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The supplementary material includes detailed information regarding the processing
pipeline and analysis of magnetoencephalography data reported in the manuscript. The
following flow chart represents the main step of the data processing and analysis, in which
the different colors refer to different steps: data preparation and filtering (blue), brain ac-
tivity reconstruction or focusing (dark yellow), and connectome evaluation and statistical
tests (green).



Raw MEG Data

2

Bandpass filter

S

PCA

for environmental noise reduction
+

visual inspection by expert rater

U

ICA
for physiological artifacts reduction
(e.g. eye blinking and heart activity)
+

visual inspection by expert rater

Filtered MEG Data

LCMV for source reconstruction
+

MRI anatomical information

Estimated Brain activity

—

PLM (connectivity metric)

Connectivity matrix
(functional connectome)

—

Fingerprint Evaluation

Identifiability metrics

=

Statistical Analysis
(PERMANOVA and PERMUTATION TEST)

S

Differences
between groups




BANDPASS FILTERING

The first step in the processing pipeline consists of data filtering. More in detail, a 4%
order Butterworth IIR (Infinite Impulse Response) band-pass filter was adopted. For the
sake of clarity, the following picture reports its magnitude (in dB) as function of the
frequency:
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PRINCIPAL COMPONENT ANALYSIS (PCA)

Principal Component Analysis (PCA) is adopted to reduce the environmental noise.
It is a statistical method used for dimensionality reduction and feature extraction. It works
by transforming the original data into a new coordinate system (a set of orthogonal axes)
such that the greatest variance by any projection of the data comes to lie on the first
coordinate (called the first principal component), the second greatest variance on the
second coordinate, and so on.

More in detail, the adopted PCA approach can be summarised in the following steps:

Centering the data

Firstly, the mean of each signal collected by each channel (p in total) is subtracted to center
the data around the origin. Thus, a matrix X containing all the collected signals organized
in columns is obtained

Covariance matrix
Then, the covariance matrix X of the data matrix X is computed. The covariance matrix
between the features (i.e., columns) i and j is given by:
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where n is the number of samples of each signal, X; and X are the means of the features i
and j, respectively.

Eigenvalue decomposition

After the previous steps, the eigenvalues A4, 4;, ..., A, and the corresponding eigenvectors
V1, Vy, ..., Vp of the covariance matrix ¥ are calculated. The eigenvectors represent the
directions of maximum variance, and the eigenvalues represent the magnitude along each
eigenvector.



Principal components selection

The “principal components” are sorted in descending order of their corresponding
eigenvalues. The first k principal components capture most of the variance in the data. In
the considered case, k was chosen such that it retains 95% of the total variance.

Dimensionality reduction

Finally, the data is projected onto the subspace spanned by the first k principal
components to reduce the dimensionality of data while preserving as much variance as
possible.

INDEPENDENT COMPONENT ANALYSIS

Independent Component Analysis (ICA) was adopted to reduce physiological
artifacts (i.e., eye blinking and heart activity). It is a computational technique for
separating a multivariate signal into additive, independent components. It assumes that
the observed multivariate data are linear mixtures of some underlying independent
components. ICA aims to estimate these independent components by finding a linear
transformation of the observed data that minimizes their statistical dependence.

More in detail, the adopted ICA can be summarized as:

Centering the Data
Similarly to PCA, ICA starts by centering the data so that each feature has zero mean.

Whitening the Data

ICA whitens the centered data by transforming it into a new space where the covariance
matrix is the identity matrix. This decorrelates the data and ensures that all variables have
unit variance.

Finding Independent Components

ICA then estimates the independent components by finding a linear transformation W
that maximizes the statistical independence of the transformed signals. This is achieved
by maximizing some measure of non-Gaussianity, such as negentropy or kurtosis.

Unmixing the Signals
Once the transformation matrix W is found, it is applied to the whitened data to obtain
the estimated independent source signals.

LINEARLY CONSTRAINED MINIMUM VARIANCE BEAMFORMER

The Linearly Constrained Minimum Variance (LCMV) beamformer is a signal
processing technique used in array processing, particularly in the field of sensor array
processing and spatial filtering. It aims to spatially filter a set of observed signals to
enhance the signal of interest while suppressing interference and noise, subject to linear
constraints. The goal of LCMV beamforming is to find a set of weights (or spatial filter)
that optimally combines the signals from the sensors to maximize the signal-to-noise ratio
(SNR) of the output subject to linear constraints.

More in detail, the LCMYV problem can be posed mathematically as:

w(i(s tr[WT(q)C(x)W(q)] subjectto WT(q)L(q) =1,

in which the superscript “T” refers to the transpose operation, W is the weight matrix for
the spatial filtering, x is the data collected at sensor locations (corrupted by noise), C(x) is
the covariance matrix of the noisy data, q is a point of the considered volume, tr[-] is the
trace operation (performed on a matrix), I is the identity matrix and L is the matrix of the
forward model relating the brain source activity with the signal collected at sensor
locations (i.e., Leadfield matrix).

A solution to the previous problem can be obtained by using the method of Lagrange
multipliers and completing the square, yielding to:
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Finally, the previous equation and reminding that y = WT(q) x, it is possible to
perform the source localisation by estimating the variance as a function of location withing
the volume of interest.

PHASE LINEARITY MEASUREMENT

The Phase Linearity Measurement (PLM) is a metric to measure brain connectivity
based on the analysis of similar behaviours in the phases of recorded signals. Its intrinsic
characteristics include considerable noise rejection properties with respect to other widely
adopted connectivity metrics.

The main aspect of this approach consists of its capability to identify signals which
are synchronised in frequency with either a constant phase difference or a linear phase
difference over time.

The main steps of the adopted PLM metric are reported in the following:

1. Computation of the analytic signals from the real-valued data.
Determination of the interferometric signal and its normalization.

3. Evaluation of the energy spectral density of the normalised interferometric signal
S,(6).

4. PLM metric evaluation as ratio between energies, i.e.:
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in which B represent the integration band (in our work, B =1 Hz).

PLM =

FINGERPRINT ANALYSIS

The fingerprint analysis based on the functional connectomes (FCs) is a methodology
able to define subject-specific characteristics. Briefly, it starts from the definition of a
matrix known as “Identifiability” or “Differentiation” matrix whose elements provide a
measure of similarity by adopting the Pearson’s correlation between FCs of different
subjects.

Person’s linear correlation coefficient is the most used linear correlation coefficient.

For column X, in matrix X and column Yy, in matrix Y, having means X, = % it Xai, and
Y, = %Zjnzl Yy,;, Pearson’s linear correlation coefficient p(a, b) is defined as:
p(a' b) — Z?:l(fa,iz_)_(a)(Yb,i_’_ib) -
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where n is the length of each column. Values of the correlation coefficient can range from
-1 to +1. A value of -1 indicates perfect negative correlation, while a value of +1 indicates
perfect positive correlation. A value of 0 indicates no correlation between the columns.

In our work, as described in Section “Fingerprint Analysis”, we adopted as metrics
for measuring the similarity among subjects the Isey, [qir and Iopers.
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STATISTICAL ANALYSIS - PERMANOVA

Permutational multivariate analysis of variance (PERMANOVA) is a non-parametric
multivariate statistical permutation test. PERMANOVA is used to compare groups of
objects and test the null hypothesis that the centroids and dispersion of the groups as
defined by measure space are equivalent for all groups. A rejection of the null hypothesis
means that either the centroid and/or the spread of the objects is different between the
groups. Hence the test is based on the prior calculation of the distance between any two
objects included in the experiment. PERMANOVA draws tests for significance by
comparing the actual F test result to that gained from random permutations of the objects
between the groups.

In the simple case of a single factor with p groups and n objects in each group, and
N = np, the pseudo F-statistic is calculated as:
=)
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and df being the squared distance between objects i and j, and &; being 1 if the
observations i and j belong to the same group, and 0 otherwise.

STATISTICAL ANALYSIS—PERMUTATION TEST
After that, a post-hoc analysis via a permutation test was performed to identify the

pairs that significantly differ. The permutation test is based on random permutations of
the data, which are used to create a null distribution for the test statistic.

Hypothesis formulation with a null hypothesis (HO) and an alternative hypothesis (H1).
Choice of a test statistic that measures the difference between the groups or conditions.
Calculation of the observed value of the test statistic using the original data.
Permutation Procedure:

a. Pooling the data from all groups or conditions into a single dataset.

b. Randomly shuffling the labels or group assignments while keeping the data
values intact. This effectively breaks any relationship between the groups or
conditions.

c. Recalculation of the test statistic using the permuted data.

Repetition of the permutation process for a large number of times to create a distribution
of the test statistic under the null hypothesis.

Comparing observed and permutated test statistics. If the observed test statistic is extreme
(i.e., falls in the tails of the permutation distribution), it suggests that the null hypothesis
is unlikely to be true.

Calculation of the p-value, which is the proportion of permuted test statistics that are as
extreme as or more extreme than the observed test statistic. It represents the probability
of observing such an extreme test statistic under the null hypothesis.

Make inference based on the p-value about whether to reject or fail to reject the null
hypothesis.



