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Abstract: Robotic odor source localization (OSL) is a technology that enables mobile robots or
autonomous vehicles to find an odor source in unknown environments. An effective navigation
algorithm that guides the robot to approach the odor source is the key to successfully locating
the odor source. While traditional OSL approaches primarily utilize an olfaction-only strategy,
guiding robots to find the odor source by tracing emitted odor plumes, our work introduces a
fusion navigation algorithm that combines both vision and olfaction-based techniques. This hybrid
approach addresses challenges such as turbulent airflow, which disrupts olfaction sensing, and
physical obstacles inside the search area, which may impede vision detection. In this work, we
propose a hierarchical control mechanism that dynamically shifts the robot’s search behavior among
four strategies: crosswind maneuver, Obstacle-Avoid Navigation, Vision-Based Navigation, and
Olfaction-Based Navigation. Our methodology includes a custom-trained deep-learning model for
visual target detection and a moth-inspired algorithm for Olfaction-Based Navigation. To assess the
effectiveness of our approach, we implemented the proposed algorithm on a mobile robot in a search
environment with obstacles. Experimental results demonstrate that our Vision and Olfaction Fusion
algorithm significantly outperforms vision-only and olfaction-only methods, reducing average search
time by 54% and 30%, respectively.

Keywords: odor source localization; moth-inspired algorithm; computer vision-based navigation;
robot operating system; multi-modal robotics

1. Introduction

Sensory systems like olfaction, vision, audition, etc., allow animals to interact with
the external environment. Among these, olfaction is the oldest sensory system to evolve
in organisms [1]. Olfaction allows organisms with receptors for the odorant to identify
food, potential mating partners, dangers, and enemies [2]. In some nocturnal mammals
like mice, as much as five percent of the genome is devoted to olfaction [3]. Similar
to animals, a mobile robot integrated with a chemical sensor can detect odors in the
external environment. Robotic odor source localization (OSL) is the technology that allows
robots to utilize olfaction sensory inputs to navigate toward an unknown target odor
source in the given environment [4]. It has important applications, including monitoring
wildfires [5], locating air pollution [6], locating chemical gas leaks [7], locating unexploded
mines and bombs [8], locating underground gas leaks [9], marine surveys such as finding
hydrothermal vents [10], etc.

Locating an unknown odor source requires an effective OSL algorithm to guide the
robot based on sensor observations. Current OSL algorithms include bio-inspired methods
that imitate animal olfactory behaviors, engineering-based methods that rely on mathemati-
cal models to estimate potential odor source locations and machine learning-based methods
that use a trained model to guide the robot toward the odor source. The typical bio-inspired
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methods include the moth-inspired algorithm that imitates male moths’ mate-seeking
behaviors [11], where a robotic agent will follow a ‘surge/casting’ model [12] to reach the
odor source. Typical engineering-based methods includes the Particle Filter algorithm [13],
where the robot will use historic olfaction reading to predict the odor source location.
Finally, typical machine learning-based OSL methods include deep supervised [14] and
reinforcement learning-based methods [15].

All of these approaches rely on olfaction (e.g., chemical and airflow) sensing to detect
and navigate to the given odor source. However, approaches that rely solely on olfaction
sensing struggle in turbulent airflow environments. Simple organisms without vision (e.g.,
nematodes) use vision-free OSL [16]. But, in addition to humans, vision is a primary sensory
modality for odor source localization in mammals, raptors [17], and even invertebrates like
fruit flies [18], mosquitoes [19], beetles [20], etc.

To find an unknown odor source location, the sense of smell, i.e., olfaction, is the
primary modality on which animals rely [21,22]. Wind sensing is included in the animal
olfactory behaviors, such as the mate-seeking behaviors of male moths [23], where a male
moth flies against the wind direction to approach the odor source location when it senses
high odor concentrations. Somatosensory sensing (i.e., tactile sensing) and thermal sensing
are not widely used in the task of finding odor source location. Vision, on the other hand,
is important in the task of finding the odor source location [24]. Usually, vision works with
olfaction for animals to pinpoint the exact odor source location. In the event of sensing
high odor concentration, animals will first use vision to search for possible odor source
targets, and, if such targets are not directly visible, animals will rely on olfaction to trace
odor plumes and approach the odor source. The final odor source confirmation usually
relies on vision. Thus, both vision and olfaction are vital modalities in the task of odor
source localization.

Similarly, a robot with both olfaction- and vision-sensing capabilities (e.g., with a
camera and chemical sensor) can find an unknown odor source more efficiently, compared
to olfaction-only OSL navigation methods. Thus, this project departs from the existing OSL
navigation methods in utilizing both robotic vision and olfaction in searching for the odor
source location. The core of this project involves designing an algorithm that utilizes both
vision and olfaction sensing for locating an unknown odor source location.

The project proposes an effective sensor fusion approach that utilizes a vision method
and bio-mimicking olfaction method to guide the robot toward an unknown odor source
in a real-world obstacle-ridden search area with both laminar and turbulent airflow se-
tups. Figure 1 shows the proposed method, where we show the developed robot platform
equipped with vision and olfaction sensors. The vision sensors include a camera, and the
olfaction sensors include a chemical detector and anemometer. It also includes a Laser
Distance Sensor (LDS) for obstacle detection. The sensor observations are transmitted to a
decision-making model, which is implemented in a remote computer. The model selects
Obstacle-Avoid Navigation, Vision-Based Navigation, or Olfaction-Based Navigation be-
havior based on the sensor readings. In the proposed decision-making model, the robotic
vision is achieved by a deep-learning vision model, and the robotic olfaction model is
based on a bio-mimicking moth-inspired algorithm. Based on the current sensor reading,
the active search behavior calculates the robot heading commands, guiding the robot to
approach the odor source location. Finally, the robot executes the heading command,
collects new sensor readings at the new location, and repeats the loop until the odor source
is detected.
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Figure 1. Flow diagram of the proposed method for the OSL experiment. We utilized the Turtlebot3
robot platform. We equipped it with a camera, Laser Distance Sensor, airflow sensor, chemical sensor,
etc. The robot utilizes 3 navigation behaviors—Obstacle-Avoid Navigation, Vision-Based Navigation,
and Olfaction-Based Navigation to output robot heading and linear velocity.

In order to test the performance of our proposed Vision and Olfaction Fusion Navi-
gation algorithm, we conducted 30 real-world OSL experiments using the Olfaction-Only
Navigation algorithm, Vision-Only Navigation algorithm, and the proposed Vision and Ol-
faction Fusion Navigation algorithms in both laminar and turbulent airflow environments.
Contributions of this work can be summarized as follows:

1. Introduce vision as an additional sensing modality for odor source localization. For
vision sensing, we trained a deep-learning-based computer vision model to detect
odor sources from emitted visible plumes;

2. Develop a multimodal Vision and Olfaction Fusion Navigation algorithm with Obstacle-
Avoid Navigation capabilities for OSL tasks;

3. Compare the search performance of Olfaction-Only and Vision-Only Navigation
algorithms with the proposed Vision and Olfaction Fusion Navigation algorithm in a
real-world search environment with obstacles and turbulent airflow setups.

In the remainder of this paper, Section 2 reviews the recent progress of Olfactory-Based
Navigation algorithms; Section 3 reviews technical details of the proposed OSL algorithm;
Section 4 presents details of the performed real-world experiments; Section 5 includes
a discussion on the future research directions based on this work; and, finally, Section 6
includes overall conclusions of the work.

2. Related Works

Research on robotic odor source localization (OSL) has gained significant attention in
recent decades [25]. Technological advancements in robotics and autonomous systems have
made it possible to deploy mobile robots for locating odor or chemical sources. Designing
algorithms that mimic the navigation method of biological organisms is a typical approach
in robotic odor source localization research. Organisms spanning various sizes rely on scent
for locating objects. Whether considering a bacterium navigating an amino acid gradient or
a wolf tracking down prey, the ability to follow odors can be crucial for survival.

Chemotaxis is the simplest odor source localization approach in biological organisms,
where they rely only on olfaction for navigation. For example, bacteria exhibit chemotaxis
by adjusting their movement in response to changes in chemical concentration. When they
encounter higher levels of an appealing chemical, their likelihood of making temporary
turns decreases, promoting straighter movement. Conversely, in the absence of a gradient
or when moving away from higher concentrations, the default turning probability is
maintained [26]. This simple algorithm enables single-celled organisms to navigate a
gradient of attractive chemicals through a guided random walk. Nematodes [16] and
crustaceans [27] also follow chemotaxis-based odor source localization. Early attempts at
robotic OSL focused on employing such simple gradient-following chemotaxis algorithms.
These methods utilized a pair of chemical sensors on plume-tracing robots, directing them
to steer towards higher concentration measurements [28]. Several early studies [29–32]
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validated the effectiveness of chemotaxis in laminar flow environments, characterized by
low Reynolds numbers. However, in turbulent flow environments with high Reynolds
numbers, alternative methods were proposed, drawing inspiration from both complex
biological and engineering principles.

Odor-gated anemotaxis navigation is a more complex odor source localization method
that utilizes senses of both odor and airflow for navigation. Moths [21,23,33], birds [34,35],
etc. are organisms that follow this type of navigation. In particular, mimicking the mate-
seeking behavior of male moths led to the development of the moth-inspired method in
robotic odor source localization. This method was successfully applied in various robotic
OSL scenarios [36]. Additionally, diverse bio-inspired search strategies like zigzag, spiral,
fuzzy-inference, and multi-phase exploratory approaches have been introduced [37] in
odor-gate anemotaxis-based solutions. Recent bio-inspired OSL navigation methods also
aimed to make the search environment more complicated. For instance, chemical plume
tracking can be conducted in three-dimensional environments using three-dimensional
moth-inspired OSL search [38,39].

Engineering-based methods take a different approach than bio-mimicking algorithms,
relying on mathematical models for estimating odor source locations. These methods are
often times known as infotaxis [40]. These methods involve constructing source probability
maps, dividing the search area into regions, and assigning probabilities indicating the
likelihood of containing the odor source. Algorithms for constructing such maps include
Bayesian inference, particle filters, stochastic mapping [41], source term estimation [42],
information-based search [43], partially observable Markov decision processes [44], com-
bination of infotaxis and Dijkstra algorithm [45], etc. Subsequently, robots are guided
towards the estimated source via path-planning algorithms such as artificial potential fields,
A-star [46,47]. These models also rely on olfaction sensing for estimating the odor source.

Deep-learning (DL)-based methods are increasingly utilized for OSL experiments.
Recent developments involve the use of Deep Neural Networks (DNNs) to predict gas leak
locations from stationary sensor networks or employing reinforcement learning for plume-
tracing strategies. For instance, Kim et al. [14] trained an RNN to predict potential odor
source locations using data from stationary sensor networks obtained through simulation.
Hu et al. [15] presented a plume-tracing algorithm based on model-free reinforcement
learning, utilizing the deterministic policy gradient to train an actor–critic network for
Autonomous Underwater Vehicle (AUV) navigation. Wang et al. [48] trained an adaptive
neuro-fuzzy inference system (ANFIS) to solve the OSL problem in simulations, yet real-
world validations are necessary to confirm its efficacy. In summary, despite the promising
potential of DL technologies, their application in solving OSL problems is still in its early
stages and warrants further research. Most DL-based methods are validated in virtual
environments through simulated flow fields and plume distributions, necessitating real-
world implementations to validate their effectiveness.

Fusing vision with olfaction for odor source localization tasks is common in complex
organisms like mice [49,50]. Humans also use vision as a primary sensor for odor source
navigation tasks. However, very few works have utilized vision for OSL tasks. Recent
advances in computer vision techniques can allow robots to use vision as an important
sensing capability for detecting visible odor sources or plumes. The added advantage of
vision is that it can allow robots to navigate to odor sources without being affected by
sparse odor plumes or turbulent airflow in the navigation path. The main contribution of
this paper is designing a dynamic Vision and Olfaction Fusion Navigation algorithm for
odor source localization in an obstacle-ridden turbulent airflow environment.

3. Materials and Methods
3.1. Overview of the Proposed OSL Algorithm

Figure 2 shows the flow diagram of the proposed navigation algorithm. In this work,
the initial robot search behavior is the ‘Crosswind maneuver’ behavior, where the robot
moves crosswind to detect initial odor plumes. If the robot encounters obstacles in its
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surroundings, it switches to the ‘Obstacle-Avoid Navigation’ behavior, where the robot
moves around to avoid obstacles. During the robot maneuver, the robot seeks valid visual
and olfactory detection. If the robot obtains a valid visual detection, it employs Vision-
Based Navigation to approach the odor source location. Similarly, if the robot obtains
sufficient olfactory detection, it employs the Olfaction-Based Navigation algorithm. If the
robot is in the vicinity of the odor source, it is considered as the source declaration, i.e.,
the end of the search. Otherwise, the robot returns to the default ‘Crosswind maneuver’
behavior and repeats the above process.

Figure 2. The flow diagram of the proposed OSL algorithm. There are four navigation behaviors,
including ‘Crosswind maneuver’, ‘Obstacle-Avoid Navigation’, ‘Vision-Based Navigation’, and
‘Olfaction-Based Navigation’.

In the following section, we present the design of the aforementioned search behaviors,
including Crosswind maneuver (Section 3.2), Obstacle-Avoid Navigation (Section 3.3),
Vision-Based Navigation (Section 3.4), and Olfactory-Based Navigation (Section 3.5).

3.2. Crosswind Maneuver Behavior

In an OSL task, the robot does not have any prior information on the odor source
location. Thus, we define a ‘Crosswind maneuver’ behavior as the default behavior,
directing the robot to find initial odor plume detection or re-detect odor plumes when
valid vision and olfaction observations are absent. Crosswind movement, where the robot
heading is perpendicular to the wind direction, increases the chance of the robot detecting
odor plumes [51].

In Figure 3, x-o-y is the inertial frame, which represents the fixed global frame. And
xb-ob-yb is the body frame, which is the local frame fixed on the robot. Denote that the
wind direction in the inertial frame is ϕInertial ; thus, following the ‘Crosswind maneuver’
behavior, the robot target heading in the inertial frame ψ can be defined as

ψc = ϕInertial + 90. (1)
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Figure 3. Robot notations. Robot position (x, y) and heading ψ are monitored by the built-in
localization system. Wind speed u and wind direction are measured from the additional anemometer
in the body frame. Wind direction in inertial frame ϕInertial is derived from robot heading ψ and wind
direction in body frame.

In addition, it is worth mentioning that we set the robot’s linear speed as a constant
and only changed the target heading commands in the ‘Crosswind maneuver’ behavior
to simplify the robot control problem and save search time. The robot then changes the
angular velocity to match the target heading.

3.3. Obstacle-Avoid Navigation Behavior

The ‘Obstacle-Avoid Navigation’ behavior is activated when the robot moves close to
an obstacle object within the search environment, which directs the robot to move around
and avoid the obstacles. In this work, the robot employs a Laser Distance Sensor (LDS)
to measure the distances from the robot to any obstacles in five surrounding angles as
presented in Figure 4. Specifically, we denote laser[x] as the measured distance at angle x,
including Front (laser[0]), Slightly Left (laser[45]), Slightly Right (laser[315]), Left (laser[90]),
and Right (laser[270]). If the obstacle distance in any of the five angles is less than the
threshold, the proposed ‘Obstacle-avoid Navigation’ behavior is activated.

Figure 4. Five directions in the robot’s laser distance sensing, including Left, Slightly Left, Front,
Slightly Right, and Right. laser[x] denotes the distance between the robot and the object at the angle
x, which is measured from the onboard laser distance sensor.

Algorithm 1 shows the pseudo-code for the ’Obstacle-Avoid Navigation’ behavior. The
main idea is to identify the relative location of obstacles to the robot and command the robot
to move around to avoid obstacles. Specifically, the robot initially sets the linear velocity
and angular velocity as vc and ωc, respectively. Positive values in vc and ωc represent
forward and left rotation, respectively, and negative values represent backward and right
rotation, respectively. Initial values of vc and ωc are set as 0.6 m/s and 0 rad/s in this work.
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Algorithm 1 ‘Obstacle-Avoid Navigation’ Behavior

1: Set robot linear velocity as vc = 0.6 m/s
2: Set robot angular velocity as ωc = 0 rad/s
3: if laser[0] > thr then
4: ωc = 0 rad/s
5: else
6: vc = 0 m/s and ωc = 0 rad/s
7: if (laser[45] > thr) ∨ (laser[315] > thr) then
8: if laser[45] > laser[315] then
9: ωc = 0.5 rad/s

10: else
11: ωc = −0.5 rad/s
12: end if
13: else if (laser[90] > thr) ∨ (laser[270] > thr) then
14: if laser[90] > laser[270] then
15: ωc = 0.5 rad/s
16: else
17: ωc = −0.5 rad/s
18: end if
19: else
20: vc = −0.5 m/s
21: end if
22: end if

In the ‘Obstacle-Avoid Navigation’ behavior, the robot will always check if there is
a clear path in the Front direction, i.e., laser[0] > thr (thr is the threshold for obstacle
detection, 0.75 m in this work), and, if it is true, the robot will move forward with ωc = 0
rad/s. If the Front is blocked, the robot will stop and check Slightly Left or Slightly Right for
a clear path ((laser[45] > thr) ∨ (laser[315] > thr)). If there is a clear path in either of these
two directions, the robot will compare clearance in Slightly Left and Slightly Right and
rotate left (i.e., ωc = 0.5 rad/s) or right (i.e., ωc = −0.5 rad/s) to face the greater clearance.
If there is no clearance in Slight Left or Slight Right, the robot will check Left and Right for
a clear path ((laser[90] > thr) ∨ (laser[270] > thr)). If there is a clear path, the robot will
compare Left and Right clearance (laser[90] > laser[270]) and rotate left (ωc = 0.5 rad/s)
or right (ωc = −0.5 rad/s) to face the greater clearance. If there is no clear path in all five
directions, the robot will move back (vc = −0.5 m/s) to escape the dead end.

It should be mentioned that the proposed navigation algorithm does not have access to
the global map of the search environment, the locations of obstacles, and destination odor
source. Therefore, planning-based obstacle avoidance algorithms like Artificial Potential
Field algorithm [52], A* algorithm [53], Dijkstra algorithm [54], etc. are not applicable in our
problem. In such partially observable environments, using discrete behavior control would
be the best option. A similar approach was employed in [55]. Compared to classic motion-
planning algorithms (e.g., DJ, A-star, APF), our proposed obstacle avoidance algorithm has
following advantages:

• It does not rely on prior knowledge of the global map nor on location of the obstacles
or the destination;

• Compared to most deep-learning-based navigation planners, it requires less inference time.

3.4. Vision-Based Navigation

In this work, we employ vision as the main approach to detect odor sources within the
search environment. Vision sensing allows the robot to detect the plume source location
in its visual field and approach it directly. Olfaction-Only Navigation methods often
rely on airflow direction for navigating to the odor source. This can lead to failure in
turbulent airflow environments. Given that visual sensing is not guided by airflow direction,
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combining it with Olfaction-Based Navigation can allow the robot to find the odor source
in turbulent airflow environments.

The proposed Vision-Based Navigation relies on computer vision techniques. Specif-
ically, we train a deep-learning-based object detection model, i.e., YOLOv7, to detect
vapors emitted from the odor source. Vapors can be considered as a common and distinct
feature for the odor source object, such as smoke for fire sources, chemical plumes for
chemical leaks or hydrothermal vents, etc. It should be mentioned that, if the odor source
does not have a distinct plume feature (i.e., transparent vapors), the robot can still find
the odor source using the Olfaction-Based Navigation behavior of the proposed Vision
and Olfaction Fusion algorithm. Additionally, we have provided real-world performance
comparison between the Olfaction-Based Navigation, Vision-Based Navigation and the
proposed navigation algorithms.

In the proposed vision-sensing method, we trained a YOLOv7 model to detect odor
plumes in the continuously captured images. To generate training images, we extracted
243 observation frames with a resolution of 640 × 480 while the Turtlebot was approaching
the odor plumes at a variety of angles and in different lighting conditions. Figure 5 shows
two sample frames used for training the vision model. These data were split into training,
validation, and testing datasets for training the model. Roboflow [56] was utilized as the
annotation tool for accurate bounding boxes and polygon delineation.

Figure 5. Two sample frames that include humidifier odor plumes in different lighting and spatial
conditions. The frames are sampled out of the total 243 frames used for training the vision model. All
of the frames were captured by the Turtlebot robot in the experiment area.

To assess YOLOv7 performance, diverse predefined augmentation techniques in
Roboflow were systematically applied to ‘Dataset-1’. These included rotation (−10° to
+10°), shear (±15° horizontally and vertically), hue adjustment (−25° to +25°), saturation
adjustment (−25% to +25%), brightness adjustment (−25% to +25%), exposure adjustment
(−25% to +25%), blur (up to 2.5 px), and noise (up to 1% of pixels). Post-augmentation,
the resulting augmented dataset, labeled as ‘Dataset-3’, enriched the training set for a
comprehensive evaluation of YOLOv7’s robustness in detecting prescribed odor plumes.
We set the number of training epochs to 100, with a batch size of 16. The resulting training
accuracy was 98% and testing accuracy was 93%.

The implemented vision model returns a box bounding the plume in the image if it
detects an odor plume. The output of the model also includes the horizontal and vertical
location of the plume bounding box. If the model returns a plume bounding box, the robot
continues moving forward (i.e., vc = 0.5 m/s) and checks if the horizontal location of the
bounding box is in the left or the right half of the image. The model requires less than 1 s to
generate output in our remote computer. The robot sends 30 image frames per second, and
the robot picks every 30th frame as the input to the vision model.

Equation (2) calculates the robot’s heading

ωc =

1 0.5 m/s if c <
w
2

2 −0.5 m/s if c >
w
2

,
(2)



Sensors 2024, 24, 2309 9 of 19

where c is the horizontal mid-point of the bounding box and w is the horizontal resolution

of the captured image. If the bounding box is in the left half of the image (i.e., c <
w
2

),
the robot rotates left (i.e., ωc = 0.5 rad/s) to face the plume. Otherwise, it rotates right
(ωc = −0.5 rad/s) to face the plume.

3.5. Olfaction-Based Navigation

If there is no valid visual detection but the robot can sense above-threshold odor
concentration, Olfaction-Based Navigation is employed to guide the robot to approach the
odor source location.

Specifically, the proposed Olfaction-Based Navigation algorithm commands the robot
to move upwind to approach the odor source location. This behavior is analogous to the
’Surge’ behavior of the bio-mimicking moth-inspired navigation OSL algorithm [57]. In this
behavior, the robot’s linear velocity is fixed at vc = 0.6 m/s and the heading command, i.e.,
ψc, is calculated as

ψc = ϕInertial + 180. (3)

The robot will switch back to Vision-Based Navigation once there is a valid
vision detection.

4. Experiment Results
4.1. Search Area

Figure 6a shows the two-dimensional 8.2 m × 3.3 m search area, and the Figure 6b
shows the robot platform. Two obstacles were placed in the search area to simulate a
complex real-world search environment. Ethanol vapor was used as the odor source as it
is not toxic. Ethanol is also commonly implemented in OSL research [58]. A humidifier
dispersed ethanol vapor constantly as the odor plume. In our work, the fans were placed to
create both laminar and turbulent airflow environments in the search area. In laminar flow
environments, only one fan was employed, and it was placed behind the odor source to
accelerate the plume diffusion rate and create a unified wind direction field (as presented
in Figure 7a). In turbulent flow environments, we used two fans and placed them at per-
pendicular positions to create a mixed and turbulent wind field (as presented in Figure 7b).
In turbulent flow environments, the wind direction is not unified but mixed and turbulent.
In such environments, correctly finding the odor source relying only on olfaction is harder.

(a) (b)

Figure 6. (a) The experimental setup. The robot is initially placed in a downwind area with the
objective of finding the odor source. A humidifier loaded with ethanol is employed to generate odor
plumes. Two electric fans are placed perpendicularly to create artificial wind fields. Two obstacles
are placed in the search area. (b) The Turtlebot3 waffle pi mobile robot is used in this work. In
addition to the camera and Laser Distance Sensor, the robot is equipped with a chemical sensor and
an anemometer for measuring chemical concentration, wind speeds, and directions.
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(a) e1 (b) e2

Figure 7. (a) The schematic diagram of the search area with e1−laminar airflow setup. The five robot
starting positions are used for testing the performance of the Olfaction-Based Navigation, Vision-
Based Navigation, and Vision and Olfaction Fusion Navigation tests. (b) The schematic diagram of
the search area with e2−turbulent airflow setup.

4.2. Mobile Robot Configuration

Turtlebot3 mobile robot platform was used in this work. Its built-in sensors include
Raspberry Pi Camera, a 360-degree LiDAR sensor for sensing, and a DYNAMIXEL diver
for navigation. The onboard OpenCR controller allows the Turtlebot3 to be paired with
additional sensors for increasing its functionalities.

Table 1 shows the built-in and added sensors for OSL experiments. Raspberry Pi
Camera V2 was used for image capture, LDS-02 Laser Distance Sensor was used for
obstacle detection, WindSonic Anemometer was used for wind speed and wind direction
measurements in the body frame, and MQ3 alcohol detector was used for detecting chemical
plume concentration.

Table 1. Type, name, and specification of the built-in camera, laser distance sensor, and added
anemometer and chemical sensor.

Source Sensor Type Module Name Specification

Built-in
Camera Raspberry Pi Camera v2 Video Capture: 1080p30,

720p60 and VGA90.

Laser Distance Sensor LDS-02
Detection Range: 360-degree.

Distance Range: 160∼8000 mm.

Added
Anemometer WindSonic, Gill Inc. Speed: 0–75 m/s.

Wind direction: 0–360 degrees.

Chemical Sensor MQ3 alcohol detector Concentration: 25–500 ppm.

Turtlebot3 has Raspberry Pi 4 as the CPU, which has limited computing power. It
utilizes Ubuntu and Robot Operating System (ROS). Ubuntu allows connection capabilities
with a remote computer. ROS allows custom programs in the remote computer to subscribe
to specific sensor readings from the robot and publish heading commands back to the
robot in real time. ROS supports both Python and C++ programming languages. Figure 8
presents the proposed system configuration for the robotic system, which includes a robotic
agent, i.e., Turtlebot3, onboard controller, and a ground station, i.e., a remote Personal
Computer (PC). For this study, Ubuntu 20.04 and ROS Noetic were installed in both the
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robot and the paired remote computer for controlling the robot. A local area network was
used to connect the robot to the remote PC.

Figure 8. System configuration. This system contains two main components, including the Turtle-
bot3 and the remote PC. The solid connection line represents physical connection, and the dotted
connection line represents wireless link.

4.3. Experiment Design

To determine the effectiveness of the proposed Vision and Olfaction Fusion Navigation
algorithm, we tested the performance of Olfaction-Only Navigation and Vision-Only Navi-
gation algorithms. Figure 9 shows the flow diagram of the two navigation algorithms. In
the Olfaction-Only Navigation algorithm, the robot used the Crosswind maneuver behavior
(Section 3.2), Obstacle-Avoid Navigation behavior (Section 3.3), and Olfaction-Based Navi-
gation behavior (Section 3.5). In the absence of sufficient chemical concentration, the robot
followed Crosswind maneuver behavior to maximize the chance of detecting sufficient
plume concentration. If there were obstacles in the robot’s path, it followed Obstacle-
Avoid Navigation behavior to circumvent the obstacles. If sufficient odor concentration
was detected and there were no obstacles in the robot’s path, it followed Olfaction-Based
Navigation behavior to reach the odor source.

In the Vision-Only Navigation algorithm, the robot used the Crosswind maneuver
behavior (Section 3.2), Obstacle-Avoid Navigation behavior (Section 3.3), and Vision-Based
Navigation behavior (Section 3.4). In the absence of valid plume vision, the robot followed
Crosswind maneuver behavior to maximize the chance of detecting valid plume vision. If
there were obstacles in the robot’s path, it followed Obstacle-Avoid Navigation behavior
to circumvent the obstacles. If the robot detected a valid plume visual and there were no
obstacles in the robot’s path, it followed Vision-Based Navigation behavior to reach the
odor source.

These three algorithms were tested in two airflow environments, including the e1—
laminar airflow environment that used one electric fan—and the e2—turbulent airflow
environment that used two perpendicularly placed electric fans. Thus, a total of six experi-
mental setups were designed, i.e., three navigation methods in two airflow environments,
to test the effectiveness of the proposed fusion model. Five experimental runs were con-
ducted for each of the six experimental setups, totaling 30 trial runs. We used the same five
starting positions to initialize the test runs. Figure 7 shows the five starting positions and
the two airflow setups for the experimental runs.
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(a) (b)

Figure 9. (a) The flow diagram of the Olfaction-Only Navigation algorithm. There are three nav-
igation behaviors, including ‘Crosswind maneuver’, ‘Obstacle-Avoid Navigation’, and ‘Olfaction-
Based Navigation’. (b) The flow diagram of the Vision-Only Navigation algorithm. There are
three navigation behaviors, including ‘Crosswind maneuver’, ‘Obstacle-Avoid Navigation’, and
‘Vision-Based Navigation’.

4.4. Source Declaration

The robot is considered successful if the robot position is within 0.9 m of the odor
source location. But, if the robot fails to reach the odor source within 200 s, the trial run is
considered as a failure.

4.5. Sample Trials

Figure 10 shows the robot trajectory and snapshots of the Vision and Olfaction Fusion
Navigation trial run in a turbulent airflow environment. In this run, the robot initialized
at t = 1 s, found sufficient chemical concentration, and started following Olfaction-Based
Navigation. At t = 22 s, the robot detected valid visual detection of the odor plumes
and started to follow Vision-Based Navigation. At t = 49 s, the robot faced the second
obstacle and started to follow Obstacle-Avoid Navigation behavior. It avoided the obstacle,
re-detected plume vision, and started to follow Vision-Based Navigation until it reached
the odor source at t = 72 s.

Figure 10. Robot trajectory graphs and snapshots of OSL tests with the Vision and Olfaction Fusion
Navigation algorithm in turbulent airflow environment.
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4.6. Repeated Experimental Trials

Table 2 shows the run times of the 30 trial runs, i.e., 5 trial runs using 1 of 3 navigation
algorithms in 2 airflow environments. Figure 11 shows the combined robot trajectories of
the three navigation algorithms in the two airflow environments. Table 3 summarizes the
repeated test results in terms of success rate, average search time, and average traveled
distance. We can observe from the results that the proposed Vision and Olfaction Fusion
Navigation algorithm has the highest success rate, the lowest average search time, and the
lowest average distance traveled among the three methods. This is critical in real-world
odor source localization applications, as we want the robot to find odor sources as quickly
as possible.

Table 2. Search time of the Vision-Only, Olfaction-Only, and Proposed Vision and Olfaction Fusion
Navigation algorithms. The notation (-) indicates that the search time is beyond the limit, which is
200 s in this work.

Robot Initial Position
(x, y), Orientation

(z, w)

Olfaction-Only
Navigation Algorithm

(s)

Vision-Only
Navigation Algorithm

(s)

Vision and Olfaction
Fusion Navigation

Algorithm (s)

Laminar Airflow Env.

(−2.9, 1.5), (−0.6, 1.0) 63.1 - 63.9

(−3.1, 0.5), (0.0, 35.0) 71.3 149.3 69.9

(−2.6, −0.4), (0.7, 0.7) 74.3 - 67.5

(−2.0, 0.6), (1.0, −0.1) 73.8 - 75.7

(−1.8, 0.7), (0.0, 0.1) 59.1 - 61.1

Turbulent Airflow Env.

(−2.9, 1.5), (−0.6, 1.0) - - 64.0

(−3.1, 0.5), (0.0, 35.0) - - 113.1

(−2.6, −0.4), (0.7, 0.7) 196.4 - 130.7

(−2.0, 0.6), (1.0, −0.1) - 102.8 131.9

(−1.8, 0.7), (0.0, 0.1) 72.3 - 68.5

Table 3. Result statistics, i.e., success rate and average search time of Vision-Based Navigation,
Olfaction-Based Navigation, and the Proposed Vision and Olfaction Fusion Navigation Algorithms.

Navigation Algorithm Airflow
Environment Success Rate Avg. Search

Time (s)

Avg.
Travelled
Dist. (m)

Olfaction-Only
Laminar 5/5 68.3 6.1

Turbulent 2/5 134.4 9.7

Vision-Only
Laminar 1/5 149.3 11.7

Turbulent 1/5 102.8 13.7

Vision and Olfaction Fusion
Laminar 5/5 67.6 6.2

Turbulent 5/5 101.6 7.8

The Olfaction-Only Navigation algorithm uses airflow direction to navigate toward
the odor source. It performed well in laminar airflow environments—the robot followed
relatively direct airflow towards the odor source. However, in turbulent airflow environ-
ments, the robot was diverted by the complex airflow directions and often failed to reach
the odor source by the designated time limit. Vision-Based Navigation performed poorly
in both laminar and turbulent airflow environments. Because of the obstacle placement,
the robot had no vision of the plume from the starting position. It needed to follow the
Crosswind maneuver and Obstacle-Avoid Navigation behaviors until it had valid plume
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vision. In most runs, the robot’s 200 s time limit was over before it could find and navigate
to the odor source.

(a) e1o (b) e1v (c) e1vo

(d) e2o (e) e2v (f) e2vo

Figure 11. Robot trajectories of repeated tests in six navigation algorithm and airflow environment
combinations. Trajectories in laminar airflow environments are (a) e1o—Olfaction-Only Navigation
algorithm, (b) e1v—Vision-Only Navigation algorithm, and (c) e1vo—Vision and Olfaction Fusion
Navigation algorithm. Trajectories in turbulent airflow environment are (d) e2o—Olfaction-Only
Navigation algorithm, (e) e2v—Vision-Only Navigation algorithm, (f) e2vo—Vision and Olfaction
Fusion Navigation algorithm. The behaviors that the robot was following under the three navigation
algorithms are shown in the trajectory. These behaviors include Crosswind (Crosswind maneuver
behavior), Obstacle (Obstacle-Avoid Navigation behavior), Olfaction (Olfaction-Based Navigation
behavior), and Vision (Vision-Based Navigation behavior). Five robot starting positions are high-
lighted with a blue star, the obstacles are the orange boxes, and the odor source is the red point with
the surrounding circular source declaration region.

Vision and Olfaction Fusion Navigation algorithm test runs were consistently suc-
cessful in both laminar and turbulent airflow environments. The Crosswind maneuver
and Olfaction-Based Navigation led the robot toward the odor source, which allowed the
robot to detect plume vision. Once it started to follow Vision-Based Navigation, the robot
was not affected by turbulent airflow. Using dual-modality sensing could also reduce the
false negative cases. In the proposed Vision and Olfaction Fusion Navigation algorithm,
the two sensory modalities work together to determine the final odor source location.
The combination increases the probability of reducing overall false detection cases, i.e., if
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one modality provides false detection, the probability is high that another modality can
correct it.

5. Discussion and Future Research Directions

The proposed Vision and Olfaction Fusion algorithm can improve odor source local-
ization performance in diverse environments. We set up the presented experimental field
to mimic indoor environments with obstacles and odor sources. Therefore, the experiment
results can be generalized to other real-world indoor odor source localization scenarios,
such as detecting indoor gas leaks in office or household environments with obstacles
and potential gas sources. It is also possible to extend the proposed method to outdoor
applications, such as detecting wildfire locations using both vision (flame detection) and
olfaction (smoke or other fire-related gases).

The result of our experiment indicates that vision sensing is a promising addition to
olfaction sensing in robotic odor source localization research. We summarize the following
significances of the proposed work:

• Integration of vision and olfaction in odor source localization tasks: Our proposed
navigation algorithm integrates both vision and olfaction in odor source localization
tasks. Compared to traditional Olfaction-Only Navigation algorithms, including
bio-inspired methods [12], engineering-based methods [13,45], and machine-learning-
based methods [14,15], the addition of vision advances the boundaries of current OSL
navigation algorithms;

• Odor source localization in complex environments with obstacles: While most tradi-
tional olfactory-based navigation algorithms do not consider obstacles in the search
environments (e.g., [12]), our proposed method can guide the robot to find the odor
source in complex environments with obstacles. Thanks to the proposed hierarchi-
cal control algorithm, the robot can dynamically coordinate among Vision-Based
Navigation, Olfaction-Based Navigation, and obstacle avoidance behaviors;

• Real-world experiments and results: Many prior works (e.g., [15]) only validated
their algorithms in simulation environment without validating them in real-world
environments. However, simulation environments cannot always represent real-world
scenarios due to the gap between the simulation and real-world environments. In this
work, we implemented the proposed odor source localization algorithm in real-world
settings, showed it in real-world settings, and validated its effectiveness in real-world
environments with obstacles and turbulent airflow.

A number of improvements can be made to the proposed OSL algorithm in the
future. Firstly, the proposed navigation algorithm follows a homogeneous Crosswind
maneuver behavior for finding odor plumes. The search behavior does not take into ac-
count past vision or olfaction sensing history. Similarly, the moth-inspired algorithm used
in this paper only uses current olfaction readings for finding the odor source, whereas
engineering-based solutions like the Particle Filter utilize past sensor readings for esti-
mating the odor source and plume location. Thus, future research scope includes pairing
engineering-based Olfaction-Based Navigation with Vision-Based Navigation for improved
Crosswind maneuver and Olfaction-Based Navigation. The implemented Obstacle-Avoid
Navigation algorithm in this paper also relies only on the current laser readings to sense
and circumvent obstacles. In this case, reactive path-planning algorithms, which include
Fuzzy Logic, Neural Networks, bug algorithms, etc. [59], can be adopted for more efficient
Obstacle-Avoid Navigation behavior. Additionally, the future scope of this robot platform
includes using machine-learning algorithms for calculating robot headings. For instance,
the reinforcement-learning (RL) [60] and supervised-learning [61] methods can be used for
Olfactory-Based Navigation in robots. Transformer-based Vision–Language and Vision–
Language–Action (VLA) models are gaining traction as a prevalent approach in robotics.
Recent applications of such a model include the PaLM-E model [62] and the RT-2 [63].
Exploring the possibilities of the Vision–Language models as the primary decision-maker
for multimodal odor source localization is another exciting possibility in OSL research.
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6. Conclusions

The combination of computer vision and robotic olfaction provides a more comprehen-
sive observation of the environment, enabling the robot to interact with the environment in
more ways and enhancing navigation performance. This paper proposes the incorporation
of vision sensing in OSL. Specifically, the paper proposes a Vision and Olfaction Fusion
Navigation algorithm with Obstacle-Avoid Navigation capability for 2-D odor source
localization tasks for ground mobile robots.

For conducting real-world experiments to test the proposed algorithm, a robot plat-
form based on the Turtlebot3 mobile robot was developed with olfaction- and vision-sensing
capabilities. The proposed navigation algorithm had five behaviors, i.e., Crosswind ma-
neuver behavior to find odor plume, Obstacle-Avoid Navigation behavior to circumvent
obstacles in the environment, Vision-Based Navigation to approach the odor source using
vision sensing, Olfaction-Based Navigation to approach the odor source using olfaction sens-
ing, and source declaration. For the Vision-Based Navigation behavior, a YOLOv7-based
vision model was trained to detect visible odor plumes. For Olfaction-Based Navigation
behavior, we used moth-inspired algorithm.

To test the performance of the proposed Vision and Olfaction Fusion Navigation algo-
rithm, we tested the performance of the Olfaction-Only Navigation algorithm, Vision-Only
Navigation algorithm, and the proposed Vision and Olfaction Fusion Navigation algorithm
separately in real-world experiment setups. Furthermore, we tested the performance of the
three navigation algorithms in laminar and turbulent airflow environments to compare their
strengths. We used five predefined starting robot positions for each navigation algorithm
and repeated them for both airflow environments, resulting in 30 total experimental runs.

The search results of the OSL experiments show that the proposed Vision and Olfaction
Fusion Navigation algorithm had a higher success rate, lower average search time, and
lower average traveled distance for finding the odor source compared to Olfaction-Only and
Vision-Only Navigation algorithms in both laminar and turbulent airflow environments.
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