inspec-
tion methods can cause damage to the structure of tunnels, with the characteristic of the
inspection points being distributed discretely, unable to ensure continuous coverage of the
overall surface of the tunnel. Analysis of tunnel cross-sections and overall trends requires
the use of interpolation fitting, which can easily lead to significant errors. Therefore, contact
measurement technology is not suitable for the analysis of large-scale overall deformation
of coal mine tunnels.
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With the emergence of indirect measurement technology, level instruments [29,30] and
total stations [31,32] are widely used in tunnel deformation detection. Ye [33] designed a
set of equipment that can replace the traditional cross measurement method using a laser
rangefinder, which monitors the surface displacement of the fixed positions of the tunnel
roof, floor, and side walls with a single laser rangefinder. Song [34] used geological radar
to study the laws of tunnel deformation and geological condition changes.

These methods suffer from long measurement times and high work intensity and can
damage the health of the operator. Therefore, three-dimensional laser scanning technology
for tunnel deformation detection has become popular research because of its high efficiency.
Dai [35] utilized the alphashape algorithm to fit rectangular cross-sections of tunnels and
analyzed tunnel deformation parameters by calculating the difference between points
and the fitted lines. While this algorithm can intuitively represent tunnel deformation
parameters, the accuracy of deformation parameters and point cloud fitting are directly
related. Liu [36] proposed a method for detecting and monitoring the deformation of
coal mine underground tunnel roofs through the establishment of a matching section
model, analysis of the deformation of the point cloud distance model for each section,
and control of the measurement error within 3 mm. They also analyzed the mechanical
structure of surrounding rocks and the influence of lithology on tunnel changes. However,
these algorithms require the use of a stationary LiDAR system, which is not suitable for
underground mining faces with complex environments.

Yu [37] utilized the principle of linear scanning, combined with calibrated cameras, to
design and develop a vehicle-mounted deformation measurement system for coal mine
tunnels. In simulated tunnel environments, the system verified the accuracy of deformation
detection algorithms by setting its own deformation true values, with errors controlled
within 7 mm. While this algorithm adapts well to environments with good lighting condi-
tions such as coal mine main tunnels and transport tunnels, it struggles to adapt in mining
faces due to insufficient lighting and high levels of airborne dust. Rong [38] researched
methods for extracting boundaries of underground coal mine tunnels, designing a vehicle-
mounted 3D laser scanning system. They employed a method of target ball placement for
point cloud stitching and coordinate transformation, enabling three-dimensional modeling
and deformation analysis of the entire tunnel. Deformation errors at the intersection of the
coal walls and roof were controlled within 8 cm, providing a reference for the cutting of coal
mining machines. Qi [39] utilized a method of establishing three-dimensional maps using
vehicle-mounted laser point clouds to monitor deformation of underground comprehensive
mining faces in coal mines. Experimental data showed that this algorithm ensured that
measurement errors were controlled within 19 cm. Zou [40] addressed large-scale coal mine
tunnel point clouds, using integrated factor graph optimization theory and mobile robots
to construct three-dimensional tunnel maps, detecting trends in tunnel changes. They
affirmed the INE-SLAM algorithm, with an average error control of 6.5 cm. Du [41] focused
on the deformation of coal mine slopes, utilizing point cloud data for three-dimensional
modeling and polygonal partitioning of the model. By comparing the centroid offsets of
polygons, they analyzed the displacement deformation of coal mine slopes, consistent with
real conditions. Wang [42] proposed transparency and intelligence-based mining with
transparency as the core concept, focusing on deformation safety of comprehensive mining
faces. Gao [43] proposed a prevention and control technology for the deformation of soft
rock in tunnel roofs. These algorithms typically utilize existing three-dimensional spatial
data to establish three-dimensional models and analyze deformations by comparing actual
measured point cloud data with the model. In underground coal mine environments, where
actual deformation data are often lacking, fitting three-dimensional models using point
cloud data introduces new errors. Therefore, direct comparison of point cloud data from
different periods to identify locations with significant deformation enables the reflection of
overall tunnel deformation trends and local deformations, thereby drawing the attention of
management personnel.



Sensors 2024, 24, 2299 7 of 27

3. Methods

This article presents a coal mine tunnel point cloud deformation detection algorithm
based on mobile three-dimensional laser scanning technology. The algorithm is mainly
divided into three steps: tunnel centerline extraction, point cloud registration, and deformation
detection, as shown in Figure 1. Two sets of point cloud data collected at different times are
projected onto different two-dimensional planes. The boundary feature lines of the tunnels are
extracted by utilizing the distribution probability of the point cloud in the two-dimensional
plane, thereby calculating the centerline of the tunnel. The rotation and translation matrix for
registering the centerlines of the two tunnels is computed, thereby registering the two sets of
point cloud data to the same coordinate system. Finally, this article analyzes the deformation
of the coal mine tunnel from overall and cross-section perspectives.

Figure 1. Algorithm for point cloud deformation detection in coal mine tunnels. The color lines show
the tunnel boundary lines in the xoy and xoz planes.

3.1. Extraction of the Tunnel Centerline

The centerline of a tunnel refers to the central axis of an underground tunnel in a
coal mine. In the engineering design and construction of tunnels, it is usually necessary
to determine the centerline of a tunnel based on the actual geological conditions and
parameters such as the slope, width, and height of the tunnel. At the same time, the
centerline of the tunnel is continuously used to control the excavation and construction
process of the tunnel. Therefore, accurate tunnel centerlines are crucial for coal mine tunnels.
The underground tunnel environment in coal mines is complex, and equipment such as
wires, air ducts, and belt conveyors can affect the quality of the underground tunnel point
cloud data. Moreover, the tunnel cross-section is not strictly rectangular, so the centerline
cannot be simply extracted by the center point of the minimum bounding rectangle.

This article proposes a tunnel centerline extraction method based on density analysis
to address this situation. This method uses slicing and projection to reduce the three-
dimensional point cloud to a two-dimensional scatter plot. By statistically analyzing the
distribution quantity and density of points in the horizontal and vertical directions of the
two-dimensional image and using kernel density analysis and line extraction methods,
the side lines and top and bottom lines of the tunnel are extracted separately. Finally, the
boundary lines of the entire tunnel are fitted using a non-uniform rational B-spline function
to calculate the centerline of the tunnel.

3.1.1. Point Cloud Dimensionality Reduction

Most tunnels are distributed along straight lines. Firstly, the PCA method is employed
to extract the main direction of the tunnel. The extension direction of the tunnel is rotated



Sensors 2024, 24, 2299 8 of 27

to overlap with the x-axis direction, facilitating subsequent point cloud data processing. At
the same time, cross-sectional point clouds perpendicular to the extension direction of the
tunnel are extracted as tunnel slices. To extract richer point cloud distribution features, the
sliced point clouds are projected onto the xoy plane and the yoz plane, which represent the
cross-sectional view and the plan view of the slices, as is shown in Figure 2. The colored
part represents a slice of the rectangular tunnel point cloud, which is perpendicular to
the extension direction of the tunnel. The blue plane in the figure represents the scatter
plot mapped to the yoz plane, and the red plane represents the scatter plot mapped to the
xoy plane. By analyzing the distribution density of two-dimensional scatter points in the
directions shown in Figure 2a,b, the boundary points of the tunnel are extracted.

Figure 2. 3D point cloud mapping 2D scatter plot. (a) Description of the scatter plot of the tunnel
section. (b) Description of the horizontal projection scatter plot of the tunnel section.

3.1.2. Extraction of the Tunnel Roof and Floor Lines

Due to the consistent distribution of point clouds on the top and bottom plates of the
tunnel, the sliced cross-sectional point cloud diagram better clusters the point clouds of the
top and bottom plates together along the direction of the tunnel extension, thereby better
reflecting the higher distribution density of the point clouds of the top and bottom plates
compared to equipment points and surrounding noise points in space.

By statistically counting the number of points in the longitudinal direction of the sliced
cross-sectional point cloud and analyzing the degree of point aggregation, the value most
concentrated in the z-axis coordinate distribution of the sliced point cloud is obtained.
Since there is no prior experiential knowledge of the probability density of point cloud
distribution, neither parameter estimation nor semi-parameter estimation methods are
applicable to such problems. Therefore, this paper employs the kernel density estimation
method, leveraging the advantages of non-parametric estimation to query the kernel
density peaks at larger and smaller values along the longitudinal axis, which are the points
where the point cloud distribution is most concentrated near the top and bottom plates,
thereby determining the z-axis coordinates of the top and bottom plates at the sliced section
of the tunnel.

The alley is vertically divided into n equal parts for slicing. The point cloud count
of each part is statistically analyzed using histograms, and the aggregation level of the
point cloud is analyzed using one-dimensional kernel density estimation. The point cloud
count of each part from top to bottom is denoted as X = x1, x2, . . . , xn, with each x being
independently distributed. Therefore, the density function of X follows the distribution as
shown below:

f (x) =
1
n

n

∑
i=1

Kh(x − xi) =
1

nh

n

∑
i=1

K
(

x − xi
h

)
(1)

K(x) is the kernel function, where h is the width of the kernel function window.
The Gaussian kernel function is one of the commonly used kernel functions in kernel

density estimation, and it is a typical smoothing function. The expression of the Gaussian
kernel function is shown below:

K(x) =
1√
2π

e−
x2
2 (2)
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where x is the variable. The basic idea of Gaussian kernel density estimation is to obtain
the probability density estimation value of each data point by weighted averaging of the
data points within a certain range around it. Specifically, for each data point x, a estimation
range with a width of h is constructed around it. Then, for each data point x, the weights of
all data points around it are calculated, and the weights are determined by the Gaussian
kernel function.

The Gaussian kernel function has the characteristics of smoothness and symmetry.
It filters out noise around the point cloud of tunnel boundary points well and accurately
estimates the coordinates of points where the point cloud density is high at tunnel bound-
aries, without making distribution probability assumptions about the original point cloud
slice data in advance, demonstrating high applicability and flexibility. It helps to obtain a
smooth probability density function in density estimation, can overcome the influence of
point cloud edge noise, and find areas of high point cloud density. Moreover, the Gaussian
kernel function is symmetric, K(u) = K(−u), which is suitable for the disorderliness of
point clouds. The shape of the Gaussian kernel function is controlled by the bandwidth
parameter. The larger the bandwidth is, the wider the range of the kernel’s effect and the
smoother the estimation.

As shown in Figure 3, according to the distribution of the number of section point
clouds in the horizontal direction, the two z-values with the densest distribution of point
clouds are selected in this paper as the top and bottom plate lines of the roadway section.
The left subplot is the cross-sectional scatter plot of the sliced point cloud of the tunnel,
where the red line represents the detected tunnel floor line, and the green line represents the
detected tunnel roof line. The right subplot shows the density estimation of the z-coordinate
of the sliced point cloud of the tunnel obtained through one-dimensional kernel density
detection. The red point represents the first density peak point representing the floor, and
the green point represents the last density peak point representing the roof.

Figure 3. Extraction of the roof and floor lines of the tunnel based on the distribution density of
the point cloud. Determine the location of the red and green lines in the left diagram based on the
z-values of the red and green dots in the right diagram.

3.1.3. Extraction of the Tunnel Wall Line

Due to the presence of numerous wires, anchor rods, and other equipment distributed
on both sides of the tunnel in the cross-section, which affects the extraction of tunnel
boundaries, methods such as two-dimensional linear kernel density analysis, Canny edge
detection, and Hough transform are employed on the overhead view of the slice point
cloud to identify the left and right boundaries of the tunnel.

This article first divides the two-dimensional slice plane space into n × n blocks,
counts the number of point clouds in each block, and calculates the kernel density in both
horizontal and vertical directions for each block, resulting in a kernel density map. When
performing two-dimensional kernel density estimation, this study employs linear kernel
density estimation. The expression of the linear kernel function is as follows:

K(x) =
{

1 − |x|, |x| < 1
0, others

(3)
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The linear kernel function can effectively smooth the data, distinguishing different
density boundaries more prominently than the Gaussian kernel function, resulting in
a density distribution plot with clearer linear patterns, which prepares for subsequent
line detection.

The new density distribution plot undergoes Canny edge detection and Hough trans-
form. Canny edge detection and Hough transform are common methods for feature
extraction in image processing and computer vision. Canny edge detection typically identi-
fies image boundaries by locating positions with the maximum pixel value gradients in the
image. The steps for Canny edge detection used in this study involve first converting the
kernel density plot to a grayscale image, then computing the gradients along the x and y
axes of the image and calculating the combined gradient direction. The gradient calculation

formula is G =
√

G2
x + G2

y, θ = arctan Gy
Gx

, where Gx is the magnitude of the horizontal
gradient, Gy is the magnitude of the vertical gradient, and θ is the gradient direction.
Subsequently, non-maximum suppression is used to eliminate some false boundary points,
and finally, by determining the maximum and minimum values of the double threshold,
the edges present in the kernel density plot are identified, with edge position pixels marked
as white and non-edge position pixels marked as black.

Next, the new image after Canny edge detection undergoes the Hough transform. The
Hough transform was originally proposed by Paul Hough in 1962 to detect lines in images.
The steps for using the Hough transform in this study involve first treating the pixels of
the image as squares in parameter space and then determining the squares passed through
by each white pixel in the parameter space through a mapping relationship. Secondly,
the occurrences of each square in the parameter space are counted, selecting squares with
occurrences greater than a certain threshold as representative squares for lines. Finally, the
parameters of squares representing lines in parameter space are taken as the parameters for
lines in the image.

As shown in Figure 4, the left subplot depicts a top-down view of the lane point cloud
slice, where the red line segments represent the extracted left boundary line and the green
line segments represent the extracted right boundary line. The middle subplot displays
a two-dimensional linear kernel density estimation of the sliced point cloud top-down
view, where the red dots depict the effect of magnifying the sliced point cloud along the
x-axis and the blue portion represents the values estimated by the kernel density. The right
subplot illustrates the effect of Canny edge detection and Hough line extraction on the
kernel density plot in the middle subplot, where the red represents the first line detected
from top to bottom, representing the left boundary line, and the green represents the last
line detected, representing the right boundary line.

Figure 4. Extraction of the tunnel wall lines based on the distribution density of the point cloud.
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3.1.4. Curve Fitting

After extracting the top and bottom plates and two sides of the tunnel slice, respec-
tively, calculate the midpoint of the top and bottom plates and the midpoints of the two
sides to obtain the fitted slice point cloud center. Tunnel slicing is a process of discretizing
the entire tunnel. After obtaining each discrete center point, it is necessary to perform curve
fitting to obtain a continuous tunnel centerline. The curve fitting method selected in this
paper is NURBS curve fitting.

NURBS (Non-Uniform Rational B-Splines) curves are a commonly used method of
curve representation in computer graphics. Its main feature is that control points can be
non-uniformly distributed. Due to the construction of chambers on both sides of the tunnel
to ensure operational safety, the tunnel centerline is not completely straight. In the method
based on slices, at the chamber of the tunnel, the spacing between control points is large
and sparse. NURBS curves can make good use of non-uniform control points to achieve
better curve fitting effects. NURBS curves use rational B-splines as a foundation. The
introduced weight parameter brings greater flexibility to the curve, allowing it to represent
various curve shapes. NURBS curves use B-spline functions as a foundation, giving them
strong local control properties, meaning that moving or adding control points only affects
the local region of the curve. The algorithm combines the advantages of Bézier curves and
spline curves and has strong expressive power. The steps of NURBS curve calculation are
as follows: Each slice’s center is determined as the control point P of the NURBS curve, and
the corresponding weight w is given for each control point. The weight of the control point
represents the degree of adhesion of each control point. Identify the nodes u of the basis
functions, dividing the parameter space into m nodes, ensuring that the values within the
nodes are monotonically increasing.

P = [P0, P1, P2, . . . , Pn], W = [W0, W1, W2, . . . , Wn], u = [u0, u1, u2, . . . , um] (4)

Calculate the B-spline function based on the specified domain and curve order. Based
on the determined parameters above, calculate the formula of the NURBS curve. Construct
the final NURBS curve by computing the values of parameters in each defined domain, as
shown in the Figure 5. The blue points represent the control points of the curve, the red
points denote the knots, and the black curve represents the NURBS fitted curve.

Ni,0(u) =
{

1, ui ≤ u ≤ ui+1
0, others

(5)

Ni,k(u) =
u − ui

ui+k−1 − ui
Ni,k−1(u) +

ui+k+1 − u
ui+k+1 − ui+1

Ni+1,k−1(u) (6)

Figure 5. NURBS Fitting Curves.
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3.2. Tunnel Centerline Alignment Algorithm

In terms of deformation monitoring, point cloud registration is crucial. Therefore, this
paper proposes a method to align the point cloud of the roadway based on the centerline
extracted from the scan. The main idea of this method is to use the three views of the
roadway to realize the alignment of the overall point cloud of the roadway by projecting
the centerline of the roadway to different planes and aligning them.

3.2.1. Point Cloud Alignment Based on Principal Component Analysis (PCA)

Using principal component analysis for point cloud coarse registration involves de-
riving three characteristic vectors of the tunnel point cloud through principal component
analysis, which serve as the new coordinate system for the point cloud, i.e., performing
a base transformation on the original point cloud. The direction of maximum variance
represents the extension direction of the tunnel point cloud, namely, the x-axis direction;
the direction of the second largest variance represents the y-axis direction; and the direction
of the smallest variance represents the z-axis direction. Principal component analysis is
separately applied to the original point cloud data and the point cloud data to be registered
to obtain three characteristic vectors. Rotation and translation matrices are calculated to
align the characteristic vectors of the point cloud to be registered with those of the original
point cloud. The calculated rotation and translation matrices are applied to the point cloud
to be registered to perform rigid transformation, achieving coarse registration of the two
sets of point cloud data.

The advantages of the principal component analysis method are as follows: (1) a certain
resistance to noise, unaffected by the quality of the point cloud data; (2) the orthogonality
of the reduced characteristic vectors, which can effectively restore the spatial relationship
of the point cloud; and (3) the high computational efficiency of the algorithm, making it
suitable for analyzing three-dimensional point cloud data.

3.2.2. Alignment of Tunnel Cross-Sections

The cross-section of a tunnel refers to the profile perpendicular to the centerline of the
tunnel. Cross-sections primarily display the geometric characteristics such as the shape and
dimensions of the tunnel, which are crucial for designing and planning tunnel projects as
well as assessing the stability and safety of underground spaces. This paper preprocesses
the point cloud data of the tunnel, aligning the centerline of the tunnel with the X-axis.
Therefore, the registration of tunnel cross-sections mainly involves rotation and translation
in the YOZ plane.

Utilizing the segmentation algorithm mentioned in Chapter Three of this paper, the
point cloud of the tunnel floor is segmented. Using the RANSAC plane fitting algorithm,
rotate the normal vector of the base plane of the point cloud to be registered to the normal
vector of the base plane of the target point cloud. The rotation center is at the center
of the point cloud’s minimum bounding box, as shown in the Figure 6. The RANSAC
plane fitting algorithm is one of the most commonly used algorithms in point cloud
processing. Its main principle is to randomly select a subset from the samples and use
the least squares estimation algorithm to calculate the model parameters. Compute the
deviation of all samples from this model and compare it with a pre-set threshold. When
the deviation is less than the threshold, the sample point is marked as an inlier; otherwise,
it is marked as an outlier. Record the current number of inlier points and repeat the
above process. In each iteration, record the current best model parameters that show the
most inlier points. Calculate the iteration termination criterion based on the desired error
rate, the optimal number of inliers, the total number of samples, and the current iteration
count. Decide whether to terminate the iteration based on the termination criterion. If the
iteration terminates, the best model parameters are then considered as the final estimated
model parameters.
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Figure 6. Rotate and translate in the zoy plane. The green points indicate original points. The red
points indicate the points after rotation and translation. After rotation and translation, the floor of the
tunnel is parallel to the horizontal.

3.2.3. Alignment of the Longitudinal Section of a Tunnel

The longitudinal section of a tunnel refers to the profile along the main direction of
the tunnel. The longitudinal section mainly shows the extension, distribution, and overall
shape of the tunnel, which play a very important role in the overall engineering design,
planning, and analysis of the tunnel. The registration of the longitudinal section of the
tunnel mainly refers to rotation and translation in the xoz plane. Since the top and bottom
plates of the underground tunnel can be approximately seen as a plane without significant
undulations, the centerline of the tunnel extracted using the method mentioned earlier can
be approximated as a straight line in the xoz plane. In this paper, the least squares method
is used to fit a straight line to the x and z values of the centerline, calculate the rotation
matrix needed to rotate the fitted line of the point cloud to the fitted line of the target
point cloud, apply this rotation matrix to the point cloud, and obtain the longitudinally
registered tunnel point cloud data. The method is shown in Figure 7, where the red line
is the yellow point cloud centerline and the green line is the blue point cloud centerline.
Using the intersection of the two fitted centerlines as the center of rotation, the rotation
matrix required to rotate the two centerlines to overlap is calculated to align the two tunnel
point clouds.

Figure 7. Alignment of the longitudinal section of a tunnel.

The main principle of least squares line fitting is to minimize the sum of squared errors
for discontinuous discrete points to determine the parameters of the line to be fitted. In this
paper, the x values of the tunnel centerline are taken as the independent variable, and the
z values of the tunnel centerline are taken as the dependent variable, to obtain the coor-
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dinates of several two-dimensional plane points, (x1, z1), (x2, z2), . . . , (xn, zn). Assuming
the fitted straight line is Z = ax + b, for each xi, the error function of the estimates and
observations is as follows:

f (x) =
n−1

∑
i=0

(Zi − zi)
2 =

n−1

∑
i=0

(axi + b − zi)
2 (7)

Find the values of a and b when f (x) = min. Find the partial derivatives of the error
function f (x) = min with respect to a and b, respectively, and calculate the values of a and
b when the partial derivatives are equal to 0. The formula is as follows:

∂ f
∂a

= 2

(
a

n−1

∑
i=0

xi
2 + b

n−1

∑
i=0

xi −
n−1

∑
i=0

xizi

)
= 0 (8)

∂ f
∂b

= 2

(
a

n−1

∑
i=0

xi + bn −
n−1

∑
i=0

zi

)
= 0 (9)

a =
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∑
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n−1
∑

i=0
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zi
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n−1
∑

i=0
xi

2 −
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n−1
∑

i=0
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)2 , b =

n−1
∑

i=0
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∑

i=0
xi

2 −
n−1
∑

i=0
xi

n−1
∑

i=0
xizi

n
n−1
∑

i=0
xi

2 −
(

n−1
∑

i=0
xi

)2 (10)

Compared to the RANSAC line fitting algorithm, the least squares method calculates
the line to be fitted using all selected points, while the RANSAC algorithm removes some
outliers and fits the line through multiple iterations for inliers with distances to the line
smaller than a threshold. As a result, the line fitted by RANSAC may have some error
compared to the line fitted by the least squares method.

3.2.4. Alignment of Tunnel Planes

The tunnel plan is a map that shows the layout and features of the tunnel in the hori-
zontal direction. This type of diagram displays the planar shape, dimensions, connectivity,
and other detailed information of the tunnel. In the actual mining operation process, the
tunnel plan is the most commonly used engineering drawing to guide operations. Since
the development and mining tunnels are usually equipped with galleries to ensure the
safety of coal miners during the mining process, the projection on the xoy plane cannot
simply be fitted into a straight line, but rather fitted into a curve using the method de-
scribed in the preceding section. This paper utilizes the idea of the nearest point iteration
algorithm, combined with the point cloud correlation coefficient, to calculate the rotation
and translation matrices between the point clouds P : p1, p2, . . . , pn and the target point
cloud Q : q1, q2, . . . , qn.

The nearest point iteration algorithm [3] is an algorithm used to minimize the differ-
ence between two point clouds. In each iteration, the algorithm selects the closest point as
the corresponding point and calculates the transformation (R, T) to minimize the equation:

E(R, T) =
Np

∑
i=1

Nq

∑
j=1

wi,j
∥∥pi −

(
Rqj + T

)∥∥2 (11)

where Nr and Nt are the number of points in the point clouds P and Q to be registered,
respectively, and wij is the weight of point matching. To improve efficiency, there have been
many optimizations to the ICP optimization algorithm. However, the ICP algorithm still
suffers from the problem of falling into local optimal solutions, affecting the registration
accuracy of the algorithm [44,45]. Based on this algorithm, this paper proposes a new
two-dimensional point cloud registration algorithm that aligns the two curve point clouds
by separately calculating the rotation and translation matrices. The method is shown in
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Figure 8; the green centerline and the red centerline are made to overlap as much as possible
by panning and rotating operations.

Figure 8. Alignment of tunnel planes.

When calculating the rotation matrix, the idea of the ICP algorithm is used to set the
minimum rotation angle at each iteration. By continuously calculating the distance variance
between the nearest points of the two sets of point clouds, the formula for calculating the
variance is as follows: D(x) = E((x − E(x))2), where x is the distance from each point in
the point cloud to the nearest point in the target point cloud. When the variance D(x) is
minimized, the optimal rotation angle is obtained.

When calculating the translation matrix, this paper utilizes the cross-correlation co-
efficient of the two sets of two-dimensional point cloud data to calculate the translation
distance in the x-axis direction of the point cloud to be registered. The average value of the
y-values of the two sets of point cloud data is used to determine the translation distance
in the y-axis direction. Cross-correlation is essentially the inner product operation of two
arrays. In the linear space, it calculates the projection of the vector array of the point cloud
to be registered onto the vector array of the target point cloud. The larger the inner product
result is, the larger the projection, the smaller the angle between the two vectors, the more
consistent the direction, and the higher the similarity between the two sets of point clouds.
The formula for cross-correlation is as follows:

(x) ∗ g(x) =
∞

∑
−∞

f (x)g(x + τ)dτ (12)

where f (x) and g(x) are the y-values of the control points on the centerline of the tunnel.
The calculation process is shown in Figure 9. According to the centerline extraction al-
gorithm proposed in this paper, the centerline control point arrays obtained are of equal
length. Multiply and sum the corresponding values of f (x) and g(x) to obtain a cross-
correlation result A. Then move each value in array g(x) backward by one position and
calculate the corresponding values by multiplication and summation. Repeat this process
for all values in the array to obtain a cross-correlation result array V = A, B, C, . . . , D of
length 2n−1 . Based on the position of the maximum value in array V, which represents
the most similar cross-correlation coefficient between the two sets of point cloud arrays,
calculate the position d of the backward movement of array g(x), thereby obtaining the
translation distance of the point cloud data to be registered in the x-axis direction.
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Figure 9. Principle of the Maximum Correlation Coefficient.

3.3. Algorithm for Tunnel Deformation Detection

The overall purpose of deformation detection in tunnels is to identify areas with
significant changes from a global perspective. Due to the non-perfect alignment between
the data acquisition devices and the tunnel’s position during two different data collection
instances as well as the potential environmental changes within the tunnel between these
instances, the quality of the point cloud data collected at each time may not be consistent.
Consequently, there are no clearly corresponding points between the two sets of point
cloud data, making it impossible to identify precise deformation signals. The deformation
detection algorithm proposed in this paper is based on a point-to-point approach, utilizing
the KNN algorithm to search for the centroid of neighboring points around the point of
interest. It calculates the distance between the point of interest and its corresponding point
to detect the deformation of the tunnel.

3.3.1. Deformation Detection for a Whole Tunnel

An essential step in deformation detection algorithms involves finding corresponding
points between two sets of point clouds and calculating the distances between these
corresponding points. As shown in Figure 10, the black represents the target point cloud,
while the green represents the point cloud to be tested. Here, the red points represent a
point in the point cloud to be tested, the gray points represent k nearest neighbor points
around the red point, and the yellow point represents the centroid of the gray points. The
deformation distance, marked in red, is the distance to the yellow point. The specific
algorithm process is as follows: (1) Select a point, p(x, y, z), on the point cloud to be tested.
(2) Utilize the KNN (K-nearest neighbor) algorithm to select the nearest points k1, k2, ..., kn
on the target point cloud. (3) Calculate the coordinates of point p’s corresponding point

on the target point cloud: p
′
(

x
′
, y

′
, z

′
)
=

(
1
k

k
∑

i=1
xi, 1

k

k
∑

i=1
yi, 1

k

k
∑

i=1
zi

)
, where k is the number

of nearest neighbor points selected in the target point cloud. (4) Calculate the distance
between point p and its corresponding point in the target point cloud as follows:

∥∥∥pp
′
∥∥∥ =√(

xp − xp′
)2

+
(

yp − yp′
)2

+
(

zp − zp′
)2

, which represents the deformation of point p.

The accuracy of this algorithm is dependent on the density of the point cloud dataset and
the number of nearest neighbor points. When the point cloud resolution is low and the
number of nearest neighbor points is small, the accuracy of the detection algorithm may be
affected.
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Figure 10. Calculate the corresponding point.

3.3.2. Deformation Detection of Tunnel Sections

Due to the fact that the cross-sections of mine tunnels are not strictly rectangular, it is
not feasible to directly fit a standard rectangular frame to calculate the deformation of the
points to be detected. In this paper, the distance from the points to be detected to the fitted
centerline is calculated. By comparing the distances from the points to be detected and
the corresponding points in the target point cloud to the centerline, the deformation of the
points to be detected is calculated. When calculating the distance, considering the stress on
the strata and the deformation of the tunnel in coal mines, this paper uses the Manhattan
distance to calculate the horizontal and vertical changes between corresponding points
separately. As shown in Figure 11, the distance from each point on the tunnel cross-section
to the centerline point is the Manhattan distance of that point to the centerline point. The
enlarged part in the figure represents the distance difference between corresponding points
∆d = (coordinates of the point to be measured − coordinates of the target point) = ∆x + ∆y,
which represents the deformation of that point. When phenomena such as roof collapse,
sidewall bulging, and floor heaving occur in the tunnel, ∆d < 0. At the same time, by using
∆x and ∆y, the horizontal and vertical deformations of the tunnel at this cross-section can
be further analyzed.

Figure 11. Calculate the distance between corresponding points.

4. Experiment and Discussion

To validate the feasibility of the proposed algorithm, this study utilized point cloud
data from underground mine tunnels. The experimental site spans approximately 342 m
in length, featuring a rectangular cross-section with dimensions of approximately 5.8 m
in width and 2.86 m in height, resulting in a cross-sectional area of 16.59 square meters.



Sensors 2024, 24, 2299 18 of 27

The study employed the digital LiGrip H120 handheld laser scanning system to collect
point cloud data, and this system is capable of capturing data in a 280◦ × 360◦ direction.
The parameters of the laser scanning system are detailed in Table 1. Using the same
equipment and methodology, two sets of point cloud data were collected from the same
tunnel with a three-month interval. With the assistance of LiFuser-BP version 1.5.1 and
LiDAR360 Version 6.0, alongside the SLAM algorithm, the study efficiently obtained high-
precision 3D point cloud data through scanning. The point cloud data collected during
the experiment are stored in the PLY format, including spatial coordinates X, Y, and Z and
the reflection intensity of the tunnel. The two sets of point cloud data from the tunnel
span approximately 350 m in length, with approximately 32 million points in total. This
study focused on a subsection of the entire tunnel, extending approximately 15 m in the
direction of the tunnel with approximately 1.2 million points, which includes the tunnel’s
chambers. Our experimental setup consists of a Lenovo R9000p laptop manufactured in
Beijing, China, equipped with an AMD Ryzen 7 5800H 3.20 GHz CPU and NVIDIA GeForce
RTX 3060 GPU.

Table 1. LiGrip H120 Lidar system parameters.

Parameters Data

Handheld size L204 mm × W130 mm × H385 mm
Handheld weight 1.74 kg

Scanning field of view 280° × 360°
LiDAR accuracy ±3 cm
Point frequency 320,000 pts/s

4.1. Extraction and Analysis of Tunnel Centerline

The extraction algorithm of the tunnel centerline is mainly based on the slicing of the
tunnel. After the tunnel is sliced, the top and bottom lines of the slice and the left and
right wall lines are extracted based on the x-values of the slice, respectively, using one-
dimensional Gaussian kernel density estimation and two-dimensional linear kernel density
estimation. The z-value and y-value of the center point are calculated by averaging. The
extraction of the top and bottom lines of the tunnel slice using one-dimensional Gaussian
kernel density estimation has a certain ability to resist noise interference. For complex slice
situations, accurate top and bottom lines can also be extracted. As shown in the Figure 12,
there are cross-sectional diagrams and kernel density estimation diagrams at different slice
positions. Figure 12a,b are slices at x = 91,661 m; Figure 12c,d are slices at x = 91,662 m;
Figure 12e,f are slices at x = 91,663 m. The red and green lines in the figure represent the
bottom and top fitting lines, respectively, which are calculated from the abscissa of the red
peak and the abscissa of the green peak in the kernel density estimation graph. The window
width of kernel density estimation has a significant impact on the fitting results of the top
and bottom lines. As shown in Figure 13, when the window width is 0.01 m in Figure 13a,b,
the fitting line of the tunnel slice top plate is affected by noise points, deviating from the
actual top plate point cloud. When the window width is 0.5 m in Figure 13e,f, the fitting
line of the tunnel slice bottom plate is greatly affected by point clouds such as drainage
channels and transport machinery, also deviating from the actual point cloud. When the
window width is 0.1 m in Figure 13c,d, both the top and bottom fitting lines of the slice can
coincide well with the actual point cloud, so this paper chooses a window width of 0.1 m.

When extracting the left and right wall lines of the tunnel, this paper uses two-
dimensional linear kernel density estimation mainly because of the central symmetry of
the Gaussian kernel, which leads to strong gradient characteristics in the kernel density
estimation graph. Using edge detection algorithms to extract lines from this density map
results in significant errors. As shown in Figure 14, the red points in the figure represent the
xoy plane top view of the tunnel slice point cloud, Figure 14a shows the two-dimensional
Gaussian kernel density estimation, and Figure 14b shows the two-dimensional linear
kernel density estimation. It can be seen that the linear kernel density estimation has a
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significant difference in point density estimation at the boundary, which is more conducive
to the extraction of boundary lines by edge detection and straight line extraction algorithms.

Figure 12. Cross-sections and 1D kernel density estimates at different slices of the tunnel point cloud.
(a,c,e) are three different sections and the extracted top and bottom lines. (b,d,f) are the point cloud
distributions corresponding to the three sections used to extract the top and bottom plate lines.

Figure 13. Effect of different window widths for kernel density estimation on roof and floor extraction.
(a,c,e) are three different sections and the extracted top and bottom lines. (b,d,f) are the point cloud
distributions corresponding to the three sections used to extract the top and bottom plate lines.

Figure 14. Comparison of two-dimensional Gaussian kernel density estimation and two-dimensional
linear kernel density estimation.
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The left and right wall lines of the tunnel extracted according to the NURBS algorithm
are shown in Figure 15. The blue control points in the figure are the curve control points
recalculated by the NURBS algorithm, and the black lines are the left and right wall lines
fitted according to the control points. After calculating the midpoint position, obtaining the
centerline control points of the tunnel point cloud, and using the NURBS algorithm, the
tunnel centerline obtained is more consistent with the center point. As shown in Figure 16,
the green curve is the centerline fitted by the 3rd-degree B-spline curve, and the blue line is
the straight line fitted by the least squares method. Both expressions of the actual tunnel
centerline have certain deviations.

Figure 15. NURBS-based algorithm for fitting the left and right boundary lines of the tunnel.

Figure 16. Comparison of Centerline Fitting with Different Methods.

4.2. Point Cloud Registration Analysis

In this paper, the method of aligning centerlines is used to register the two tunnels,
and the effect after registration is shown in Figure 17. The green and yellow represent
the point cloud 1 and the target point cloud 2 to be registered, respectively, and the blue
represents the shape after registration of the point cloud to be registered. The three tunnel
centerlines in the figure are the centerlines of the three sets of point cloud collections
mentioned above. The centerlines of the registered point clouds and the centerlines of the
target point clouds basically coincide. Using the method proposed in this paper, the process
of centerline registration of tunnel point clouds is shown in Figure 18. Figure 18a shows
the projection of the centerline on the xoz plane. The yellow point cloud rotates around
the intersection of the two fitted lines to the position where it overlaps with the blue point
cloud, represented by the green point cloud. Figure 18b shows the points projected on the
xoy plane of the centerline. The blue and green represent the point clouds to be registered and
the target point clouds, and the red represents the registered point cloud obtained by rotation
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and translation. At the same time, this paper compares the results for the ICP point cloud
registration algorithm, obtaining the yellow point cloud. It can be seen in Figure 18 that the
registered centerline obtained by the algorithm in this paper is closer to the target point cloud.

Figure 17. Tunnel point cloud alignment based on the tunnel centerline.

Figure 18. Alignment of the centerline of the tunnel. (a) shows the projection of the centerline on the
xoz plane. (b) shows the projection of the centerline on the xoy plane.

From an overall perspective, the registration of tunnel point clouds achieves good
results. For subsequent tunnel deformation detection, this paper further analyzes the cross-
sections of the tunnel. As shown in Figure 19, the paper selects the same cross-sectional
point cloud from different point cloud data and compares the proposed registration algo-
rithm with ICP and NDT algorithms. The algorithm in this paper has a higher score of
overlap. As shown in Table 2, five tunnel slices are selected to calculate the fitness score
of registration. The fitness score is the root mean square error between corresponding
points of the two point clouds. The smaller the fitness score is, the higher the registration
accuracy. The algorithm proposed in this paper is compared with the classic ICP and NDT
registration methods, which achieves a better fitness score in this scenario.
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Figure 19. Comparison of point cloud alignment algorithms. The different color show the same slice
in different point cloud. (a) shows the two tunnel cross-sections to be registered, (b) shows the two
tunnel cross-sections registered by the ICP algorithm, (c) shows the tunnel cross-section registered by
the NDT algorithm, and (d) shows the two tunnel cross-sections registered by the algorithm proposed
in this paper.

Table 2. Alignment accuracy for different sliced point clouds.

Tunnel Slice NDT (m) ICP (m) Ours (m)

1 0.0113 0.0091 0.0035
2 0.0087 0.0094 0.0028
3 0.0094 0.0084 0.0036
4 0.0126 0.0090 0.0038
5 0.0097 0.0086 0.0042

4.3. Tunnel Deformation Analysis

The method proposed in this paper is utilized to conduct deformation analysis on the
registered point cloud data of the two phases mentioned above. The overall deformation
effects of the point cloud are illustrated in Figure 20, showing the deformation of the tunnel
from both internal and external perspectives with different colors representing the deforma-
tion values. The average deformation value calculated is 0.008 m. Points with deformation
values within ±0.008 m are depicted in green, indicating minor deformation. Points with
negative deformation values are depicted in yellow and red, indicating protrusion towards
the interior of the tunnel. Points with positive deformation values are depicted in purple
and blue, indicating recession towards the exterior of the tunnel. This method can similarly
detect the deformation of arbitrary tunnel cross-sections, as shown in Figure 21.

Figure 20. Global deformation analysis of the tunnel.
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Figure 21. Section deformation analysis of the tunnel. (a–c) show the deformation variables of
different cross-sections in a tunnel.

To emphasize the locations of significant deformations in the tunnel and facilitate the
rapid detection of safety risks by managers, this study sets a safety deformation threshold.
The portions exceeding this threshold are marked in red, while the remaining safe areas
are marked in green, as shown in Figure 22. Analysis reveals significant deformations
due to differences in the environmental conditions within the tunnel during the collection
of two sets of point cloud data. During the first data collection phase, the tunnel was in
a non-production interval, with no coal miners or transportation activities. In contrast,
during the second data collection phase, the underground tunnel was in operation, with
significant coal accumulation visible on the conveyor belt in the image. The red point cloud
near the right tunnel wall in the figure has larger deformations. Compared with the point
clouds to be measured and the target point clouds, it can be seen that the tunnel to be
measured has undergone roof bulging deformation.

Figure 22. Key deformation detection analysis of the coal mine tunnel.

To verify the accuracy of the algorithm, this paper randomly selects a point cloud slice
in the tunnel and conducts experiments using the KNN algorithm to find corresponding
points in the target point cloud. By selecting different number of nearest neighbor points,
the number of nearest neighbor points with the smallest amount of average change is
selected. As shown in the Table 3, when k = 1, the average change is not the minimum
value due to the point cloud with measurement error, when k = 2 and 3, the average change
is consistent, but the standard deviation of the change is smaller when k = 3, and when
k > 3, the average change shows an increasing trend, shown in this paper, the number of
nearest neighbor points is selected as 3.
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Table 3. Alignment accuracy for different sliced point clouds.

Number of Nearest
Neighbor Points Average Variation (m) Standard Deviation of the

Variation (m)

1 0.0314 0.0417
2 0.0305 0.0427
3 0.0305 0.0424
4 0.0308 0.0435
5 0.0309 0.0436

This paper selects 10 sections and calculates the average change amount, standard
deviation of the change amount, mean value of the change amount in the horizontal
direction and mean value of the change amount in the vertical direction of the point cloud
at the section, as is shown in Table 4. The average change amount of the section is 0.0267 m,
which meets the data acquisition accuracy requirements of LiDAR equipment. Horizontal
deformation can directly reflect the deformation of the roadway such as bulge and rockslide
on the wall. Vertical deformation can directly reflect the deformation of the roadway such
as roof sinking, bulge on the floor, and dented floors.

To further validate the accuracy of the deformation detection algorithm, this study
employed the cross-measurement method at the same location during two sessions of
collecting three-dimensional point cloud data in the tunnel, obtaining a deformation value
of 0.015 m for the tunnel roof. Using this measurement as the first method, which is
a benchmark. Different deformation detection methods were compared for accuracy
at the same cross-sectional position, as shown in the table. The second method [46,47]
utilized the registered point cloud data of the tunnel from this study and employed the
MDP deformation detection algorithm to obtain the average deformation value of the
cross-section roof. The third method [18] also utilized registered tunnel point cloud data,
converting the Cartesian coordinates of the point cloud into polar coordinates centered
on the cross-section midpoint, altering the corresponding point pairs, and calculating the
average deformation value of the cross-section roof. The fourth method [36] involved
fitting a straight line to the cross-section roof and calculating the average deformation
value by comparing the distance of the point cloud to the line. As shown in Table 5, the
deformation values obtained by the algorithm in this study are closest to those obtained by
the cross-measurement method. Since the deformation of the roof often reflects vertical
deformation, the algorithm in this study also demonstrates superior performance.

Table 4. Accuracy analysis of the deformation of the tunnel at different slices.

Slice X Position Average Variation (m) Standard Deviation of
Variation (m)

Average Variation in
Horizontal Direction (m)

Average Variation in
Vertical Direction (m)

91664 0.0265 0.0188 0.0043 0.0091
91665 0.0244 0.0204 0.0034 0.0075
91666 0.0296 0.0245 0.0011 0.0108
91667 0.0242 0.0186 0.0002 0.0091
91668 0.0237 0.0191 0.0004 0.0083
91669 0.0255 0.0222 0.0004 0.0083
91670 0.0273 0.0338 0.0010 0.0086
91671 0.0301 0.0307 0.0007 0.0092
91672 0.0255 0.0322 0.0022 0.0089
91673 0.0305 0.0427 0.0031 0.0048
Mean 0.0267 0.0263 0.0017 0.0085
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Table 5. Comparison of the accuracy of different deformation detection algorithms.

No. Deformation Analysis
Method Deformation (m) Deformation in

Horizontal Direction (m) Error (m)

1 Cross-sectional 0.0150 0.0150 0.0000
2 MDP 0.0227 0.0207 0.0077
3 Polar-coordinate 0.0364 0.0371 0.0214
4 Contour-fitting 0.0578 0.0623 0.0428
5 Ours 0.0209 0.0187 0.0590

5. Conclusions

This paper proposes a coal mine roadway point cloud deformation detection algo-
rithm based on mobile 3D laser scanning technology. The algorithm innovatively presents
solutions in three aspects: roadway extraction for centerline identification, point cloud reg-
istration, and point cloud deformation detection. The algorithm achieves centimeter-level
accuracy in deformation detection, consistent with the measurement precision of mobile
3D laser scanning technology. Compared with other mobile 3D scanning deformation
detection algorithms, it demonstrates certain advantages. This algorithm can compute the
centerline of the roadway in the presence of holes in the point cloud data and irregular
shapes of roadway cross-sections, thus facilitating point cloud registration. Moreover, the
algorithm does not require the deployment of special control points such as target balls
or markers within the roadway, avoiding disruption to the environment inside coal mine
roadways. It does not rely on known control point coordinates, hence possessing broader
environmental applicability.

The deformation detection algorithm based on mobile 3D laser scanning technology
proposed in this paper can complement stationary laser scanning or traditional contact-
based deformation detection methods, forming a two-tier deformation detection approach
for intelligent mines. Leveraging its low cost and high detection efficiency, the algorithm
rapidly identifies overall deformation trends in underground roadways and local defor-
mation quantities of roadway cross-sections. This facilitates the analysis of changes in
roadway structural mechanics, providing reliable data support for roadway safety.
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