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Abstract: Screening methods available for colorectal cancer (CRC) to date are burdened by poor
reliability and low patient adherence and compliance. An altered pattern of volatile organic com-
pounds (VOCs) in exhaled breath has been proposed as a non-invasive potential diagnostic tool
for distinguishing CRC patients from healthy controls (HC). The aim of this study was to evaluate
the reliability of an innovative portable device containing a micro-gas chromatograph in enabling
rapid, on-site CRC diagnosis through analysis of patients’ exhaled breath. In this prospective trial,
breath samples were collected in a tertiary referral center of colorectal surgery, and analysis of the
chromatograms was performed by the Biomedical Engineering Department. The breath of patients
with CRC and HC was collected into Tedlar bags through a Nafion filter and mouthpiece with a
one-way valve. The breath samples were analyzed by an automated portable gas chromatogra-
phy device. Relevant volatile biomarkers and discriminant chromatographic peaks were identified
through machine learning, linear discriminant analysis and principal component analysis. A total of
68 subjects, 36 patients affected by histologically proven CRC with no evidence of metastases and
32 HC with negative colonoscopies, were enrolled. After testing a training set (18 CRC and 18 HC)
and a testing set (18 CRC and 14 HC), an overall specificity of 87.5%, sensitivity of 94.4% and accuracy
of 91.2% in identifying CRC patients was found based on three VOCs. Breath biopsy may represent a
promising non-invasive method of discriminating CRC patients from HC.

Keywords: colorectal cancer screening; volatile organic compounds; micro GC; breath biopsy

1. Introduction

Mortality for colorectal cancer is still a major concern for the health system in Western
countries [1], but it can be significantly reduced by early diagnosis [2,3]. In fact, one of
the major challenges to modern oncology is the early diagnosis of cancer by an effective
screening test.

Colorectal cancer screening based on fecal occult blood test has been demonstrated
to be able to save lives [4]; however, it is burdened by low patient compliance due to the
unpleasant fecal manipulation and limited by unsatisfactory reliability [5].

Nowadays, with precision medicine becoming more widely accessible [6], the time has
come to change the way colorectal cancer screening takes place, looking for new, reliable,
non-expensive and well-accepted screening tools. Recently, the study of the molecular
components of breath has been applied to the early diagnosis and follow-up of several
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diseases including COVID-19 [7,8], opening the way to a new branch of metabolomics,
such as breathomics [9].

Volatile organic compounds (VOCs) are present in various excreted biological ma-
terials (urine, blood, faeces and breath), and their analysis offers a possibility for cancer
screening [10–13].

Endogenous breath VOCs can arise from metabolic activity and can originate any-
where in the body.

In patients with cancer, the increased prevalence of reactive oxygen species within
cancer cells leads to (per)oxygenation of cell-membrane-based polyunsaturated fatty acids,
resulting in an alteration in VOCs produced [14,15]. VOCs reach the pulmonary alveoli
through the circulatory system and are exhaled, allowing their objective measurement.
VOCs produced by human metabolism are mainly represented by benzene, alkanes and
aldehydes (or their derivatives), and several studies have demonstrated that specific VOCs
are associated with specific types of cancer, such as lung, breast, hepatocellular carcinoma,
melanoma, mesothelioma and gastric cancer [16–19].

Previous studies from our group [12,20] have demonstrated that colorectal cancer
patients have an altered pattern of VOCs in exhaled breath compared to healthy subjects,
suggesting that breath analysis could be used as a potential non-invasive diagnostic tool
for the detection of colorectal cancer.

However, the technology available is complex, time-consuming and unable to give an
immediate response.

This study aims to evaluate the reliability of an innovative, portable device containing
a micro-gas chromatograph to enable rapid colorectal cancer diagnosis.

2. Methods

This prospective trial was carried out between July 2021 and January 2023 in a tertiary
referral center of colorectal surgery at University “Aldo Moro” of Bari. Data analysis and
interpretation were performed at Michigan University (Ann Arbor USA). The protocol was
approved by the local independent Ethics Committee.

Patients’ age, BMI, comorbidities, drug intake, family history of colorectal cancer and
oncological biomarkers (CEA, Ca 19.9) were prospectively recorded on an Excel database.

Inclusion criteria for CRC patients was histologically proven colorectal cancer with no
clinical evidence of metastases before surgery, while healthy controls were selected among
patients attending the coloproctological outpatient for constipation or rectal bleeding who
had a negative colonoscopy within the last 2 years. Intellectually disabled subjects and
patients affected by IBD, major systemic diseases (liver, kidney, heart and respiratory
failure), previous or concomitant malignancy and those having had a mechanical bowel
preparation in the last 2 weeks were excluded. Written informed consent was obtained
before entering the study.

3. Breath Analysis

The portable gas chromatograph (GC) system used in this study has been reported
in previous works published by our study group [7,21]. Briefly, the portable GC consists
of a sampling module and an analyzing module. The sampling module is made up of a
sampling tube, a thermal desorption tube (5 cm long copper tube; inside diameter (i.d.):
1 mm) loaded with both Carbopack X and B granules (10 mg each, 60–80 mesh, Sigma
Aldrich, St Louis, MI, USA), valves and a pump. The analyzing module comprises a
stainless steel thermal injector (SSTI) loaded with Carbopack X and B (60–80 mesh), one
10 m long non-polar DB-5 ms column (250 µm × 0.25 µm, Agilent J&W Scientific, Folsom,
CA, USA) and a micro-photoionization detector. The device weighs less than 3 kg and is
housed in a customized small plastic case.
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Breath collection and analysis were conducted in the same environment and same
room by the same operator (AD) on all in-patients admitted to the hospital for colorectal
cancer treatment and on patients attending the outpatient clinic for constipation or hem-
orrhoids (healthy controls), after obtaining written informed consent. The participants
were asked to exhale 1 to 2 L of breath into a 5 L bag via a one-way mouthpiece and a
Nafion filter (Biopac Systems Inc., Goleta, CA, USA) for moisture removal (Figure 1a).
Breath analysis took place either in situ within 18 h of breath collection. During breath
analysis, the multi-layer foil bag from Restek (Restek Corporation, Bellefonte, PA, USA)
was connected to the sampling port of the device (Figure 1b), and 350 mL of breath was
sampled from the bag into the GC for analysis. The GC operation was controlled using
LabView via a laptop. During sampling, the VOCs were trapped by the thermal desorption
tube. Then, the tube was heated to 300 ◦C in 1 min and maintained at 300 ◦C for 4 min
to transfer the trapped VOCs to the SSTI. Finally, the SSTI was heated to 250 ◦C in 0.3 s
and maintained at 250 ◦C for 5 s to inject the VOC pulse into the separation column. The
column temperature started from and stayed at 25 ◦C for 2 min and was then heated to
80 ◦C with a ramping rate of 10 ◦C/min. Then, the temperature was raised to 120 ◦C with
a ramping rate of 40 ◦C/min and held at 120 ◦C for 1 min. The flow rate of the carrier gas
(helium) was 2 mL/min. Assay time included 5 min for breath sampling time from the
Tedlar bag (70 mL/min), 5 min of desorption/transfer time, 10 min of chromatographic
separation time and 10 min of GC system cleaning time, for a total of 30 min assay time.
After breath analysis, consumables (bag and one-way mouthpiece) were disposed of.
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Figure 1. (a) The setup shown is used in another study to collect breath in a 1 L bag via a one-way
mouthpiece and a Nafion filter. The present study used a similar setup; only the 1 L bag was replaced
with a 5 L bag. (b) Photo of the portable GC showing that the bag was connected to the sampling
port of the device. Image courtesy [22].

One chromatogram, a series of time intervals and detector signal intensities were
generated for each GC analysis of a breath sample (Figure 2). After patient breath analysis,
chromatograms were pre-processed (such as baseline correction and de-noising) [21,22].

The chromatograms obtained were anonymized and marked with a serial number and
sent without sensitive data to Michigan University for data analysis.
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Figure 2. Example of chromatograms obtained from CRC patient and healthy control. Green lines
correspond to peaks of discriminant volatile organic compounds (form left to right: hexane 2,4-
dimethyl, heptane 2,5-dimethyl and hexane 2,2,5,5-tertramethyl).

4. Statistical Analysis

The data analysis pipeline was developed in-house and was implemented using
Matlab, version R2021a (MathWorks). Linear discriminant analysis (LDA) and principal
component analysis (PCA), already tested and validated in our earlier studies on other
pathologies [1–4], were used for data set dimensionality reduction, biomarker selection
and statistical analyses [7,21,22]. Details of the biomarker discovery algorithm have been
previously reported [23].

Subjects’ characteristics were expressed as median and interquartile ranges. The Mann–
Whitney U test was used to compare the two groups. Descriptive data were expressed
as percentages. The statistical analysis was performed by R Studio (Version 1.1.463—©
2009–2018 RStudio, Inc., Boston, MA, USA). p values < 0.05 were considered statistically
significant.

5. Results

Overall, 82 breath samples were obtained, but 14 of them were technically inadequate
for the analysis and were eliminated. The chromatograms of the breath of the remaining
68 subjects, regarding 32 healthy controls (HC) and 36 patients with histologically proven
colorectal cancer, were analyzed.

Patient characteristics are presented in Table 1. The two groups differed slightly in
comorbidities and BMI. According to TNM classification, all CRC cases were M0; T and N
stages and tumor location are reported in Table 2.

A description of the portable GC device and its operation are clarified in our previously
published work [7,21,22].
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Table 1. Subjects’ characteristics. Data are reported as percentage, median and interquartile ranges.
* BMI: body mass index.

CRC Group HC Group p

n 36 32

Gender Male 26 (72.20%) 19 (59.40%) 0.74

Female 10 (27.80%) 13 (40.60%)

Age 67 (64–77.25) 65 (54–68.75) 0.07

BMI * 27.50
(25.15–30.12) 25 (23.42–27.90) 0.03

Comorbidities Cardiovascular 27 (75%) 11 (34.30%) <0.01

Pulmonary 6 (16%) 0 0.06

Diabetes 7 (19.40%) 4 (12.50%) 0.40

Drugs Antihypertensive 26 (72.20%) 9 (28.10%) <0.01

Antidiabetic 5 (13.80%) 4 (12.50%) 0.80

Weight Loss yes 3 (8.30%) 1 (3.10%) 0.36

no 33(91.60%) 31 (96.80%)

Family history of CRC yes 3 (8.30%) 2 (6.20%) 0.74

no 33(91.60%) 30 (93.70%)

Table 2. TNM classification, tumor location and median oncomarker levels.

Pathological T T1 0

T2 4 (11.10%)

T3 27 (75%)

T4 5 (13.80%)

Pathological N N0 26 (72.20%)

N1 7 (19.40%)

N2 3 (8.30%)

Tumor location Right 8 (22.20%)

Transverse 2 (5.50%)

Left 2 (5.50%)

Sigmoid 16 (44.40%)

Rectum 8 (22.20%)

CEA ng/mL 2.8 (6.20–1.70)

CA 19.9 U/mL 9.6 (22.20–6.90)

Among all peaks, only a few were associated with CRC. Of all compounds found, most
are probably a result of normal metabolic activities, comorbidities or exogenous factors (use
of drugs, air background, etc.) [24]. In order to select the most appropriate subset of peaks
(i.e., biomarkers), 18 samples from colorectal cancer group and 18 healthy controls were
used as the training set. The remaining 18 chromatograms from CRC group and 14 non-
CRC were then used as the testing set. A set of three biomarker peak subsets were identified
among approximately 100 VOCs detected, which yielded the overall classification accuracy
of 91.2% with a sensitivity of 94.4% and a specificity of 87.5%. Using mass spectrometry, we
preliminarily identified those 3 biomarkers as 2,4-dimethylhexane, 2,5-dimethylheptane
and 2,2,5, 5-tetramethylhexane. The complete list of identified compounds in breath using
the portable GC is shown in Table 3. The outlet of the portable GC was connected to
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an Agilent mass spectrometry (MS). The detailed setup and library used for compound
identification is discussed in our previous paper (in Figure 3) [7]. Figure 3 shows the PCA
plot of the training and the combined (training and testing) set. The corresponding statistics
are given in Table 4.

Table 3. MS identified common peaks within human breath using portable GC.

Retention Time
TR (s) Library Compound Retention Time

TR (s) Library Compound Retention Time
TR (s) Library Compound

9 1,4-Dioxane-2,6-
dione 260 1-Octene 470 Hexane, 2,2,5,5-

tetramethyl-

38 Butane, 2-methyl- 266 Tetrachloroethylene 482 Heptane,
2,3,6-trimethyl-

42 Isoprene 267 4-Octene, (Z)- 502 a-Pinene

47 4-Penten-1-ol 271 4-Octene, (E)- 504
Cyclohexene,
4-methylene-

1-(1-methylethyl)-

53 Pentane, 2-methyl- 276 Octane 527
4-Octene,

2,6-dimethyl-,
[S-(E)]-

62 1-Pentene, 2-methyl- 283 Heptane,
3,3-dimethyl- 533 2-Undecanethiol,

2-methyl-
65 n-Hexane 288 2-Heptene, 3-methyl- 558 Octane, 4-ethyl-

72 1-Pentanol,
2-methyl- 295 2-Octene 565 5-Ethyldecane

115 Hexane, 3-methyl- 304 Hexane,
2,3,5-trimethyl- 601 Decyl octyl ether

137 Heptane 316 Heptane,
2,4-dimethyl- 609 Decane,

2,6,7-trimethyl-

154 Cyclohexane,
methyl- 327 Octane, 2-methyl- 616 Decane,

2,4,6-trimethyl-

158 1-Pentanol, 2-ethyl-4-
methyl- 341 Heptane,

2,5-dimethyl- 624 Dodecane, 1-fluoro-

175 Pentane,
2,2,3-trimethyl- 362 Hexane,

2,3,4-trimethyl- 630 Decane,
2,2-dimethyl-

197 2,4-dimethylhexane 372
4,6-Octadiyn-3-one,

2-
methyl-

665 2,2,7,7-
Tetramethyloctane

209 Pentane,
2,3,4-trimethyl- 376 Heptane,

2,3-dimethyl- 656 Decane,
2,6,8-trimethyl-

214 Pentane,
2,3,3-trimethyl- 387 Octane, 4-methyl- 675 Decane,

2,5,9-trimethyl-

221 Hexane,
2,3-dimethyl- 394

Cyclopentane,
2-ethyl-1,1-
dimethyl-

696
Heptane,

5-ethyl-2,2,3-
trimethyl-

230 Hexane,
2,3-dimethyl- 412 Heptane,

2,2,4-trimethyl- 717 Decane,
2,6,7-trimethyl-

239 Heptane,
2,5-dimethyl- 422 Octane,

2,2-dimethyl- 735 Undecane,
3,6-dimethyl-

249 Hexane,
2,2,4-trimethyl- 441 Octane,

3,3-dimethyl- 768 Dodecane, 2,7,10-
trimethyl-

255 Hexane,
2,2,5-trimethyl-
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Table 4. Statistics of breath analysis for CRC and non-CRC patients.

Training Set Testing Set Training + Testing Set

CRC Non-CRC Total CRC Non-CRC Total CRC Non-CRC Total

Subject number 18 18 36 18 14 32 36 32 68

Positive 17 1 18 17 3 20 34 4 38

Negative 1 17 18 1 11 12 2 28 30

Specificity 94.4% 78.6% 87.5%

Sensitivity 94.4% 94.5% 94.4%

Positive predictive value 94.4% 85.0% 89.5%

Negative predictive value 94.4% 91.7% 93.3%

Total accuracy 94.4% 87.5% 91.2%

6. Discussion

The improvement of screening tools for colorectal cancer still represents a major
concern for health services in Western countries since the fecal occult blood test is hindered
by inadequate accuracy and very low patients’ compliance. Therefore, several attempts are
being made to find new non-invasive methodologies to detect CRC in the target population,
including liquid biopsy [25], fecal DNA and fecal micro RNA [26–28].

Our study focused on the changes in the exhaled breath VOCs induced by CRC, using
a new portable and easy-to-use device able to discriminate cancer patients from healthy
controls by a machine learning approach. The preliminary results show that the three
selected VOCs can identify colorectal cancer patients with a reassuring sensitivity of 94.4%,
specificity of 87.5% and total accuracy of 91.2%. The biochemical pathways behind the
significant difference in the distribution of these exhaled VOCs in CRC patients compared
to non-cancer patients is still a matter of debate.

Several other investigations on the breath of CRC patients, including some from our
group, have described different exhaled VOCs patterns with similar discriminatory ability,
casting doubts on the reliability of this methodologic approach [29]. In fact, in 2012, our
group reported a pattern of 15 compounds obtained after thermal-desorption and gas
chromatography–mass spectrometry (GC-MS), demonstrating a discriminant performance
with a sensitivity of 86%, a specificity of 83% and an accuracy of 85% [12]. Amal et al.
identified four main VOCs able to identify advanced adenomas using GC-MS and a sensor
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analysis with a pattern recognition method [30]. In a further study from Markar, propanal
was significantly elevated in the CRC cohort compared with control patients with sensitivity
of 83.3% and specificity of 84.7% using ion flow tube mass spectrometry [31]. In the
study carried out by Wang et al., solid-phase microextraction gas chromatography/mass
spectrometry (SPME-GC/MS) was used to assess the exhaled VOCs. Eight VOCs were
found to have higher levels in CRC patients compared to HC [32].

In a recent multicenter cross-sectional study from Zutphen, the Netherlands, an e-
nose (Aeonose—the eNose Company) was used to perform 512 breath samplings. Patients
affected by CRC or advanced adenomas with and without bowel preparation were recruited.
Machine learning was applied to distinguish between breath profiles of controls and
patients with (pre-)cancerous lesions. After a training model, a sensitivity of 95% and
specificity of 64% for CRC and a sensitivity and specificity of 79% and 59% for advanced
adenoma were reported [33].

Nevertheless, this multicenter study was limited by the high number of failed tests (up
to 10%) and by some drawbacks of the e-nose technology including potential reproducibility
issues, sensor drift, instrument variability and loss of sensitivity in the presence of alcohol
and other compounds [34].

Steenhuis et al. investigated the feasibility of breath analysis as a tool for the follow-up
of patients operated for CRC through an electronic nose confirming the pivotal role of
VOCs in the evaluation of patient-disease status. In fact, the eNose identified extra luminal
local recurrences or metastases of CRC with an overall accuracy of 0.81 [35].

In our recent study, we used an innovative breath sampler (ReCIVA®—Owlstone
Medical, Cambridge, UK) able to select the alveolar air fraction, thus excluding environ-
mental contamination. The breath was retained on Tenax tubes which were desorbed and
analyzed by GC-MS. In a sample of 173 subjects (90 HC), fourteen VOCs were found to
have significant discriminatory ability in discriminating between patients with and without
colorectal cancer [20].

Furthermore, other studies have investigated the VOCs directly released by cancer
tissue ex vivo, giving further information about the true source of these VOCs [36], in order
to confirm that at least some of the VOCs identified in the breath of patients are effectively
produced by the cancer tissue.

As far as we know, these three substances have never been reported before among the
VOCs of interest in other studies on colorectal cancer. However, different groups may use
different algorithms and therefore may obtain different markers.

This variability in the pattern of VOCs identified could be explained by the different
sampling methodology, different analytic platforms and the chemical and statistical analysis
used by different research groups.

However, all these studies demonstrated that the pattern of exhaled VOCs in cancer
patients differs from HC and that this effect could be ascribed to the presence of cancer [37].
The true advantages of these techniques are the high patients’ compliance, together with
the high sensitivity and specificity, representing an important step forward compared to the
fecal occult blood immunochemical test, where the adherence of the target population to the
screening program is less than 50% and the specificity of the test generally inadequate [38].

On the other hand, the main limitation of all these previous studies is the method-
ological complexity, the time and cost of the procedure and the impossibility of obtaining
immediate feedback concerning the health status of each subject. All these drawbacks have
been limited or eliminated using the new device of this study, where the fast analysis of the
exhaled breath enables a rapid answer. Further development of this prototype is ongoing
and, therefore, the cost of the device cannot be quantified at the moment. However, its
easy and simple use, together with the reliability of the results, could facilitate its wide
expansion to any center involved in colorectal cancer diagnosis.

The main limitations of this study are the small sample size, justified by the preliminary
nature of this investigation, and the absence of a prospective blinding phase of the analysis,
which is still ongoing.
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The limited number of patients recruited did not allow for the evaluation of the
sensitivity of the method according to the stage of the disease, although previous data
from our group did not find a significant difference between stage I–II and stage III–IV [20].
Furthermore, no data are yet available on colorectal polyps, whose identification could
allow primary colorectal prevention by endoscopic removal. In addition, our present
portable GC can only separate and detect a limited range of VOCs in breath. Probable
causes include the following:

1. Selection of Carbopack X and B.
2. Maximum working temperature of SSTI (250 ◦C).
3. Short column length.
4. Low maximum column operating temperature (120 ◦C).
5. Some compounds with ionization potential higher than 10.6 eV cannot be detected.

While these constraints did not prevent us from diagnosing, it would be possible
to increase the separation and detection capability of the present portable GC to include
additional VOCs. In addition, the present one-dimensional portable GC could be upgraded
to a two-dimensional portable GC for better separation capability, as some of the peaks
might be co-eluted in the present chromatograms. Sampling can be improved by reducing
the sample time for faster breath collection. The bag can be replaced by TD tubes for sample
collection for in-filed testing.

Future perspectives will be oriented to develop a portable device able to identify
the VOC of interest through specific sensors in order to get a digital output (YES/NO)
with an immediate answer for the patient, like an alcohol test. One of the most promising
technologies in this field is the QEPAS (quartz-enhanced photoacoustic laser spectroscopy)
(Figure 4). As reported by Spagnolo et al., “QEPAS is based on the absorption of modulated
laser light by the target gas. The laser beam is focused between the prongs of a quartz tuning fork
(QTF) at one of the antinode points of the QTF vibrational mode and is modulated at the associated
resonance frequency or at one of its subharmonics. The energy of the excited roto-vibrational states is
released via inelastic collisions among the surrounding molecules, generating a pressure wave. The
pressure wave is detected by the quartz tuning fork, acting as a transducer of the prongs’ mechanical
deflection induced by the pressure wave, into an electrical signal thanks to the piezoelectricity of the
quartz” [39–41].
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In the future, the application of artificial intelligence coupled with machine learning
could lead to remarkable advancements in the non-invasive early diagnosis and screening
of CRC [42], exploring non-linear and complex relationships among features and providing
insights into a “finer” choice of biomarkers [43,44].

7. Conclusions

These preliminary data show high sensitivity and specificity of the breath test in
discriminating colorectal cancer patients from healthy subjects using a portable Micro-
GC device. Further investigation on a larger cohort of patients is required to support
these findings.
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