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Abstract: Intelligent vehicle trajectory tracking exhibits problems such as low adaptability, low
tracking accuracy, and poor robustness in complex driving environments with uncertain road condi-
tions. Therefore, an improved method of adaptive model predictive control (AMPC) for trajectory
tracking was designed in this study to increase the corresponding tracking accuracy and driving
stability of intelligent vehicles under uncertain and complex working conditions. First, based on the
unscented Kalman filter, longitudinal speed, yaw speed, and lateral acceleration were considered
as the observed variables of the measurement equation to estimate the lateral force of the front and
rear tires accurately in real time. Subsequently, an adaptive correction estimation strategy for tire
cornering stiffness was designed, an AMPC method was established, and a dynamic prediction
time-domain adaptive model was constructed for optimization according to vehicle speed and road
adhesion conditions. The improved AMPC method for trajectory tracking was then realized. Finally,
the control effectiveness and trajectory tracking accuracy of the proposed AMPC technique were
verified via co-simulation using CarSim and MATLAB/Simulink. From the results, a low lateral
position error and heading angle error in trajectory tracking were obtained under different vehicle
driving conditions and road adhesion conditions, producing high trajectory-tracking control accuracy.
Thus, this work provides an important reference for improving the adaptability, robustness, and
optimization of intelligent vehicle tracking control systems.

Keywords: trajectory tracking; adaptive model predictive control (AMPC); unscented Kalman
filter; adaptive modified estimation of tire cornering stiffness; tire lateral force estimation; dynamic
prediction time domain

1. Introduction

Intelligent driving trajectory tracking control is the core technology for intelligent
vehicle planning and control and provides the basis for intelligent vehicle automatic
control [1]. However, regarding the strong nonlinear and time-varying characteristics in
vehicle path tracking systems, the dynamic performance of the control algorithm must be
sufficiently high. Accordingly, improvements to the tracking accuracy and robustness of
controllers are urgently required.

Commonly used trajectory-tracking control algorithms include proportional–integral–
derivative (PID) control [2], preview control [3–5], optimal control [6–8], and model predic-
tive control (MPC) [9–12]. MPC can consider various safety factors and has thus attracted
widespread attention from scholars for the optimal control of linear/nonlinear systems
under physical constraints. Yakub et al. [13] compared the linear quadratic regulator with
linear time-varying (LTV) MPC, and LTV-MPC demonstrated a better path tracking effect.
Jianwei et al. [14] elaborated on the application of MPC in autonomous driving. Falcone
et al. [15] proposed an LTV-MPC that can ensure the stability of a vehicle at high speeds
through limiting the tire slip angle. Katriniok et al. [16] expanded upon the work in [15]
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and linearized the model within the prediction time, resulting in a high accuracy and
control effect for the LTV-MPC. To increase the stability and safety of a vehicle when
tracking the reference trajectory, Cao et al. [17] expanded the constraint conditions of the
LTV-MPC to the center-of-mass sideslip angle, lateral acceleration, and tire sideslip angle.
The obtained LTV-MPC exhibited strong adaptability. Li et al. [18] integrated the driver’s
driving intention, driving environment assessment, and the MPC algorithm to form a
shared fuzzy steering controller that can successfully assist drivers in avoiding obstacles
and ensure vehicle stability. Zhong Siqi [19] proposed an MPC method for path-tracking
lateral control (KNMPC) with an approximate tracking error to avoid duplication problems
caused by finding the nearest point during operation, thus reducing errors and improving
the operation efficiency.

However, none of the aforementioned studies included the impact of model errors on
the MPC effect. Guo et al. [20] considered the model error as the measurement disturbance
of the yaw angular velocity and proposed an MPC method based on a differential evolution
algorithm that can improve the trajectory tracking accuracy of unmanned vehicles when
determining the road adhesion coefficient. MPC requires the discretization and linearization
of system dynamics, which leads to a range of modeling errors. Therefore, [21] designed
an adaptive sliding mode controller for use in vehicle formations based on nonholonomic
wheeled mobile robots. This controller has the advantage of dealing with the unknown
complex behavior of friction, the uncertainty of parameters, and external interference
without prior knowledge of parameters and structures. The simulation results show that
the performance of this controller represents a significant improvement compared with
other existing controllers. Reference [22] designed a path tracking controller based on
robust output feedback that can be applied to a class of self-reconfiguring mobile robots
under actuator saturation. The controller can estimate unmeasurable states and uncertain
dynamic items, a fast dynamic compensator is used to meet the actuator constraints and
limitations, and the closed-loop stability of the system is analyzed based on the contraction
theory, which is better than Lyapunov’s. The simulation results show that the controller
has better control performance. In addition, Xuanxuan proposed improved MPC based
on fuzzy control and classic MPC. In particular, the weight value and cost function can be
adjusted according to the lateral position and route errors, thereby improving the tracking
accuracy and comfort of the vehicle during the continuous tracking process [23]. Xudong
et al. [24] focused on the problem of the poor adaptability of MPC systems and proposed an
emergency obstacle avoidance strategy based on trajectory replanning and path-tracking
dual-layer MPC, fully utilizing the advantages of the algorithm. Zhenyu [25] designed an
obstacle avoidance controller based on a BP neural network and MPC. With the simplified
parameter adjustment process and optimization of weight parameters, this method exhibits
high tracking accuracy. Shi et al. [26] built an adaptive MPC (AMPC) system that can
operate under the condition of a disturbed path curvature, based on the kinematic model
and dynamic driving deviation model of autonomous wheeled loaders. The results show
that its tracking effect is significantly improved compared with that of traditional MPC.
Wang et al. [27] designed a highly adaptive and robust MPC method that can respond to
uncertain interference to address the slipping problem caused by vehicles driving on rough
and unstable roads.

However, owing to the influence of the road adhesion coefficient and vertical load,
a complex nonlinear relationship exists between the tire force and slip angle [28]. Large
tire slip angles cause nonlinear tire slip characteristics, resulting in large model errors, as
well as poor tracking accuracy and vehicle driving stability [29], leading to dangerous
accidents [30]. Therefore, current MPC methods cannot satisfy the tracking requirements
under complex road conditions based on linear constant tire cornering stiffness. In addition,
the predicted time domain in general MPC systems is often considered a fixed value.
However, the choice of the predicted time domain significantly impacts the control effect
of the system. Differences in the predicted time domains for various driving speeds and
road adhesion conditions lead to different control effects. It is thus necessary to examine



Sensors 2024, 24, 2316 3 of 30

the impact of different predicted time domains on the control effect under different driving
speeds and road adhesion conditions.

Accordingly, this study proposes an improved AMPC method that considers the tire
lateral force calculation deviation and dynamically predicts a time-domain adaptive model
for different driving states and road adhesion conditions of a vehicle. First, the unscented
Kalman filter (UKF) algorithm is employed based on a simplified four-wheel vehicle body
dynamics model and variables such as longitudinal vehicle speed, yaw angular velocity, and
lateral acceleration are considered as the observed quantities of the measurement equation
to accurately estimate the lateral forces of the front and rear tires in real time. Based on this,
an adaptive correction estimation strategy for tire cornering stiffness is designed. The front-
and rear-tire lateral forces (F̂y f and F̂yr, respectively), accurately estimated in real time using
the UKF, and the corresponding linear tire lateral forces (Fy f and Fyr), based on the linear
constant tire cornering stiffness, are used to perform comparisons and other operations.
The front- and rear-tire cornering stiffness correction factors are then defined, and the
AMPC is established. A dynamic prediction time-domain adaptive model is designed
based on vehicle speed and road adhesion conditions to further improve the proposed
AMPC, and an improved AMPC method for trajectory tracking is realized. Finally, the
control effectiveness and trajectory tracking accuracy of the proposed improved AMPC
method are verified through a joint simulation using CarSim 2019 and MATLAB/Simulink
2021b software.

The rest of this paper is organized as follows: Section 2 introduces the vehicle–road
error dynamics model, including the four-wheel vehicle body dynamics model and the
two-wheel autonomous vehicle dynamics model. Section 3 presents estimations of the tire
lateral force and tire cornering stiffness based on the established dynamics model described
in Section 2 and outlines the verification of the simulation results. In Section 4, the design
of the improved AMPC method for trajectory tracking is detailed. Section 5 provides the
simulation test results and verification of the proposed tracking controller. Finally, the
study is summarized in Section 6.

2. Vehicle–Road Error Dynamics Model
2.1. Vehicle Dynamics Model

The tire lateral force is estimated based on the vehicle dynamics model, which com-
pletes the estimation of the tire cornering stiffness. Therefore, a four-wheel vehicle body
model (also known as a dual-track model) was established to effectively simulate a vehi-
cle’s motion characteristics on flat roads considering the force conditions of the vehicle’s
four tires.

In Figure 1, m is the mass of the vehicle; Iz is the moment of inertia of the vehicle
around the z-axis; Fx f l , Fx f r, Fxrl , and Fxrr are the longitudinal forces of the left front, right
front, left rear, and right rear tires, respectively; Fy f l , Fy f r, Fyrl , and Fyrr correspond to
the lateral forces of the left front, right front, left rear, and right rear tires; α f l , α f r, αrl ,
and αrr are the corresponding slip angles of the four tires; l f and lr represent the distances
between the center of mass and the front and rear axles, respectively; vx, vy, and v are the
longitudinal, transverse, and combined speeds at the center of mass of the vehicle; Wd is
the left and right wheelbase; δ f is the front-wheel rotation angle; and

.
φ is the yaw angular

velocity. The longitudinal, transverse, and yaw dynamic equations of the four-wheel body
model are expressed in Equation (1).
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max = Fxrl + Fxrr + Fx f l cos δ f + Fx f r cos δ f − Fy f l sin δ f
−Fy f r sin δ f

may = Fyrl + Fyrr + Fy f l cos δ f + Fy f r cos δ f + Fx f l sin δ f
+Fx f r sin δ f

Iz
..
φ = l f

(
Fy f l cos δ f + Fy f r cos δ f + Fx f l sin δ f

)
+Wd

2

(
Fy f l sin δ f − Fy f r sin δ f − Fx f l + Fx f r − Fxrl

+Fxrr)− lr
(

Fyrl + Fyrr

)
ax =

.
vx − vy

.
φ

ay =
.
vy − vx

.
φ

(1)
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Figure 1. Four-wheel body model.

Meanwhile, active steering control of the front wheels is used to realize the lateral path-
tracking control of the smart car. Taking the front wheel angle as the input and ignoring
the role of the suspension, the car has only two degrees of freedom (DOFs): lateral motion
along the y-axis and yaw motion around the z-axis. The established 2-DOF dynamics model
is illustrated in Figure 2.
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Figure 2. Two-degrees-of-freedom dynamics model of vehicle.

In Figure 2, Fy f and Fyr are the lateral forces on the front and rear wheels, respectively;
α f and αr are the sideslip angles of the front and rear wheels, respectively; δ f is the front-
wheel rotation angle; β is the center-of-mass sideslip angle; vx and vy correspond to the
longitudinal velocity and the lateral velocity at the center of mass of the vehicle; m is the
mass of the vehicle; Iz is the moment of inertia of the vehicle around the z-axis;

.
φ is the yaw

angular velocity; and l f and lr are the distances between the center of mass and the front
and rear axles, respectively. The dynamic equations for the lateral and yaw motions of the
vehicle are as follows:

Fy f cos(δ f ) + Fyr = m(vy + vx
.
φ) (2)

l f Fy f cos(δ f )− lrFyr = Iz
..
φ (3)
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Under the small-angle assumption, the front- and rear-wheel slip angles can be ex-
pressed as follows: 

α f = arctan
(

l f
.
φ+vy
vx

)
− δ f ≈

l f
.
φ+vy
vx

− δ f

αr = arctan
(

vy−lr
.
φ

vx

)
≈ vy−lr

.
φ

vx

(4)

The lateral forces on the front and rear tires for smaller tire slip angles can be described
by a linear relationship [31]. Combined with Equation (3), the lateral forces Fy f and Fyr on
the front and rear wheels can be obtained as follows:

Fy f = Cα f α f = Cα f

(
l f

.
φ+vy
vx

− δ f

)
Fyr = Cαrαr = Cαr

(
vy−lr

.
φ

vx

) (5)

where Cα f and Cαr indicate the total cornering stiffness of the tires on both sides of the
vehicle’s front and rear axles, respectively, and α f and αr correspond to the front- and
rear-tire sideslip angles.

Combining Equations (2), (3) and (5), the simplified form of the vehicle’s 2-DOF
dynamic equation can be obtained as follows:

.
vy =

( l f Cα f −lrCαr
mvx

− vx

) .
φ +

(Cα f +Cαr
mvx

)
vy −

Cα f
m δ f

..
φ =

l f Cα f
Iz

(
l f

.
φ+vy
vx

− δ f )− lrCαr
Iz

(
vy−lr

.
φ

vx
)

(6)

2.2. Vehicle–Road Error Dynamics Model

To express the relationship between the vehicle and the reference trajectory, a trajectory-
tracking vehicle–road error model was established, as depicted in Figure 3. The inertial
coordinate system, XOY, is fixed to Earth. The position of the vehicle’s center of mass in the
figure is marked as point O.
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Figure 3. Vehicle–road error model.

In Figure 3, φ is the vehicle’s yaw angle, ed is the distance between the vehicle’s center
of mass and the closest point (c) on the desired trajectory, p is the preview point, L is the
preview distance, and edp is the lateral direction from the vehicle’s center of mass to the
preview point (p) on the desired trajectory. The vertical distance (φp) is the desired heading
angle at the preview point.
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The difference between the vehicle’s yaw angle and the expected heading angle (θr)
from the nearest reference point on the path is expressed as the heading angle deviation,
recorded as eφ; then,

.
eφ and

..
eφ can be expressed as follows:{ .

eφ =
.
φ −

.
θr

..
eφ =

..
φ −

..
θr

(7)

When the vehicle travels normally along the road with curvature ρ at the reference
point,

.
θr can be expressed as follows:

.
θr = ρvx (8)

Under normal circumstances, road curves are relatively gentle and the relative curva-
ture changes more slowly, so

..
θr can be ignored.

Similarly,
.
ed and

..
ed are given by the following equations:{ .

ed = vxeφ + vy..
ed = vx

.
eφ +

.
vy

(9)

Therefore, the complete path-tracking error dynamics model can be obtained by
combining Equations (6)–(9):

.
X = A1X + B1u + C1

.
θr (10)

Matrices X, A1, B1, C1, and u are defined as follows:

X =


ed.
ed
eφ.
eφ

, u = δ f , A1 =


0 1 0 0

0
Cα f +Cαr

mvx
−Cα f +Cαr

m
l f Cα f −lrCαr

mvx
0 0 0 1

0
l f Cα f −lrCαr

lzvx
− l f Cα f −lrCαr

lz
l f

2Cα f +lr2Cαr
lzvx

,

B1 =


0

−Cα f
m
0

−l f Cα f
Iz

, C1 =


0

l f Cα f −lrCαr
mvx

− vx

0
l2

f Cα f +l2
r Cαr

lzvx

.

3. Tire Lateral Force and Cornering Stiffness Estimation
3.1. Tire Lateral Force Estimation Based on Unscented Kalman Filter (UKF)

Owing to the vehicle tire load transfer and road adhesion changes, the tire cornering
stiffness often varies. Therefore, using a constant tire cornering stiffness as the prediction
model for the lateral MPC results in inaccuracies and affects the control effectiveness
and tracking accuracy of the lateral path-tracking controller. Therefore, it is necessary to
accurately estimate the tire lateral force in real time and further combine the estimated tire
lateral force to perform a real-time correction estimation of the tire cornering stiffness.

Accordingly, the four-wheel vehicle body dynamics model mentioned in Section 2.1,
which reflects the actual dynamic characteristics of a vehicle, was employed in this work to
design a nonlinear observer. In addition, UKF was used to estimate tire lateral force.

3.1.1. Design of Tire Lateral Force Estimator Based on UKF

The 3-DOF dynamics model of a four-wheel vehicle body does not include prior
knowledge of the tire force model and road friction; therefore, the random walk model can
be used to describe changes in various lateral and longitudinal forces [32]:
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.
Fx f l.
Fx f r.
Fy f l.
Fy f r.
Fyrl.
Fyrr


=



0
0
0
0
0
0

 (11)

Averaging the left and right-tire sideslip angle models, the front- and rear-tire sideslip
angles are obtained as follows:

α f = α f l = α f r = arctan
(

l f
.
φ+vy
vx

)
− δ f

αr = αrl = αrr = arctan
(

vy−lr
.
ϕ

vx

) (12)

To ensure the observability of the system further, the differences between the left and
right tires were assumed to be proportional to the changes in the tire load distribution.

Fx f l =
Fz f l

Fz f l+Fz f r
Fx f , Fx f r =

Fz f r
Fz f l+Fz f r

Fx f

Fy f l =
Fz f l

Fz f l+Fz f r
Fy f , Fy f r =

Fz f r
Fz f l+Fz f r

Fy f

Fyrl =
Fzrl

Fzrl+Fzrr
Fyr, Fyrr =

Fzrr
Fzrl+Fzrr

Fyr

(13)

where Fzij is the vertical force on each tire; Fy f denotes the sum of the lateral forces of
the front wheels, Fy f = Fy f l + Fy f r; Fyr denotes the sum of the lateral forces of the rear
wheels, Fyr = Fyrl + Fyrr; and Fx f is the sum of the longitudinal forces of the front wheels,
Fx f = Fx f l + Fx f r. In addition, the calculation method for the Fzij vertical load is represented
by a simple linear model [33]:

Fz f l =
lrmg
2L − hmax

2L − hlrmay
Wd L

Fz f r =
lrmg
2L − hmax

2L +
hlrmay
Wd L

Fzrl =
l f mg

2L + hmax
2L − hl f may

Wd L

Fzrr =
l f mg

2L + hmax
2L +

hl f may
Wd L

(14)

where Wd is the distance from the left wheels to the right wheels and h is the height of
the vehicle’s center of mass. To sum up, let the state vector X = [

.
φ, vx, vy, Fy f , Fyr, Fx f ] and

the observation vector Z = [
.
φ, vx, ax, ay]. Combining the 3-DOF dynamics model of the

four-wheel vehicle body mentioned in Section 2.1, Equations (1) and (11)–(14) are collapsed
and discretized to obtain the state-space expression of the nonlinear system as follows:{

X(k) = f (X(k − 1), U(k)) + w(k)
Z(k) = h(X(k)) + v(k)

(15)

where U =
[
δ f Fz f l Fz f r Fzrl Fzrr

]
is the control input vector; X is the state vector;

Z is the observation vector; ω(k) and v(k) are the process noise and the observation
noise, respectively, assumed to be Gaussian white noise; and f (·) and h(·) indicate the
state transition equation and the observation equation, respectively. Let X, Z, and U be
simplified as follows: 

X =
[

x1 x2 x3 x4 x5 x6
]

Z =
[

z1 z2 z3 z4
]

U =
[

u1 u2 u3 u4 u5
] (16)
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Therefore, the prediction equation of the nonlinear state function ( f ) and the observa-
tion function equation (h) can be obtained.

f (k) =



f1(k) = x1(k − 1) + T
Iz
[l f [x4(k − 1) cos u1(k) + x6(k − 1) sin u1(k)]− lrx5(k − 1) + Wd

2 [ u2(k)
u2(k)+u3(k)

·
x4(k − 1) sin u1(k)− u3(k)

u2(k)+u3(k)
x4(k − 1) sin u1(k)− u2(k)

u2(k)+u3(k)
x6(k − 1) cos u1(k)

+ u3(k)
u2(k)+u3(k)

x6(k − 1) cos u1(k)]]
f2(k) = x2(k − 1) + Tx1(k − 1)x3(k − 1) + T

m [x6(k − 1) cos u1(k)− x4(k − 1) sin u1(k)]
f3(k) = x3(k − 1)− Tx1(k − 1)x2(k − 1) + T

m [x5(k − 1) + x4(k − 1) cos u1(k) + x6(k − 1) sin u1(k)]
f4(k) = x4(k − 1)
f5(k) = x5(k − 1)
f6(k) = x6(k − 1)

(17)

where T denotes the discrete sampling time. Similarly, the observation function equation
(h(·)) is given by the following formula:

h(k) =


h1(k) = x1(k)
h2(k) = x2(k)
h3(k) = 1

m [x6(k) cos u1(k)− x4(k) sin u1(k)]
h1(k) = 1

m [x5(k) + x4(k) cos u1(k) + x6(k) sin u1(k)]

(18)

Combined with the formula above, the estimation algorithm based on the UKF pro-
ceeds as follows:

(1) System state initialization.
Assuming that the initial state (X(0)) is a random vector of a Gaussian distribution,

the mean and variance of the initial state are as follows:{
X̂0 = E(X0)

P0 = cov(X0, X0
T) = E[(X0 − X̂0)(X0 − X̂0)

T
]

(19)

(2) Update and calculate the weighting coefficients.
ω0

m = λ
n+λ

ω0
c = λ

n+λ + (1 − α2 + β)

ωi
c = ωi

m = λ
2(n+λ)

, i = 1, 2, 3, . . . , 2n
(20)

where λ = n(α2 − 1) and β is a non-negative constant. Under normal circumstances, β is
taken as 2 and α is the distribution state of the control sigma point, with a value of 0–1 (the
value being taken as 0.2 in this article).

(3) Calculate and update the sigma points.

X(i)(k|k) =


X̂(k|k), i = 0
X̂(k|k) +

√
(n + λ)P(k|k)

, i = 1, . . . , n
X̂(k|k)−

√
(n + λ)P(k|k)

, i = n + 1, . . . , 2n

(21)

where P is positive definite and
√
(n + λ)P(k|k) is obtained through Cholesky decomposition.

(4) One-step prediction of system state quantities and covariance matrix calculation.
The predictions of a set of sigma points and their calculated weighted averages were

used to obtain a one-step prediction of the system state quantity.
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X̂(k + 1|k) =

2n
∑

i=0
ω(i)X(i)(k + 1|k)

P(k + 1|k) =
2n
∑

i=0
ω(i)[X̂(k + 1|k)−X(i)(k + 1|k)][X̂(k + 1|k)− X(i)(k + 1|k)]T + Q

(22)

(5) Based on the one-step prediction value, the UT transform was used again to
generate a new sigma point set.

X(i)(k + 1|k) =


X̂(k + 1|k), i = 0
X̂(k + 1|k) +

√
(n + λ)P(k + 1|k) , i = 1, . . . , n

X̂(k + 1|k)−
√
(n + λ)P(k + 1|k) , i = n + 1, . . . , 2n

(23)

(6) The sigma point set predicted in step (5) was substituted into the observation
equation to obtain a one-step prediction of the observation.

Z(i)(k + 1|k) = h[X(i)(k + 1|k)] (24)

where i = 1, 2, · · · , 2n + 1.
(7) The weighted sum of the observed and predicted values of the sigma point set

obtained in the previous step was used to obtain the mean and covariance of the observed
system predictions.

Z(k + 1|k) =
2n
∑

i=0
ω(i)Z(i)(k + 1|k)

Pzkzk =
2n
∑

i=0
ω(i)[Z(i)(k + 1|k)− Z(k + 1|k)][Z(i)(k + 1|k)− Z(k + 1|k)]T + R

Pxkzk =
2n
∑

i=0
ω(i)[X(i)(k + 1|k)− X(k + 1|k)][Z(i)(k + 1|k)− Z(k + 1|k)]T

(25)

(8) Calculate the Kalman gain matrix K.

K(k + 1) = Pxkzk P−1
zkzk (26)

(9) Estimate the system state and update the covariance matrix (P).{
X̂(k + 1) = X̂(k + 1|k) + K(k + 1)[Z(k + 1)− Ẑ(k + 1|k)]
P(k + 1) = P(k + 1|k)− K(k + 1)Pzkzk KT(k + 1)

(27)

3.1.2. Simulation Verification of Tire Lateral Force Estimation

A joint simulation platform of CarSim and Simulink was built to conduct the simula-
tion tests and verify the designed tire lateral force estimator. The parameters of the vehicle
model considered in this simulation are listed in Table 1.

Table 1. Main vehicle parameters.

Vehicle Parameter Value

Total vehicle mass (M/kg) 1412
Left and right wheelbase (Wd/m) 1.675

Distance from front axle to vehicle c.g. (l f /m) 1.015
Distance from rear axle to vehicle c.g. (lr/m) 1.895

Vehicle moment of inertia about z-axis (Iz/kg · m2) 1536.7
Center-of-mass height (h/m) 0.54

Working condition 1: The road adhesion coefficient was set to 0.9, and the vehicle
was continuously turned left and right to observe the estimation accuracy, among other
performances of the tire lateral force estimator during the changing steering process of the
vehicle. The steering wheel input was a sinusoidal change with an amplitude of 180◦ and
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a period of 12.5 s; the vehicle speed changed as follows: within 0–10 s, the vehicle speed
increased from 0 to 72 km/h, then maintained a period of constant speed. After 30 s, the
vehicle decelerated to 54 km/h and finally continued driving at a constant speed [34].

The initial parameter settings of the UKF estimator include: the state quantity estima-
tion initial value, X̂0 = [0; 0; 0; 0; 0; 0]; the error covariance matrix, P0 = eye(6); the process
noise covariance matrix; and the measurement noise covariance matrix, corresponding
to Q = diag([0 .05 0.01 0 .01 226 127 1000]) and R = diag([10−2; 10−2; 10−2; 10−2]); and the
sampling period of the system, estimated as 0.01 s.

The simulation results are presented in Figure 4.
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Figure 4. Tire lateral force estimation results under working condition 1: (a) front-wheel lateral force;
(b) rear-wheel lateral force.

In Figures 4–8, the actual value of the tire lateral force is provided by the output of
Carsim (that is, when Carsim and Simulink are jointly simulated, the tire lateral force
output interface of the CarSim S-Function module in Simulink outputs the true value of the
tire lateral force). In Figures 4–8, the true value of the tire slip angle is also provided by the
output of Carsim, which is compared with the estimated value for verification.
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Figure 7. Real-time correction estimation and verification of front- and rear-tire cornering stiffnesses:
(a) front-wheel lateral force; (b) rear-wheel lateral force; (c) front- and rear-tire cornering stiffnesses.

In the working condition simulation of tire lateral force estimation in Figures 4 and 5,
the estimated values of front- and rear-axle tire lateral force are based on the estimation
output of the unscented Kalman filter (UKF) estimator to verify the effectiveness and
accuracy of the tire lateral force estimation method based on UKF.
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Figure 8. Estimation and verification of front- and rear-tire cornering stiffnesses: (a) front-tire slip
angles; (b) rear-tire slip angles; (c) front-wheel lateral force; (d) rear-wheel lateral force; (e) front- and
rear-tire cornering stiffnesses.

Under this relatively severe working condition, the simulation results in Figure 4a,b
clarify the relatively small difference between the estimated vehicle tire lateral force and the
real output of CarSim, in which the maximum errors of the estimated front- and rear-wheel
lateral forces compared with the real values are approximately 687.9523 N and 386.4086 N,
respectively, and the estimated lateral tire force matches well with the real value of the
lateral tire force in the entire simulation process.

To confirm the accuracy of the tire lateral force estimator, working condition 2 was
set, i.e., the double-lane-shift working condition was used as a scenario to verify the true
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reflection of the tire lateral force estimation under the complex working conditions of the
emergency steering of the vehicle.

Working condition 2: The vehicle speed in the double-lane-shift condition was set to
72 km/h, and the road adhesion coefficient was set to 0.4. Figure 5 displays the simulation
estimation results for the lateral forces on the front and rear tires.

From the simulation results in Figure 5a,b, even under complex working conditions
with low adhesion, the estimated vehicle tire lateral force slightly differs from the actual
output value of CarSim. The maximum errors of the front- and rear-wheel lateral force esti-
mation values compared with the real values are approximately 634.7746 N and 670.4724 N,
respectively. Moreover, the errors between the estimated lateral tire force and the real value
are small throughout the simulation process, and the estimation accuracy is good.

The simulation results demonstrate that the designed estimator can accurately estimate
the lateral force of a tire under complex working conditions.

3.2. Adaptive Correction Estimation of Tire Cornering Stiffness

The cornering stiffness was identified using the relationship between the lateral force
of the tire and the tire slip angle, expressed as follows:{

Fy f = C f α f
Fyr = Crαr

(28)

for which the tire slip angle can be obtained using the following:{
α f = arctan((l f

.
φ + vy)/vx)− δ f

αr = arctan((vy − lr
.
φ)/vx)

(29)

In the trajectory tracking control of intelligent driving vehicles, due to the influence
of the road adhesion coefficient (µ) and the vertical load (Fz), there is a complex nonlinear
relationship between tire force and slip angle. Under normal road conditions, when the
wheel rotation angle is small, it can be assumed that the tire cornering stiffness remains
unchanged [35]. When the road adhesion condition and vehicle driving states continue to
change, a linear assumption is made regarding the cornering stiffness, and the calculated
lateral tire force in the linear zone has a large error with respect to the real value, which
affects the control performance of the tracking controller.

In this study, the tire cornering stiffness adaptive correction estimation strategy was
adopted to complete the real-time correction estimation of the tire cornering stiffness as
well as to eliminate the difference between the linear tire lateral force based on linear
stiffness and the true value. The specific strategy involves defining the correction factors
for the front- and rear-tire cornering stiffnesses via calculation of the difference between
the front- and rear-tire lateral forces (F̂y f and F̂yr), accurately estimated in real time by
the UKF, and the linear tire lateral forces (Fy f and Fyr), based on the linear constant tire
cornering stiffness. 

λf =
F̂yf−Fyf

|F̂yf|

λr =
F̂yr−Fyr

|F̂yr|

(30)

Therefore, the corrected final values for the front- and rear-tire cornering stiffnesses
can be expressed as follows: {

Ĉf = (1 + λf)Cf
Ĉr = (1 + λr)Cr

(31)

In addition, to avoid failure of the tire lateral force estimation caused by abnormal
measurement noise and excessive change in the correction factor, which leads to deteriora-
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tion of the controller’s stability, the correction factors for the front- and rear-tire cornering
stiffnesses are constrained as follows:{

λ f min ≤ λ f ≤ λ f max
λrmin ≤ λr ≤ λrmax

(32)

Finally, based on the simulation experiments and experience and other references,
λ f min = λr min = −0.6 and λ f max = λr max = 1. To avoid the singular value of the
correction factor (λ f or λr) when the estimated value of the tire force is 0, for a tire side
deflection angle (α f or αr) of less than 0.2◦, the corresponding correction factor will be
considered as 0.

3.3. Simulation Verification of Tire Cornering Stiffness Adaptive Correction Estimation

The aforementioned tire lateral force estimation simulation conditions (1 and 2) were
adopted in the simulation, and an adaptive correction estimator for the designed tire
cornering stiffness was simulated and verified.

(1) Simulation results for working condition 1 are presented in Figures 6 and 7.
Figure 6 shows the tire slip angle estimated using Equation (29). From the simulation

results, the error between the estimated front-tire slip angle and the actual value output by
CarSim was approximately 0◦, and the maximal error between the rear-tire slip angle and
the actual output value was only approximately 0.5533◦. Hence, the slight deviation in this
part was due to neglecting the rear wheel angle in the calculation model formula; however,
this small deviation had very little effect on the estimation system, which was within the
acceptable range.

In Figures 7 and 8c–e, the purpose was to verify the effectiveness of the tire cornering
stiffness adaptive correction estimation scheme proposed in this article using the tire
cornering stiffness correction estimation results. Therefore, after obtaining the corrected
estimate of the tire cornering stiffness (as shown in Figures 7c and 8e), a linear tire model
was used to calculate the tire lateral force and to multiply the corrected estimate of the
tire cornering stiffness and the tire slip angle (calculated from Equation (29)) to obtain an
estimate of the tire lateral force, as shown in Figures 7a,b and 8c,d, and compare it with the
actual output value of Carsim’s tire lateral force to verify the validity of the tire cornering
stiffness correction estimate. The smaller the difference between the calculated tire lateral
force estimate and the actual value, the better the corrected estimation result for the tire
cornering stiffness.

The estimation results for the tire cornering stiffness under the complex working
conditions of left and right turns are shown in Figure 7c. The product of the final tire
cornering stiffness estimated through real-time correction and the tire sideslip angle is
expressed as the tire lateral force estimation value. This was used to verify the validity and
accuracy of the estimation results. The comparison results with the actual output values
of CarSim are presented in Figure 7a,b. It is apparent that the maximum errors with the
front- and rear-tire lateral forces correspond to 754.3698 and 430.5427 N. Further, from the
simulation results, the fluctuation changes in the tire cornering stiffness estimation are
consistent with the tire switching between the linear and nonlinear zones. Although the tire
repeatedly switches between the linear and nonlinear zones under this working condition,
the estimated results and response speed show excellent performance. Throughout the
entire estimation process, the estimated tire lateral force based on the tire cornering stiffness
correction approximation remained close to the true value and within a small error range.

(2) To test the robustness of the estimator with respect to various complex working
conditions, working condition 2 was regarded for the simulation test verification.

Under the working conditions of low adhesion and double lane shifting at medium
and high speeds, the simulation results in Figure 8a,b show that the error between the values
estimated from the front- and rear-tire slip angle expressions according to Equation (29) and
the actual value output by CarSim is almost 0◦. Moreover, from Figure 8c–e, the maximum
error between the estimated front-tire lateral force based on the tire cornering stiffness



Sensors 2024, 24, 2316 15 of 30

correction estimate and the true value is approximately 276.2459 N, and, considering the
rear tire force at approximately 6.2 s, the error suddenly increased to 928 N but dropped to
0 in an instant; the overall error between the two was close to 0 N at many instances. It can
be further found from Figure 8a,b that the tire slip angles α f and αr of the front and rear
wheels, respectively, mostly exceed 4–5◦. In this condition, the tire cornering characteristics
enter the nonlinear region. If a constant linear tire cornering stiffness is considered to
calculate the tire lateral force, it will lead to a large error in the true value. The real-time
correction estimation strategy for tire cornering stiffness proposed in this study is based on
the tire lateral force accurately estimated in real time by the UKF. When the tire is in the
nonlinear zone, the tire cornering stiffness can be corrected and compensated to achieve a
value as close as possible to the true value of the tire lateral force. This further improves the
controller’s control performance and its universal applicability to road adhesion conditions.

In summary, the simulation verification and analysis of the above working conditions
show that the tire lateral force estimation based on the UKF and the corresponding adaptive
correction strategy for the tire cornering stiffness can provide accurate estimation of the
tire cornering stiffness parameter value in real time with good adaptability to complex
working conditions.

4. Design of Improved Adaptive Model Predictive Control for Trajectory Tracking
4.1. Design of MPC for Trajectory Tracking

Tracking using MPC is performed based on a path-tracking error dynamics model.
Combined with the established error dynamics model,

.
X = A1X + B1u + C1

.
θr, the design

of the MPC controller is as follows:
(1) Discretize the tracking error dynamics model.
After discretization processing, the following discretization formula is obtained:

X(k + 1) = aX(k) + bu(k) + d (33)

where a is the discretization matrix obtained using the mid-point Euler discretization

method, a = (I − A1T
2 )

−1
(I + A1T

2 ), T is the system discrete sampling time, b = B1T, and

d = C1
.
θrT. Therefore, the linear discretized error dynamics model after discretization is

expressed as follows: {
X(k + 1) = aX(k) + bu(k) + d
Y(k + 1) = C2X(k + 1)

(34)

where Y(k + 1) is the output equation and C2 is the unit matrix. Because the above model
does not include an increment in the control quantity, a discontinuity may be caused in the
solved control quantity, reducing the smoothness of the vehicle. Therefore, the new state
vector was constructed so that the new form contains constraints on the control increments.

Combining ξ(k) = [X(k), u(k − 1)]T with Equation (34), a new form of the prediction
equation is obtained: {

ξ(k + 1) = Aξ(k) + B∆u(k) + D
η(k + 1) = Cξ(k + 1)

(35)

where A =

[
a b
O I

]
, B =

[
b
I

]
, D =

[
d
O

]
, and C = [C2, O].

(2) The output in the prediction time domain is calculated according to the following
prediction model.

ξ(k + 1) = Aξ(k) + B∆u(k) + D
ξ(k + 2) = A2ξ(k) + AB∆u(k) + B∆u(k + 1) + AD + D
ξ(k + 3) = A3ξ(k) + A2B∆u(k) + AB∆u(k + 1) + B∆u(k + 2) + A2D + AD + D

...
ξ(k + Np) = ANp ξ(k) + ANp−1B∆u(k) + · · ·+ B∆u(k + Nc − 1) + ANp−1D + ANp−2D + · · ·+ D

(36)



Sensors 2024, 24, 2316 16 of 30

where Np and Nc represent the prediction and control time domains, respectively, and
the control increment ∆u(k) = u(k)− u(k − 1). In the above equations, let Y(k) = [η(k +
1), η(k + 2), · · · , η(k + Np)]; then:

Y(k) = ψkξ(k) + θk∆U(k) + ΓkΦ(k) (37)

where ψk = [CA, CA2, · · · , CANp ]
T

,

θk =


CB O · · · O

CAB CB
...

...
...

. . . O
CANp−1B CANp−2B · · · CANp−Nc B

, Γ(k) =


C O · · · O

CA C
...

...
...

. . . O
CANp−1 CANp−2 · · · C

,

and

Φ(k) =


D
D
...

D

, ∆U(k) =
[
∆u(k) ∆u(k + 1) · · · ∆u(k + Nc − 1)

]
.

(3) Design objective functions and transformed solutions for quadratic problems.
Considering the state tracking error and control increment as the optimization objec-

tive, the relaxation factor ε is introduced for the case in which the optimal solution cannot be
found in the specified time. The following equation was designed for the objective function.

J =
Np

∑
i=1

∥∥∥η(k + i)− ηre f (k + i)
∥∥∥2

Q

+
Nc−1

∑
i=0

∥∆u(k + i)∥
2

R

+ ρε2 (38)

This is converted into matrix form as follows:

J = YTQY + ∆UT R∆U + ρε2 (39)

where ρ is the weight coefficient of the relaxation factor (ε). Combining Equations (37) and (39),
after integration and simplification, Equation (39) can be transformed into a standard
quadratic programming problem:

minJ =
1
2

XT HX + f TX (40)

where H = 2
[

θTQθ + R 0
0 ρ

]
, f T =

[
2ETQθ 0

]
, and E = ψξ + ΓΦ.

Regarding the actual control driving conditions, the following constraints were set:{
∆Umin ≤ ∆U(t + i|t) ≤ ∆Umax
Umin ≤ U(t + i|t) ≤ Umax

(41)

In addition, considering the control stability during vehicle driving, constraints such
as the center-of-mass sideslip angle were added.{

αmin ≤ α ≤ αmax
βmin ≤ β ≤ βmax

(42)

4.2. Design of Dynamic Prediction Time-Domain Adaptive Model

In the MPC, the selection of the prediction time domain (Np) has an important impact
on the control effect of the system. If Np is small, the output will produce a large jitter; on
the contrary, the system state error will be large, affecting the control accuracy. During the
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driving process of the vehicle, changes in its speed as well as road adhesion conditions (µ)
significantly impact the vehicle trajectory tracking effect and vehicle stability [36]. It is thus
necessary to analyze the impact of varying Np on the control effect under different driving
speeds (v and µ).

4.2.1. Calculation Method for Weight of Tracking Control Effect Indicators

The analytic hierarchy process (AHP) was employed to determine the weight of each
of the evaluation indicators (i.e., lateral position error, heading angle error, and front wheel
angle) of the tracking control effect. The specific process is described below.

Step 1: Construct judgment matrix A based on n indicators of the evaluation object.
The indicator set of the evaluation object is {a1, a2, · · · , an}, using the 1–9 scaling method.
The i-th and j-th indicators are compared according to their importance to obtain a judgment
matrix A = (aij)n×n.

Step 2: Choose an appropriate method to calculate the weight of each indicator. In this
study, a general weight formula was used to calculate the indicator weight. The weight
(Wi) of the i-th indicator can then be obtained using the following method:

The elements of each row of judgment matrix A are multiplied and squared n times to
obtain W∗

i and then the weights Wi:
W∗

i = n

√
n
∏
j=1

aij, i = 1, 2, · · · n

Wi = W∗
i /

n
∑

i=1
W∗

i , i = 1, 2, · · · n
(43)

Step 3: Check consistency. First, we summed the elements of each column of matrix
A as:

Sj =
n

∑
i=1

aij, (j = 1, 2, · · · , n) (44)

Then, the maximum eigenvalue (λmax) of matrix A was determined using the follow-
ing equation:

λmax =
n

∑
i=1

WiSi (45)

When λmax is greater than λ′
max, as given in Table 2, A cannot pass the consistency test,

and the value of aij should be adjusted to recalculate λmax until λmax is smaller than λ′
max.

Table 2. Corresponding critical eigenvalues of n-order matrix.

n λ’
max

3 3.116
4 4.27
5 5.45
6 6.62
7 7.79
8 8.99
9 10.16
10 11.34

Completing calculations according to the above steps, the weight value W = (W1, W2, · · · ,
Wn) is finally obtained for each indicator.

After obtaining each evaluation index value and the corresponding weight values,
the comprehensive evaluation index value (B) of the trajectory-tracking control effect was
calculated using the following equation:

B = (ed, eψ, δ f ) · WT (46)
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where ed, eψ, and δ f are the lateral error, the heading angle error, and the front-wheel
turning angle index values, respectively.

4.2.2. Design of Dynamic Prediction Time-Domain Adaptive Model

In this study, the following simulation test environment was set up: under the joint
simulation platform of CarSim and Simulink, the vehicle speed was set as 30, 40 km/h, etc.,
at equal intervals of 10 km/h, up to 100 km/h; the corresponding road adhesion coefficients
were 0.4, 0.5, 0.65, 0.8, 0.9, 0.95, and 1.0. Tracking control can be performed in CarSim
with vehicles under the abovementioned driving conditions and a double-lane-shift path.
Joint simulation experiments were also conducted considering different prediction time
domains (Np). Regarding the working conditions with a vehicle speed of 60 km/h and a
road adhesion coefficient of 0.5, the control effect for varying Np is depicted in Figure 9.
The three factors of lateral position error, heading angle error, and front-wheel rotation
angle during path tracking (to ensure that there was no obvious strong jitter in the change
in the front wheel angle) were considered as control effect indicators.
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In Figure 9b–d, the lateral position error is minimized overall when the prediction
time domain is 26◦; however, the heading angle deviation is not minimized. Meanwhile,
the corresponding front wheel angle appears to vibrate after approximately 5 s, which
affects the comfort. However, when the prediction time domain is 30, although the lateral
error is slightly larger than when the prediction time domain is 26, these three factors are
significantly better than when the prediction time domain is 26, and the front wheel angle



Sensors 2024, 24, 2316 19 of 30

changes smoothly without jitter. Therefore, the final result is based on the AHP, and the
optimal prediction time-domain value under this working condition is 30.

Similarly, based on the above analysis method, each driving condition was com-
pared and analyzed separately to select the best prediction time domain for different road
adhesion conditions and vehicle speeds. The results are summarized in Table 3.

Table 3. Best prediction time domains under different vehicle speeds and road adhesion conditions.

µ
V (km/h)

30
V
40

V
50

V
60

V
70

V
80

V
90

V
100

0.35

Np

18 22 38 38 38 38 38 38
0.4 18 22 38 38 38 38 38 38
0.5 18 20 28 30 30 30 34 36
0.65 18 19 24 30 30 30 34 36
0.8 18 19 20 24 26 34 34 36
0.9 18 19 18 19 19 34 34 36
0.95 17 18 18 18 18 33 34 36
1.0 16 17 18 17 17 33 34 36

The best prediction time domains under different driving conditions, as listed in
Table 3, were used to fit and solve the relationship between µ, v, and Np using a three-
dimensional surface function. Finally, the Np value obtained by the interpolation fitting
solution was rounded to realize the final prediction time domains, as depicted in Figure 10.
In addition, the dynamic prediction time-domain adaptive model was called the AD model
for short.
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4.3. Improved AMPC Strategy for Trajectory Tracking

Combining the designed adaptive correction estimator for tire cornering stiffness and
the dynamic prediction time-domain adaptive model, an improved AMPC strategy for
trajectory tracking was established. Under different working conditions, the tire lateral
force calculation error was considered to correct and estimate tire cornering stiffness in
real time to obtain the AMPC, ensuring the stability of tracking control and improving the
controller’s performance; meanwhile, the AMPC was further improved to enable dynamic
selection of the best prediction time domain under different road adhesion conditions and
vehicle speeds, further ensuring the accuracy and stability of tracking control. Finally, the
improved AMPC method for trajectory tracking was achieved, as shown in Figure 11.
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5. Simulation Test and Verification

With the CarSim and MATLAB/Simulink joint simulation platform, the improved
AMPC proposed herein, which combines the adaptive correction estimation for tire cor-
nering stiffness and the dynamic prediction time-domain adaptive model, was simulated
and verified.

For most normal working conditions or complex and severe working conditions, such
as low-adhesion single-lane-shift working conditions (slightly higher vehicle speed) or
low-adhesion double-lane-shift working conditions, some studies in the relevant literature
(such as references [37–41]) have shown that path tracking controllers based on MPC have
better path-tracking control effects than the LQR controller and the pure tracking controller.
Therefore, this article will no longer jointly compare the tracking control performance of
the LQR path tracking controller and the pure tracking controller with that of the ordinary
MPC controller and the improved AMPC controller proposed in this article. Only the
improved AMPC controller mentioned in this article and the ordinary MPC controller will
be simulated, compared, and analyzed to conduct a simulation comparison and verification
of the proposed controller.

Generally speaking, the lateral acceleration of ordinary passenger cars under normal
driving conditions is usually between 0.8 g and 1.2 g (1 g is 9.8 m/s2); under ideal circum-
stances, a vehicle will begin to slide when the lateral acceleration reaches the acceleration
provided by the maximum static friction between the tire and the road. This critical lateral
acceleration can be estimated by the following formula:

ay crit = µg (47)

where ay crit is the critical lateral acceleration of the car when it slips, µ is the road adhesion
coefficient, and g is the gravity acceleration, which is 9.8 m/s2.

The results of Bosch’s research on vehicle stability show [42,43] that on roads with
good adhesion, such as dry asphalt pavement, the center-of-mass sideslip angle limit for a
vehicle to drive stably can reach ±12

◦
; while on roads with low adhesion, such as icy and

snowy roads, the limit value is approximately ±2
◦
.

In summary, when conducting simulation experiments in this article, when the vehicle
under the control of the controller was tracking the path, the vehicle center-of-mass sideslip
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angle (β) and the vehicle lateral acceleration (ay) were used to initially judge the driving
stability of the vehicle when tracking. In addition, since the focus of this study is vehicle
path tracking control under improved AMPC control, the verification of the simulation
results mainly focused on the tracking accuracy of path tracking and at the same time
ensured the stability of tracking driving. Therefore, we only made a superficial preliminary
judgment on vehicle driving stability based on β and ay and did not conduct more in-depth
research and analysis on vehicle stability.

5.1. Medium–High Speed and Low-Adhesion Single-Lane-Shift Working Conditions

First, the control performance of the improved AMPC was verified based on a typical
single-lane-shift condition, with the vehicle speed set to 70 km/h and a roadway adhesion
coefficient of 0.4. As shown in Figure 12, the path-tracking control effect based on the
improved AMPC is better than that of the traditional MPC, and the tracking accuracy is
significantly improved. Compared with the ordinary MPC, the proposed improved AMPC
achieves a maximum reduction in the path-tracking lateral position error of 0.3152 m
(time of 4.652 s), and the heading angle error is significantly reduced in the time range
of 3.967–4.588 s. At approximately 4.146 s, the error decreased by 2.3902◦. It is apparent
from Figure 12e that the front-tire sideslip angle (α f ) began to exceed 4◦ at 3.436 s and even
reached a maximum of approximately 7.4◦. At this time, the tire was already operating in
a nonlinear zone. There is a big difference between the tire lateral force calculated based
on the linear cornering stiffness (Cα) and the real value, so it is difficult for the controller
to solve the optimal front-wheel angle control quantity. Through the adaptive correction
estimation of the tire cornering stiffness with the improved AMPC, the calculated tire force
can be as close to the real value as possible, and the vehicle can be controlled to better track
the reference path. As shown in Figure 12d, the front wheel angle changes more gently
based on the improved AMPC than with the ordinary MPC, and the jitter is reduced; hence,
the driving is more stable and comfortable when following the path.
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In Figure 12g, it can be seen from the above that on low-adhesion road surfaces, the
upper and lower limits of the vehicle’s center-of-mass slip angle for stable driving are ±2

◦

and that the vehicle’s center-of-mass slip angles under MPC control and improved AMPC
control are generally consistent; the maximum value is about 1.3◦, which does not exceed
the limit of the center-of-mass sideslip angle. The center-of-mass sideslip angle based on
the improved AMPC control is slightly larger than that under MPC control at certain times.
This is mainly due to the fact that the front wheel angle under the improved AMPC control
is slightly larger than that under MPC control in Figure 12d. In Figure 12h, it can be seen
from the above that since the road adhesion coefficient in this working condition is 0.4,
the critical lateral acceleration of the vehicle to slide is 0.4 g. It can be seen that the lateral
acceleration of the vehicle under the control of the two controllers does not exceed the
acceleration limit, but the lateral acceleration based on the improved AMPC control is
slightly increased compared to the MPC control. The main reason is the same as that for
the change in the center-of-mass sideslip angle in Figure 12g, namely, that the front wheel
angle under the improved AMPC control is slightly larger than that under the MPC control
in Figure 12d. Overall, although the improved AMPC control does not significantly reduce
the vehicle center-of-mass sideslip angle and lateral acceleration compared to the MPC
control, the maximum values are maintained within a stable range, and the vehicle will not
suffer from unstable situations such as sideslip, indicating that under this severe working
condition, the improved AMPC controller proposed in this article not only improves the
path tracking accuracy, but also ensures the driving stability of the vehicle.

According to the comparative analysis, the proposed improved AMPC has higher
control performance than the traditional MPC in the single-lane-shift condition of low
adhesion and medium–high speed.
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5.2. Medium–High Speed and Low-Adhesion Double-Lane-Shift Working Conditions

Based on the typical double-lane-shift condition, to verify the control performance of
the improved AMPC and its adaptability to the vehicle driving state, the vehicle speed was
set to 60 km/h and the road adhesion coefficient was 0.4.

From Figure 13a–c, it is apparent that the path tracking control based on the improved
AMPC controller is better than that based on the ordinary MPC controller and that the
tracking accuracy is greatly improved. The maximum lateral position error under the
traditional MPC was 0.6574 m. Meanwhile, the proposed improved AMPC has a maximum
lateral position error for path tracking of 0.5623 m, a reduction of 14.47%. Further, the
maximum values of the heading angle deviation under the control of the improved AMPC
and the ordinary MPC are the same, but in the time range of 4.412–5.314 s, the heading
angle deviation of the improved AMPC is significantly lower than that of the ordinary
MPC, and the maximum decrease is 0.8378◦. At 5.604 s, compared with the ordinary MPC
controller, the heading angle deviation was reduced by a maximum of 1.0947◦.
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(c) heading angle errors; (d) front wheel angle; (e) vehicle center-of-mass sideslip angle; (f) lat-
eral acceleration.

In addition, as shown in Figure 13d, based on the improved AMPC compared with
the ordinary MPC, the front wheel angle reduces at approximately 3–4 s, and from 4.6 s
onwards, the front wheel angle also decreases more gently, although there is a slight
amplitude value oscillation when finally approaching the value of 0, but, in general, this
does not affect the control performance, and the front wheel angle is clearly improved. In
Figure 13e, the overall difference in the center-of-mass sideslip angle based on the improved
AMPC compared with that of the normal MPC is not significant, but the center-of-mass
sideslip angle slightly decreased at approximately 5.218 s.

In Figure 13e, since this working condition is a low-adhesion road condition with
an adhesion coefficient of 0.4, it can be seen from the above that the upper and lower
limits of the center-of-mass sideslip angle of the vehicle for stable driving are ±2

◦
. The

vehicle center-of-mass sideslip angles under MPC control and improved AMPC control
are generally consistent, and the maximum center-of-mass sideslip angle under improved
AMPC control is about 1◦, which is lower than the upper limit. In Figure 13f, the lateral
acceleration of the vehicle under improved AMPC control and MPC control is also roughly
the same, and the maximum value does not exceed the critical acceleration of 0.4 g for
vehicle sideslip. Comprehensive analysis of Figure 13e,f shows that under this severe
working condition, the vehicle will not suffer dangerous situations such as sideslip under
the action of the proposed controller, which ensures the stability of the vehicle while driving
to a certain extent. To sum up, the proposed improved AMPC controller not only improves
the path tracking accuracy, but also ensures the driving stability of the vehicle.

5.3. High-Speed and High-Adhesion Double-Lane-Shift Working Conditions

To further verify the adaptability of the proposed improved AMPC to road adhesion
conditions and control performance, tests considering the double-lane-shift condition were
continued, with the vehicle speed set to 80 km/h and a road adhesion coefficient of 0.9. A
comparison of the simulation results is presented in Figure 14.

From Figure 14a–c, the path tracking control based on the improved AMPC again
appears better than that of the ordinary MPC, leading to improved tracking accuracy
and control performance. For specific analysis, the maximum lateral position error under
normal MPC is 0.5578 m, while that under the improved AMPC is 0.4746 m, a reduction
of 14.92%. Compared with the traditional MPC, the heading angle deviation under the
improved AMPC also partially reduces at 2.203–2.635 s. The overall control effect of the
front wheel angle is similar. Further considering this beside Figure 14e, the vehicle center-
of-mass sideslip angle is also partially reduced, and the changing range of the respective
value also reflects that the vehicle is in a normal working condition.

In Figure 14e, since the working condition is a high-adhesion road condition with an
adhesion coefficient of 0.9, it can be seen from the above that the upper and lower limits
of the center-of-mass sideslip angle of the vehicle that can drive stably are ±12

◦
and that

the maximum sideslip angle of the vehicle’s center of mass controlled by the improved
AMPC is 2◦, which is far lower than the upper limit. In Figure 14f, the lateral acceleration
of the vehicle based on the improved AMPC control is roughly the same as that under
MPC control, and the maximum value is about 8◦, which is lower than the critical lateral
acceleration of 0.9 g (8.82 m/s2) when the vehicle sideslips. Similarly, the comprehensive
analysis of Figure 14e,f shows that under this working condition, the vehicle will not suffer
dangerous situations such as sideslip under the action of the proposed controller, which
ensures the stability of the vehicle while driving to a certain extent.
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It can be concluded from this working condition and the simulation results presented
in Section 5.2 that, based on the adaptive correction estimation of the tire cornering stiffness
in the improved AMPC, the adaptability of the MPC to road adhesion conditions can be
improved while guaranteeing vehicle path tracking accuracy and stability.
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5.4. Docking Road Conditions

To further verify the improvement effect of the proposed dynamic prediction time-
domain adaptive model on the improved AMPC, the simulations were verified via tracking
the double-lane-shift trajectory at the vehicle speed of 50 km/h on a docking road surface.

Based on the typical double-lane-shift conditions to verify the control performance of
the improved AMPC and the adaptability to the vehicle driving state, the vehicle speed
was set to 50 km/h on a docking pavement (road adhesion coefficient (µ) of 0.85–0.4) and
the road adhesion coefficient was 0.85 for a longitudinal displacement of 0–53 m and 0.4 for
a displacement of 53–120 m. The docking road conditions are depicted in Figure 15, and a
comparison of the simulation results is provided in Figure 16.
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Figure 15. Expected trajectory under docking road surface.

The MPC that incorporates the proposed dynamic prediction time-domain adaptive
model is referred to as the improved MPC, and the MPC that combines the dynamic
prediction time-domain adaptive model and tire cornering stiffness adaptive correction
model is referred to as the improved AMPC. As can be seen in Figure 16, when the vehicle
speed is 50 km/h on the docking road and the prediction time-domain steps are selected
as 12, 17, and 22, the controller cannot track the desired path. Further, when Np was set
to 27, 32, 37, and 42, although the controller could track the reference path, the tracking
error was large. When the prediction time domain is 17 and 22, it can be seen that within
0–53 m, due to good road adhesion conditions, the controller can track the desired path.
However, when the displacement reaches 53–120 m under low-adhesion road conditions,
the tracking error is large owing to the controller’s insufficient prediction of the external
environment: the desired path can thus not be tracked, and the control effect is poor.

When the prediction time domain is selected as the step size obtained under the AD
model, the controller can track the entire variable attachment section of the reference path,
indicating that the designed dynamic prediction time-domain adaptive model is correct. At
0–53 m of the high-adhesion road section, the AD model calculates a smaller step size of 19
for the prediction time domain, which improves the calculation efficiency. At 53–120 m, the
AD model calculates an Np of 38, which can accurately predict the future state of the vehicle
as well as improve the tracking accuracy and driving stability. The changes in the values
calculated using the dynamic prediction time-domain model are exhibited in Figure 16f.
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In Figure 16, for the docking road condition with the road adhesion coefficient from
0.85–0.4, it can be found from Figure 16e that the vehicle center-of-mass sideslip angle under
the improved AMPC control is reduced overall compared to the MPC control and that
the center of mass the maximum value of the center-of-mass sideslip angle is less than 1◦,
which is far lower than the upper limit of the center-of-mass sideslip angle when the vehicle
is driving stably under this adhesion coefficient condition. In Figure 16g, when the vehicle
is driving on a road where the road adhesion coefficient changes, the critical acceleration
without sideslip is 0.85–0.4 g and the maximum value of vehicle lateral acceleration based
on improved AMPC control is 3.704◦, which does not even exceed 0.4 g (3.920◦), and
the lateral acceleration changes relatively smoothly. The analysis of Figure 16e,g shows
that under the action of the proposed controller, the vehicle will not suffer dangerous
situations such as sideslip, and the stability of the vehicle while driving is guaranteed to a
certain extent.

In addition, from Figure 16b,c, on the basis of adding a dynamic prediction time-
domain adaptive model (i.e., improved MPC) combined with the tire cornering stiffness
adaptive correction (i.e., improved AMPC), the lateral position error and heading angle
error of the vehicle tracking reference path are further reduced. Combined with Figure 16e,
the stability of the vehicle driving tracking is also ensured.

6. Conclusions

(1) A UKF was adopted to accurately estimate the tire lateral force in real time. With
the vehicle body dynamics model and observed quantities, i.e., longitudinal vehicle speed
and lateral and longitudinal acceleration, the prediction and measurement equations were
modeled and then combined with the UKF to complete estimation of the tire lateral force.
The simulated working conditions were verified and show that the proposed method
can estimate the lateral tire force accurately and has excellent applicability in complex
working conditions.

(2) Based on the real-time estimation of the tire lateral force, an adaptive tire cornering
stiffness correction strategy was proposed. The linear tire lateral force calculated using a
constant tire cornering stiffness has a certain error with respect to the real value, particularly
under complex road conditions, and this error is large. With the proposed correction
strategy, the tire lateral force calculated by the controller is as close as possible to the real
value, as the tire cornering stiffness is compensated for in real time, improving the tracking
accuracy and driving stability.

(3) During the path tracking of the vehicle, changes in vehicle speed and road adhesion
conditions significantly impact the vehicle trajectory tracking effect and vehicle stability.
Therefore, a dynamic prediction time-domain adaptive model was introduced into the MPC
(i.e., AMPC) that includes adaptive correction estimation for the tire cornering stiffness.
The prediction time-domain value is dynamically obtained according to the road adhesion
condition and vehicle speed, so the trajectory is tracked more accurately, as demonstrated
by the corresponding simulation verification.

Overall, compared with the traditional MPC, the proposed improved AMPC has en-
hanced trajectory tracking accuracy and driving stability under different road adhesions, is
more adaptive to different road conditions, can handle control instability caused by sudden
changes in road adhesion, and exhibits improved tracking accuracy. Thus, the proposed
AMPC method is of great significance for improving the adaptability and robustness of
intelligent vehicle tracking control systems.
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