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Abstract: In this paper, we introduce a novel artificial intelligence technique with an attention
mechanism for half-space electromagnetic imaging. A dielectric object in half-space is illuminated
by TM (transverse magnetic) waves. Since measurements can only be made in the upper space,
the measurement angle will be limited. As a result, we apply a back-propagation scheme (BPS)
to generate an initial guessed image from the measured scattered fields for scatterer buried in the
lower half-space. This process can effectively reduce the high nonlinearity of the inverse scattering
problem. We further input the guessed images into the generative adversarial network (GAN) and the
self-attention generative adversarial network (SAGAN), respectively, to compare the reconstruction
performance. Numerical results prove that both SAGAN and GAN can reconstruct dielectric objects
and the MNIST dataset under same measurement conditions. Our analysis also reveals that SAGAN
is able to reconstruct electromagnetic images more accurately and efficiently than GAN.

Keywords: inverse scattering problem; self-attention; generative adversarial network; real-time
imaging; back-propagation scheme

1. Introduction

Electromagnetic imaging is a sensor technique used in various fields, including medi-
cal imaging, remote sensing, and security applications. However, electromagnetic imaging
is an emerging technology that has drawn a lot of attention recently. It can be used in
many arenas, such as surface exploration, medical imaging, and so on. Generally, two
major techniques are used to solve the electromagnetic imaging problems: (1) traditional
algorithms and (2) artificial intelligence. In the study of traditional algorithms, they can
further be classified by the two main types of algorithms [1–3]: (1) iterative algorithms,
such as the distorted Born iterative method and the distorted Born approximation, etc., and
(2) non-iterative algorithms, such as the Born approximation (BA) and the Rytov approxima-
tion (RA), etc. While in the artificial intelligence method, it can be used as an approximation
method for the initial input image. In the AI mechanism, the data input to the neural net-
work can be categorized as (1) scattered field input [4–6] and (2) initial shape (or dielectric)
guess input [7–14]. In 2019, Yao introduced a two-stage neural network architecture to
deal with the inverse scattering problem. The initial dielectric coefficient distribution was
first estimated by inputting the measured scattered field into a complex value deep convo-
lutional neural network. In the second stage, the initial dielectric coefficient distribution
obtained from the complex value deep convolutional neural network in the first stage was
further input into a deep residual convolutional neural network to reconstruct an accurate
electromagnetic image [4]. In 2020, Yao proposed a deep convolutional neural network to
tackle the electromagnetic inverse scattering problem. Numerical results showed that this
method could effectively reconstruct high-contrast scatterers [5]. Well-reconstructed results
have been obtained by this method. In 2023, Zhang input a single-frequency scattered field
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into the deep residual convolutional neural network to expand to multifrequency. This
scattered field was next input to a deep convolutional encoder–decoder for electromagnetic
imaging [6]. Numerical results showed that the reconstruction was good.

In 2020, Xu compared three different input training schemes for Convolutional Neural
Networks (CNN): the direct inverse scheme, phaseless data-dominant-induced currents,
and phaseless data contrast source inversion. Numerical results showed that phaseless data
contrast source inversion had better accuracy and generalization ability [7]. In 2021, Guo
proposed a novel GAN to improve the resolution of the preliminary images. Compared
with the traditional optimized mechanism, this method exposed better computation per-
formance and resolution [8]. In 2022, Liu proposed two physically oriented loss functions
to improve the noise immunity as well as the resolution of the reconstructed images for
deep learning [9]. Also in 2022, Liu proposed a generative adversarial network for point
cloud upsampling. Results showed that the visual quality of the upsampled point clouds
produced by this method is superior to current state-of-the-art methods [10]. In 2023,
Wang proposed an early fusion deep learning framework for solving the electromagnetic
inverse scattering problem. The accuracy of the reconstructed image was improved by
fusing the input data and the noise immunity was enhanced. Numerical results demon-
strate the effectiveness of the proposed method [11]. To conclude, the first method that
inputs the scattered field is able to reconstruct high-contrast scatterers more rapidly but
with low resolution. Nevertheless, the second method that inputs the initial dielectric
constant guess image takes plenty of time to reconstruct a high-resolution image but not
for high-contrast scatterers.

In recent years, attention mechanisms have found widespread application in artificial
intelligence technologies, particularly in the field of image processing [15–18]. Attention
mechanism is a technique that integrates human behaviors into deep learning, allowing
computers to discern the significance of data through the perceptual understanding. In
2022, Li proposed a GAN with local and global attention mechanisms to enhance the resolu-
tion of remote sensing images. Numerical results validated that the integration of a global
attention mechanism in the generative network captured correlations between channel and
spatial dimensions and optimized the generated images. Moreover, the network discrim-
inative capabilities had also been improved simultaneously [15]. In 2022, Xu proposed
an attention GAN to remove bright spots in a single gray-scale image and compared it
with other generative adversarial network methods to confirm the effectiveness of this
method [16]. In 2023, Xu introduced a Fourier Bases Expansion of Contraction Integral
Equation algorithm (FBE-CIE-I) combined with GAN architecture and attention mechanism
to solve electromagnetic inverse scattering problems. Numerical results demonstrated
that the initial image obtained through FBE-CIE-I could effectively capture low-frequency
components, aiding GAN to regenerate higher-frequency components. In other words,
incorporating attention mechanisms at the end of the generative network could seize the
physical distance information between pixels efficiently and, hence, increase the resolution
of the reconstructed images [17]. In 2023, Wang proposed a U-shaped network with mixed
attention for reconstructing remote sensing images. Numerical results indicated that the
proposed method had effectively utilized an attention mechanism in convolutional layers
to extract global features [18].

In recent years, some relevant research has been published in half-space object detec-
tion. In 2012, Pastorino introduced the Newton algorithm for reconstructing buried objects
by employing numerical simulations [19]. In 2019, Chiu employed Self-Adaptive Dynamic
Differential Evolution (SADDE) to regenerate buried dielectric objects under non-flat rough
surfaces [20]. Continuing this trend, Huang presented a Full-Wave Inversion (FWI) method
for buried anisotropic objects in 2021. Notably, this cascading inversion scheme led to
significant cost savings in computational expenses [21]. Expanding on these advancements,
Liang proposed the variational Born iteration technique in 2022 to reconstruct targets within
layered composite structures. Leveraging multiple orbital angular momentum modes, this
method notably enhanced the accuracy and quality of reconstruction [22]. Despite these
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significant strides, it remains a common challenge across these methodologies that they
require substantial time for computing recurring complex Green’s functions.

Ground-Penetrating Radar (GPR) is commonly employed in both the time and fre-
quency domains [23–25]. In 2018, Ozkaya introduced a groundbreaking algorithm applying
a multi-level deep learning approach for detecting buried objects in GPR B-scans. This
method implemented a layer-by-layer training strategy to construct deep dictionaries
capturing the features of buried objects. Subsequently, various classifiers used these dictio-
naries to identify and classify the detected objects accurately and significantly [23]. In 2022,
Barkataki presented a CNN model to predict the size of buried objects from GPR B-scans.
Promising results had been attained [24]. Wang presented an innovative inversion method
using a Deep Neural Network inverse approach to estimate the relative permittivity of a
target. The proposed method’s reliability was evaluated via a GPR simulation dataset as
well as a dataset of underground rainwater pipes. Results indicated that DNN-based inver-
sion method was a reliable and accurate approach for determining the relative dielectric
constant, marking a prominent development for real-life underground pipe inspection [25].
It is noteworthy that previous studies were predominantly focused on reconstructing the
position or size of the objects, neglecting the dielectric permittivity aspect. GPR typically
employs time–domain pulses of electromagnetic waves at various frequencies to irradiate
buried objects and soil layers. In contrast, our approach utilizes a time harmonic field that
transmits electromagnetic waves at a single frequency for reconstruction, which, generally,
may encounter additional challenges in frequency domain.

Our system architecture is shown in Figure 1. The transmitting antennas are half-wave
dipoles and receiving antennas are also half-wave dipoles. The figure shows that we place
the transmitters to illuminate the unknown objects and receivers to record the scattered
field in a simulated environment. Next, we use the measured scattering field information
to estimate the initial image through BPS. Finally, this estimated image is input to GAN
with the self-attention mechanism block to reconstruct the ground truth image.
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Figure 1. Sensing and reconstruction architecture.

The contributions of this work include the following:

1. To the best of our knowledge, there is no half-space electromagnetic imaging publica-
tion so far for SAGAN. In this article, we propose SAGAN to solve highly nonlinear
inverse scattering problems. Since measurements can only be made in the upper space,
the measurement angle will be limited. Numerical results show that our proposed
method is capable of producing fast and accurate imaging, specifically for highly
nonlinear scatterers.

2. We have successfully implemented GAN and SAGAN to reconstruct electromagnetic
images buried in half-space and compared their performance. In the SAGAN model,
we design a hybrid loss function in the generator network to improve the quality of the
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reconstructed image. Furthermore, the self-attention module is used for regularizing
the physical equations and mimicking the multiple scattering effect in modeling.

3. In the numerical results, we analyze the reconstruction effect of the self-attention
mechanism in electromagnetic imaging. To verify the effectiveness of our proposed
method, we use the trained model to reconstruct the case of high-permittivity dis-
tribution. Results showed that our proposed method is still highly reliable in the
half-space environment.

4. By training the network model in advance with appropriate parameter configuration,
we can obtain the results rapidly by inputting new data into the model. In other words,
we use the trained SAGAN to recover high-resolution electromagnetic imaging in
half-space effectively.

We introduce the theory and formulas in Section 2. GAN and SAGAN architecture are
described in Section 3. Section 4 analyzes the numerical results. Conclusions are given in
Section 5.

2. Theory and Formulas
2.1. Direct Problems

Considering a dielectric object located in a lossy half-space, as illustrated in Figure 2,
(ε1, σ1) and (ε2, σ2) denote the permittivity and conductivity in Region 1 and Region 2,
respectively. Let µ0 be the permeability of free space in each region. In other words, non-
magnetic substances are solely regarded here. The scatterer is a dielectric object extending
in the z-axis infinitely. The time-varying relation of the incident wave is set to ejωt and its
incident angle is ∅1.
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To streamline the analysis, we assume the TM wave is polarized parallel to the z-
axis. The electric field distributed in the absence of scatterers is denoted as Ei and can be
expressed mathematically as follows:

→
E i

(→
r
)
= Ei(x, y)ẑ =

{
E1(x, y) = e−jk1[xsinφ1+(y+a)cosφ1] + R1e−jk1[xsinφ1−(y+a)cosφ1], y ≤ −a
E2(x, y) = Te−jk2[xsinφ2+(y+a)cosφ2] , y > −a

(1)

where

R1 =
1 − n
1 + n

, T =
2

1 + n
, n =

cosφ2
cosφ1

√
ε2 − jσ2/ω

ε1 − jσ1/ω
(2)

k1sinφ1 = k2sinφ2 (3)
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k2
i = ω2εiµ0 − jωµ0σi , i = 1, 2 Im(ki) ≤ 0 (4)

If Regions 1 and 2 consist of lossless media, then φ1 and φ2 indicate the incident and
refracted angles, respectively. Conversely, if Regions 1 and 2 involve lossy media, the
angles φ1 and φ2 become more intricate.

Based on the concept of induced current and Maxwell’s equations, the following
equations are derived:

∇×
⇀
E = −jωµ0

⇀
H (5)

∇×
⇀
H = jωε2

⇀
E +

⇀
j eq (6)

where
⇀
j eq = jωε0[εr(x, y)− ε2]Eẑ is the equivalent current density of the dielectric object.

The total electric field inside the object
→
E t(x, y) = Et(x, y)ẑ = [Ei(x, y) + Es(x, y)]ẑ

can be expressed by the two-dimensional Green’s function as

Ei(r) =
∫

s
G
(
r, r′

)
k2

2
[
εr
(
r′
)
− ε2

]
Et
(
r′
)
ds′, y > −a (7)

The scattered field can be written as

Es(r) = −
∫

s
G
(
r, r′

)
k2

2
[
εr
(
r′
)
− ε2

]
Et
(
r′
)
ds′ (8)

To address this half-space problem, the Green’s function, denoted as G(x, y; x′, y′),
needs to be initially solved. This involves utilizing a line current source at (x′, y′) and
determining the scattered field at (x, y). Employing the Fourier transform technique, the
half-space Green’s function G(x, y; x′, y′) can be expressed as follows:

G
(

x, y; x′, y′
)
=

{
G1(x, y; x′, y′) , y ≤ −a
G2(x, y; x′, y′) = G f (x, y; x′, y′) + Gs(x, y; x′, y′) , y > −a (9)

G1
(

x, y; x′, y′
)
=

1
2π

∫ ∞

−∞

j
γ1 + γ2

ejγ1(y+a)e−jγ2(y′+a)e−jα(x−x′)dα (10)

G f
(
x, y; x′, y′

)
=

j
4

H(2)
0

[
k2

√
(x − x′)2 + (y − y′)2

]
(11a)

Gs
(

x, y; x′, y′
)
=

1
2π

∫ ∞

−∞

j
2γ2

(
γ2 − γ1

γ2 + γ1

)
e−jγ2(y+2a+y′)e−jα(x−x′)dα (11b)

γ2
i = k2

i − α2, i = 1, 2 , Im(γi

)
≤ 0 (12)

Here, ki denotes the wave number of the i-th region, and G(x, y; x′, y′) represents the
half-space Green’s function, acquired through the Fourier transform in (11a), where H2

0
stands for the second-order zero Hankel function. In the numerical solution of Equations (7)
and (8), it is crucial to calculate the Green’s function in Equation (9). However, in situations
where the points (x, y) and (x′, y′) closely approach the interface between the two regions
at y = −a, the convergence in the integration process becomes sluggish. Consequently,
this results in a substantial computational burden for evaluating the half-space Green’s
function in such cases.

2.2. Back Propagation Scheme

In this section, we perform a non-iterative inversion method before training the neural
network to reconstruct the permittivity distribution of the buried object. For the sake of
efficiency for GAN and SAGAN, BPS is first applied to compute the initial permittivity dis-
tribution via the measured scattered field information. The induced current Ib is assumed
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to be proportional to the back-propagation field, where χ is a constant and H denotes the
conjugate transpose.

Ib = χ·[G1]
H(Es) (13)

The loss function Fb is then defined as

Fb(χ) =
∥∥∥(Es)− [G1]·χ·[G1]

H(Es)
∥∥∥2

(14)

To ascertain the minimum value of F(χ), we set the derivative of F(χ) to zero. The
analytical solution for χ can be expressed as follows:

χm =
(Es)

T ·
(
[G1]

(
[G1]

H ·(Es)
))∗

∥∥∥[G1]
(
[G1]

H ·(Es)
)∥∥∥2 (15)

where T and * represent the transpose and complex conjugate, respectively.
We can derive the induced current using Equation (13), upon which χm is determined.

Subsequently, the total back-propagation field Eb
z can be defined as(

Eb
t

)
= (Ei) + [G1]

(
Ib
)

(16)

Based on the definition of the induced current, the dielectric coefficient (τ) and the
induced current Ib can be written as follows:

Ib
p = diag

([
τb

z

])(
Eb

t

)
(17)

where p represents the incidence at each different angle.
By employing the least-squares problem technique to combine all instances of Equation

(17), the analytical solution for each element can be derived as follows:

[
τb

z

]
(n) =

∑Mi
ρ=1 Ib

p(n)·
[(

Eb
t

)
(n)

]∗
∑Mi

ρ=1
∥∥(Eb

t
)
(n)

∥∥2 (18)

where Mi is the number of incidences.

3. Neural Network

This powerful deep learning model trains two neural networks, the generator and dis-
criminator, in a competitive manner. It has achieved great success in various deployments,
including image generation, style migration, image-to-image translation, etc. Training
GANs is challenging due to the issues of instability and gradient vanishing, etc. Many
variants of GAN models with enhanced stability, scalability, and a range of applications
have been proposed recently. These advances have strengthened the position of GAN as an
important tool in the field of generative modelling and artificial intelligence.

In this paper, the GAN depicted in Figure 3 is referred to as Gθ and D∅ for the generator
and discriminative network, with θ and ∅ representing the unknown parameters of the
generator and discriminative network.

As shown in Figure 4, a contracted network, an expanded network, the repeatedly
3 × 3 convolution layers, Batch Normalization layers, as well as the ReLU layers are united
to form the U-Net structure GAN generator. The shrink network pooling layer utilizes
a 2 × 2 max-pooling layer, while the expanded network pooling layer employs a 3 × 3
transposed convolution layer. Lastly, a 1 × 1 convolution is employed in the fully connected
layer. Ni, the number of incidences, is equal to Nout, the number of output channels. The
regression layer takes the average output from the fully connected layer to compute the
error value of the dielectric coefficient distribution.
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Figure 4. The schematic diagram for the GAN generator.

The discriminative network produces a discriminative matrix as its output. The gener-
ative network and the discriminative network undergo alternating and mutually exclusive
training. The discriminator’s architecture is composed of iteratively adding convolution
layers, Batch Normalization layers, and ReLU layers, as illustrated in Figure 5. The input
data for the discriminator is the image generated by the generative network. Essentially,
the discriminator evaluates the generated image and assigns a score, determining whether
the generative network should update its training weights. This iterative process continues
until a satisfactory balance is achieved.
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Here, ∅ represents the unknown parametric data, and � is the weight parameter. �� and 
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The loss function of the generative network LG
GAN can be defined as

LG
GAN(θ|∅) = LRMSE(θ) + γLA(θ|∅) (19)

Here, LRMSE (θ) represents the error between the reconstructed image and the reference
image. We define the Root-Mean-Square Error (RMSE) formula as follows:

LRMSE =
1
M

M

∑
i=1

∥I − Iα∥F
∥I∥F

(20)

where I and Iα represent the true and reconstructed shapes, respectively, M is the number
of tests conducted, and F depicts the Frobenius norm, with γ being the weight parameter
used to balance these two losses.

LA(θ|∅) =
1
N

N

∑
i=1

∥D∅(Gθ(Xi))− 1∥1 (21)

LA serves as the scoring mechanism of the discriminative network to assess the
authenticity of the overall reconstructed image. N represents the size of the data input into
the batch.

The loss function of the discriminative network can be expressed as

LD
GAN(θ|∅) =

1
2N

N

∑
i=1

(
∥D∅(Yi)− 1∥2

2
+ ∥D∅(Gθ(Xi))∥

2
2

)
(22)

Here, ∅ represents the unknown parametric data, and θ is the weight parameter. Yi and
Xi denote the true and trained data, respectively. The optimization process alternately
focuses on D∅ and Gθ in an adversarial manner until a Nash equilibrium is reached. In
other words, the process will cease when the data generated by the generator Gθ(X) closely
resemble the real image and can no longer be distinguished from the authentic data by the
discriminator D∅.

The SAGAN functions as a generative model. Self-attention is a neural network
mechanism utilized to assess the significance of various segments within the input se-
quence during the processing of each element. Briefly speaking, it serves as a potent tool
for capturing relationships within sequences and refines the performance of the neural
network models across various domains. The key concepts of self-attention are summa-
rized as follows: (1) Attention scores: In self-attention, attention scores are computed for
each element in the input sequence concerning other elements. These scores ascertain
the importance or relevance of each element during the processing of a specific element.
(2) Weights and context vectors: The attention scores undergo transformation into weights
via a SoftMax function, creating a probability distribution. Subsequently, these weights
are used to compute a weighted sum of the input sequence, resulting in a context vector.
The context vector accentuates elements more pertinent to the current position. (3) Paral-
lelization and efficiency: Self-attention enables the parallelization of computation, allowing
each element to independently attend to all other elements. In short, this parallelization
allows high-performance computing, especially for lengthy sequences, in contrast to the
traditional sequential approaches. (4) Capture of Long-Range Dependencies: A notable
advantage of self-attention lies in its capability to capture long-range dependencies within
sequences. Traditional recurrent neural networks may encounter challenges with depen-
dencies distributing far apart in the sequence, whereas self-attention can comprehensively
consider all positions. The nonlinearity inherent in inverse scattering is widely recognized
to be influenced by the multiple scattering effects of the degree of interest. In this context,
the induced current at each pixel gives rise to a scattered field at another pixel, and this rela-
tionship hinges on the distance separating the two pixels. Consequently, the application of
self-attention emerges as a valuable approach to capture the physical distance information
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between two pixels, enhancing the model’s ability to grasp the intricacies of the multiple
scattering process.

In this research, we have merged GAN with attention mechanisms into SAGAN. This
amalgamation enhances the network’s capacity to capture distant dependencies, leading
to the generation of more realistic and coherent data. The SAGAN architecture with the
generator and discriminator, respectively, is shown in Figures 6 and 7.
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Figure 7. The schematic diagram for the SAGAN discriminator.

As shown in Figure 6, the SAGAN generator comprises a contracting network on the
left half and an expanding network on the right half. The contracting network incorporates
continuously added 3 × 3 convolution layers, Batch Normalization layers, and LeakyReLU
layers. During the contraction phase, 4 × 4 convolution layers, Batch Normalization layers,
and LeakyReLU layers are employed. While in the expansion phase, 3 × 3 transposed
convolution layers with Batch Normalization layers and LeakyReLU layers are utilized
for pooling. Subsequently, 3 × 3 convolution layers, Batch Normalization layers, and
LeakyReLU layers are introduced to extract features. A self-attention layer is introduced
just before the final output to enable the neural network to capture long-range dependencies,
resulting in more realistic and coherent data recovery, as illustrated in Figure 8. The ultimate
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1 × 1 convolution serves as the generator’s output to be fed into the discriminator for
distinguishing between True and False. The input channel number (Ni) should align with
the output channel number (Nout).

Sensors 2024, 24, x FOR PEER REVIEW 10 of 16 
 

 

 

Figure 7. The schematic diagram for the SAGAN discriminator. 

As shown in Figure 6, the SAGAN generator comprises a contracting network on the 

left half and an expanding network on the right half. The contracting network 

incorporates continuously added 3 × 3 convolution layers, Batch Normalization layers, 

and LeakyReLU layers. During the contraction phase, 4 ×  4 convolution layers, Batch 

Normalization layers, and LeakyReLU layers are employed. While in the expansion 

phase, 3 ×  3 transposed convolution layers with Batch Normalization layers and 

LeakyReLU layers are utilized for pooling. Subsequently, 3 × 3 convolution layers, Batch 

Normalization layers, and LeakyReLU layers are introduced to extract features. A self-

a�ention layer is introduced just before the final output to enable the neural network to 

capture long-range dependencies, resulting in more realistic and coherent data recovery, 

as illustrated in Figure 8. The ultimate 1 × 1 convolution serves as the generator’s output 

to be fed into the discriminator for distinguishing between True and False. The input 

channel number (��) should align with the output channel number (����). 

 

Figure 8. Self-a�ention architecture. 

The discriminative network generates a discriminative matrix as its output, in which 

its training alternates with the generative network in an exclusive manner. The 

discriminator’s structure is formed by iteratively incorporating convolution layers, Batch 

Normalization layers, and LeakyReLU layers, as depicted in Figure 7. The input data of 

the discriminator consist of images created by the generative network. In essence, the 

discriminator assesses each generated image, assigning a score that dictates whether the 

Figure 8. Self-attention architecture.

The discriminative network generates a discriminative matrix as its output, in which its
training alternates with the generative network in an exclusive manner. The discriminator’s
structure is formed by iteratively incorporating convolution layers, Batch Normalization
layers, and LeakyReLU layers, as depicted in Figure 7. The input data of the discrimi-
nator consist of images created by the generative network. In essence, the discriminator
assesses each generated image, assigning a score that dictates whether the generative
network should adjust its training weights. This cyclic process persists until a satisfactory
equilibrium is attained.

For the objective of generating images with comparable features, it is essential to note
that they collect distinct types of features. LRMSE strives to produce images with features
akin to the target image, obtained through convolution kernels, and incorporating details
like edges and gradients. On the other hand, LSSIM gauges the perceptual distance between
two images by considering factors such as luminance, contrast, and structural information.
In light of this, the integration of SAGAN and SSIM is undertaken to reinforce the similarity
between the generated image and the target image by incorporating the strengths of both
approaches. The loss function of the generative network by SAGAN LG

SAGAN can be defined
as follows:

LG
SAGAN(θ|∅) = LRMSE + λ1·LA + λ2·Lssim (23)

Lssim = 1 − SSIM
(∼

y, y
)

(24)

SSIM
(∼

y, y
)
=

(
2µ∼

y
µy + C1

)(
2σ∼

yy
+ C2

)
(

µ2
∼
y
+ µ2

y + C1

)(
σ2
∼
y
+ σ2

y + C2

) (25)

Where
∼
y and y denote, respectively, the reconstructed and true relative permittivity profiles;

µy and σ2
∼
y

are the mean and variance of y, respectively; and σ∼
yy

denotes the covariance

for
∼
y and y. To prevent a zero denominator, two small constraints, C1 = (K1D)2 and

C2 = (K2D)2, with K1 = 0.01 and K2 = 0.03 as the two hyperparameters with D, the
dynamic range of pixel values for the target object y, have been considered.

4. Numerical Results

This section details the design of a simulation environment to analyze inverse scat-
tering problems for dielectric objects buried in half-space, as depicted in Figure 2. The
incident wave frequency is set at 3 GHz and the scatterers are illuminated by TM waves.
To emulate real-world conditions, 10% and 20% Gaussian noise are added in the simula-
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tion environment, respectively. A configuration comprising 32 receivers spanning from
θ = 195o to 350o with a radius of distance set at 3 m and 32 transmitters ranging from
∅1 =−80o to 80o at 5o intervals are employed. In this simulation environment, 10 scatterers
with different permittivity distributions are randomly placed at 50 different positions in
a 32 × 32-pixel area. By measuring the scattered field, an initial image is guessed via BPS.
The dataset comprises approximately 500 images, with 90% for training, 5% for validating,
and 5% for testing.

During the training process, each iteration is conducted independently, and GPU
parallelization is applied to enhance the computational efficiency. The initial learning rate
parameter for Adaptive Moment Estimation (ADAM) is set to 0.0002. The batch size and
maximum number of epochs are configured as 16 and 200, respectively. To boost training
effectiveness using GAN and SAGAN, data shuffling is executed after each epoch. Note
that the same training parameters and noise level are applied to compare the performance
of GAN and SAGAN in our simulations.

Equations (20) and (25) are used to evaluate the reconstruction results trained by GAN
and SAGAN.

4.1. GAN and SAGAN Performance Comparison for Reconstruction Permittivity Between 3 and
3.5 with 20% Noise Level

In this context, we define the dielectric constant distribution to range between 3 and 3.5.
Our simulated environment consists of 32 transmitters and receivers. To emulate real-world
conditions, we add 20% Gaussian noise into the measured scattered field. We postulate
that scatterers exhibit 10 distinct dielectric constant distributions and can be randomly
positioned at any of the 50 locations in the measurement compound. Consequently, the
dataset for each scenario comprises a total of 500 images. We partition the dataset into three
subsets with 90% for training, 5% for validating, and 5% for testing to facilitate the process.
BPS methods are implemented to estimate the initial dielectric constant distribution. This
estimated distribution is then input into both GAN and SAGAN models for comparative
analysis. Figure 9a shows the ground truth image. Figure 9b,c show the reconstructed
image by GAN and SAGAN with a 20% noise level. The RMSE and SSIM are listed in
Table 1. It is inspiring to report that SAGAN demonstrates greater accuracy and clarity in
reconstructing both the shape and dielectric constant of the objects compared to GAN.
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Figure 9. Permittivity from 3 to 3.5. (a) Ground truth. (b) Reconstructed image by GAN with 20%
noise. (c) Reconstructed image by SAGAN with 20% noise.

Table 1. RMSE and SSIM of permittivity from 3 to 3.5 with 20% noise added.

GAN SAGAN

RMSE 2.3% 1.76%
SSIM 89.6% 94.5%

4.2. GAN and SAGAN Performance Comparison for Reconstruction Permittivity Between 3.5 and
4 with 10% Noise Level

In this study, we define the dielectric constant distribution within the range from 3.5
to 4. Like before, our simulation environment comprises 32 transmitters and receivers.
This time, we introduce 10% Gaussian noise into the measured scattered field to replicate a
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realistic environment. Again, 10 different dielectric constant distributions are presumed
and are randomly placed at any 50 locations within the measurement area to come out
to 500 images in total. For simplicity, we split the dataset into 90% for training, 5% for
validating, and 5% for testing. To estimate the initial dielectric constant distribution,
we employ the BPS method. This estimated distribution is next input into GAN and
SAGAN models for comparative analysis. Figure 10a displays the ground truth image.
Figure 10b,c show, respectively, the reconstructed images by GAN and SAGAN with 10%
noise added. The RMSE and SSIM details are presented in Table 2. Observation shows
that SAGAN overwhelms GAN in reconstructing the dielectric coefficient distribution of
objects, although it has some marginal errors.
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Figure 10. Permittivity from 3.5 to 4. (a) Ground truth. (b) Reconstructed image by GAN with 10%
noise. (c) Reconstructed image by SAGAN with 10% noise.

Table 2. RMSE and SSIM of permittivity from 3.5 to 4 with 10% noise added.

GAN SAGAN

RMSE 2.96% 2.45%
SSIM 79.8% 95.6%

In this part, we have compared different dielectric constant distributions between 3
to 3.5 and 3.5 to 4 with 10% noise. The simulation environment and training parameters
are the same as case A. Figure 11a,d show the ground truth image. Figure 11b,c,e,f show
the reconstructed image by GAN and SAGAN with 10% noise level, respectively. Relative
RMSE and SSIM are listed in Table 3. It is seen that the accuracy and clarity for the large
permittivity objects are worse than those for the small permittivity objects.
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Figure 11. Reconstructed image at 10% noise level for different dielectric coefficient distributions.
(a) Ground truth with dielectric coefficient distributions between 3 and 3.5. (b) Reconstructed image by
GAN with dielectric coefficient distributions between 3 and 3.5. (c) Reconstructed image by SAGAN
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with dielectric coefficient distributions between 3 and 3.5. (d) Ground truth with dielectric coefficient
distributions between 3.5 and 4. (e) Reconstructed image by GAN with dielectric coefficient distribu-
tions between 3.5 and 4. (f) Reconstructed image by SAGAN with dielectric coefficient distributions
between 3.5 and 4.

Table 3. RMSE and SSIM with 10% noise level for different dielectric coefficient distributions.

Performance
3–3.5 3.5–4

GAN SAGAN GAN SAGAN

RMSE 0.94% 0.89% 2.96% 2.45%
SSIM 97.6% 98.9% 79.8% 95.6%

4.3. GAN and SAGAN Performance Comparison for Reconstruction Permittivity between 4 and
4.5 with 10% Noise Level

The Modified National Institute of Standards and Technology database (MNIST)
includes a substantial collection of handwritten digits from 0 to 9. Each image in the
database is sized at 28 × 28 pixels, with 10,000 images available for each digit, resulting in
a total of 70,000 images. The dataset is structured such that every 50 consecutive images
represent a distinct handwriting style, and each style is rotated at 50 different angles. Due
to its simplicity and widespread use in developing various neural network architectures
for image processing, MNIST has become a common choice for training such networks.
In this case, we distribute the dielectric coefficient between 4 and 4.5 within a simulated
environment with 32 transmitters and 32 receivers deployed. A 10% Gaussian noise is
added to each transmitter–receiver pair. Handwritten digits (0–9), with 50 images each,
are randomly selected from the MNIST database to form a total of 500 images for each
scenario. This dataset is also partitioned into three subsets as follows: 90% for training,
5% for validating, and 5% for testing to accelerate the process. The dielectric constant
distribution of those handwritten digits estimated prior by the BPS method is fed into
GAN and SAGAN models for comparative analysis. Figure 12a illustrates the ground
truth image, while Figure 12b,c present the reconstructed images by GAN and SAGAN,
respectively, with 10% noise added. The RMSE and SSIM are detailed in Table 4.
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Figure 12. Permittivity from 4 to 4.5. (a) Ground truth. (b) Reconstructed image by GAN with 10%
noise. (c) Reconstructed image by SAGAN with 10% noise.

Table 4. RMSE and SSIM of permittivity from 4 to 4.5 with 10% noise added.

GAN SAGAN

RMSE 2.48% 1.29%
SSIM 88.1% 98.8%

4.4. GAN and SAGAN Performance Comparison for Reconstruction Permittivity Between 4.5 and
5 by Case C Model

In this scheme, we implement the training model of Case C with 10% noise to divide
the dielectric constant between 4.5 and 5 in order to assess the effectiveness of our proposal.
Figure 13a is the ground truth image. Figure 13b,c are the images reconstructed by GAN
and SAGAN, respectively, with 10% noise added. The corresponding RMSE and SSIM
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are given in Table 5. Numerical results reveal that GAN is relatively vague compared to
SAGAN in reconstructing the contours for the digit eight.
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Figure 13. Permittivity from 4.5 to 5. (a) Ground truth. (b) Reconstructed image by GAN with 10%
noise. (c) Reconstructed image by SAGAN with 10% noise.

Table 5. RMSE and SSIM of permittivity from 4.5 to 5 with 10% noise added.

GAN SAGAN

RMSE 12.75% 11.3%
SSIM 72.9% 78.1%

5. Conclusions

The 2D inverse scattering problem is being investigated in this paper. We have
compared two distinct neural network architectures, GAN and SAGAN, to reconstruct
dielectric objects buried in half-space. The object is illuminated with TM-polarized waves
in the lower-half plane, and the scattered field is measured from the upper-half side. BPS is
used to calculate the initial size and position of the image through the measured scattered
field. Ultimately, accurate permittivity can be successfully reconstructed in half-space
using both GAN and SAGAN. According to our numerical results, under the same training
parameters, the reconstruction results of our proposed SAGAN surpass those of GAN,
regardless of the shape types of the object or the distribution of the dielectric constant.
It is also realized that despite SAGAN exhibiting superior performance over GAN, it
requires a longer training time. In future work, we tend to implementing SAGAN to more
difficult simulation environments and reconstruct more complex objects. In addition, we
also consider applying SAGAN to the more advanced Switch Transformer architecture
expert system.
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