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Abstract: Accurate direction of arrival (DoA) estimation is paramount in various fields, from surveil-
lance and security to spatial audio processing. This work introduces an innovative approach that
refines the DoA estimation process and demonstrates its applicability in diverse and critical domains.
We propose a two-stage method that capitalizes on the often-overlooked secondary peaks of the
cross-correlation function by introducing a reduced complexity DoA estimation method. In the first
stage, a low complexity cost function based on the zero cyclic sum (ZCS) condition is used to allow
for an exhaustive search of all combinations of time delays between pairs of microphones, including
primary peak and secondary peaks of each cross-correlation. For the second stage, only a subset of
the time delay combinations with the lowest ZCS cost function need to be tested using a least-squares
(LS) solution, which requires more computational effort. To showcase the versatility and effectiveness
of our method, we apply it to the challenging acoustic-based drone DoA estimation scenario using
an array of four microphones. Through rigorous experimentation with simulated and actual data,
our research underscores the potential of our proposed DoA estimation method as an alternative for
handling complex acoustic scenarios. The ZCS method demonstrates an accuracy of 89.4% ± 2.7%,
whereas the ZCS with the LS method exhibits a notably higher accuracy of 94.0% ± 3.1%, showcasing
the superior performance of the latter.

Keywords: DoA estimation; time delay estimation; zero cyclic sum

1. Introduction

The precision and accuracy of an acoustic-based DoA estimation are essential across
a spectrum of industries, spanning vital applications in both civilian and military sectors.
Encompassing critical domains such as defense, law enforcement, security [1], and surveil-
lance [2], reliable and precise DoA estimation ensures safety, strategic decision-making [3],
and operational effectiveness. Applications such as gunshot DoA estimation [4], drone
DoA estimation [5], and automotive angle estimation [6] require highly accurate estimates
for optimal functionality.

The generalized cross-correlation algorithm (GCC) [7] is a relevant technique that
estimates DoA; one of its most prominent advantages is the reduced computational effort
enabled by the time delay estimation (TDE) [5] between pairs of sensors. Utilizing the
cross-correlation function of the signals, the GCC algorithm facilitates an accurate deter-
mination of DoA, making it a highly reliable tool in spatial signal processing. Notably, its
adaptability spans across various domains, including underwater acoustics [8], terrestrial
acoustics [9], and radar [10] systems. The algorithm’s remarkable capability to handle
diverse signal types and its resilience in noisy environments depend on the precision of the
TDE process [5].
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The TDE process, however, may be plagued by several factors that introduce errors,
preventing an accurate DoA estimation [11]. A low signal-to-noise ratio (SNR) [12] consti-
tutes one of the primary obstacles, as it weakens the discernibility of the signal of interest
amidst background noise, leading to challenges in pinpointing the exact time delay of ar-
rival. Furthermore, multipath propagation [13], a phenomenon where a signal arrives at the
microphones through multiple paths, exacerbates the issue by causing time delay variations.
This results in the reception of multiple, altered versions of the same signal, complicating
the accurate identification of the original signal’s actual time of arrival. Additionally, errors
in the measurement systems, including calibration inconsistencies (attitude and geometry
of the array) [14] or hardware imperfections, further contribute to inaccuracies in time
delay estimation, subsequently impacting the precision of DoA calculations. The cumu-
lative impact of these factors on the acoustic signals leads to multiple peaks within the
cross-correlation [5], resulting in misleading time delay estimations when considering only
the peak of the cross-correlations with the highest amplitude (primary peak). Consequently,
this multitude of peaks affects the accuracy of DoA estimation. Thus, addressing and
improving this critical area in spatial signal processing is imperative for advancing the
precision and reliability of DoA calculations.

The method proposed herein presents a framework that harnesses an underempha-
sized facet of the cross-correlation function: secondary peaks. By leveraging these sec-
ondary peaks, our approach contributes to the precision of DoA estimation, elevating it to
new levels of accuracy. Our methodology circumvents the traditional constraints associated
with time delay estimation by introducing a reduced complexity cost function. The first
stage of this innovative two-stage method uses a low complexity cost function that inte-
grates the ZCS condition, enabling its calculation for all delay combinations. The second
stage comprises a more computationally complex least-squares cost function that demands
more computational effort but with fewer delay combinations due to the results obtained
with the first stage, i.e., a small set of delay vectors that minimize the ZCS cost function.

To illustrate the versatility of our approach, the method is applied to a challenging sce-
nario involving the acoustic-based DoA estimation of drones, utilizing a four-microphone
array setup. Our research underscores the potential of the proposed DoA estimation
methodology through rigorous experimentation using both simulated and real-world
data. This work propels the field of DoA estimation forward and has applications to
near-real-time tasks.

Our contributions to the field of DoA estimation include the following: (1) recognizing
the full potential of the ZCS cost function by computing all possible combinations of
estimated delays; (2) mitigating computational complexity, allowing a thorough exploration
of delay combinations to filter a concise set of candidate delay vectors; (3) identifying that
the ZCS cost function may yield sub-optimal solutions to the DoA estimation problem;
(4) acknowledging the potential for refinement of results by applying the LS solution; and
(5) developing a DoA estimator system that requires minimal time and effort for users to
set up and maintain, as it does not necessitate previous training.

This paper is organized as follows: Related work is presented in Section 2. Section 3
presents a brief overview of DoA estimation methods and the zero cyclic sum condition,
followed by a discussion on the TDE problem. Section 4 explains the dataset and the
preprocessing scheme. Section 5 details the proposed DoA estimation method. Section 6
presents the achieved results. Section 7 provides a discussion, while Section 8 concludes
the paper.

2. Related Work

This section discusses works related to DoA estimation using different techniques,
e.g., TDE-based techniques, beamforming, and AI-oriented DoA estimation methods.
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2.1. Time-Delay Estimation Approaches

Reference [15] reviews the use of microphone arrays for sound sensing exploring
the importance and limitations of ad-hoc microphones compared to other types. The
contribution of this work is to establish a foundation for selecting the most suitable method
for specific applications. A list of references on time delay estimation approaches can be
found in [15].

Reference [11] focuses on gunshot DoA estimation when the SNR is low. It combines
GCC-PHAT, exhaustive search, and the search for a fundamental loop. The method searches
for the best set of microphone pairs. It makes a partial scan across the primary and
secondary peaks of the cross-correlations (due to the computational efforts and number of
microphones used).

The work highlighted in [16] explores simultaneous sound source localization (SSL), a
critical study area. It navigates the balance between low computational complexity and
high accuracy in SSL algorithms by combining a one-step-based method using general-
ized eigenvalue decomposition and a two-step method employing adaptive generalized
cross-correlation with phase transform/maximum likelihood filters. This technique, com-
plemented by a unique T-shaped circular distributed microphone array, aims to enhance
3D multiple simultaneous SSL. The 3D location of each acoustic source is estimated by
finding the closest point to all estimated DOAs.

The work outlined in [17] addresses the challenge of noise and reverberation in
time difference of arrival (TDOA) estimation. This research introduces two methods to
estimate TDOA in environments affected by noise and reverberation effectively. The
proposed methods leverage the linear phase structure observed across frequencies in
a steering vector and capitalize on its absolute phases to mitigate potential noise and
mathematical complications. By transforming the TDOA estimation into an optimization
problem solvable via Newton’s method, the study presents experimental evaluations
in simulated acoustic settings. Their fast-search method demonstrates superior TDOA
accuracy and computational efficiency in environments with moderate-to-high input SNR
and low reverberation.

References [18,19] focus on sniper detection, utilizing audio signals from gunshot
recordings via a microphone array. Reference [18] employs the GCC-PHAT algorithm for
DoA estimation, revealing that time lags between the two largest peaks in the correlation
functions align with the muzzle blast and shockwave components. While the phase
transform method excels in peak separation, the study concludes that muzzle blast DoA
estimation based on the maximum correlation peak obtained by other GCC techniques is
generally more accurate.

Reference [20] addresses the task of gunshot DOA estimation, crucial for enhancing
public and troop safety. The proposed algorithm is designed for scenarios with highly noisy
signals, which commonly occur in sniper situations where the firing position is distant
from the sensor array. In such scenarios, signal-to-noise ratio reduction poses a challenge
to accurate DOA estimation. The paper introduces an innovative approach that combines
an exhaustive search for optimal microphone pairs in the array, aiming for superior DOA
estimation results and rapid response times across various shooting scenarios. The focus is
particularly on highly corrupted signals where existing algorithms may fail. The proposed
scheme is evaluated using experimental data from both simulated and recorded gunshot
signals. Another application used to estimate the DoA of gunshots—using the same
algorithms but with the microphone array embedded in a drone—can be seen in [4,9,21,22].

The research on acoustic-based drone DoA estimation carried out in [5] addresses
the challenge of accurately estimating the DoA of a drone in acoustically complex envi-
ronments using a seven-microphone array. The focus is on improving TDE from a set of
time delay candidates, particularly when dealing with strongly corrupted audio signals
affected by noise and multipath. The traditional approach faces difficulties in accurately
estimating TDE without relying on a line-of-sight assumption. The proposed solution
utilizes genetic algorithms to perform a heuristic search for correct delays among possible
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pairs of microphones. A fitness function based on the concept of ZCS of closed loops
is introduced, ensuring that the sum of theoretical delays in a closed loop equals zero.
Experimental results, both in simulations and real-world trials, demonstrate the method’s
effectiveness in identifying correct delays, demonstrating its potential for practical drone
DoA estimation in challenging acoustic environments.

Reference [23] implements a detection fusion algorithm and a TDOA estimation
algorithm grounded in Bayesian filtering principles. This study employs two acoustic
arrays, each comprising four microphones with tetrahedron shapes. Reference [24] proposes
innovative methods to mitigate the detrimental effects of reverberation on audio source
localization. By incorporating models for both early reflections and the audio source
itself, the authors introduce two iterative approaches for estimating the DOA of both
the direct path and early reflections. The early reflections are effectively subtracted from
the signal observations before localizing the direct path component, which reduces bias.
Simulation results demonstrate the efficacy of these techniques, showcasing more accurate
DOA estimation compared to state-of-the-art methods in both synthetic and real-world
scenarios with reverberation.

Reference [25] addresses the challenge of estimating the DOA of incident plane waves
in scenarios where phase noise corrupts the received data (besides other additive noise).
The proposed methodology adopts a Bayesian framework and employs a variational mean-
field approximation to account for phase noise. By integrating sparse-enforcing distribution
priors on DOA and Markov model priors on phase noise, the novel algorithm demonstrates
superior performance compared to conventional beamforming and similar variational
approaches with non-informative priors. Simulation results underscore the efficacy of
the proposed approach in accurately estimating DOA amidst phase noise corruption.
Future research directions will extend this investigation to underwater acoustics, further
elucidating the algorithm’s applicability in real-world environments.

In [26], a constrained least squares estimator is developed for estimating the azimuth
and elevation of a sound emitter in three-dimensional space using TDOA measurements
obtained from an array of acoustic sensors. Addressing scenarios where the source emits
transient signals, necessitating reliance solely on TDOA measurements for direction finding,
the study highlights limitations of conventional linear least squares estimators due to
inherent information loss during the linearization of nonlinear observation equations. To
mitigate this issue, the paper proposes a constrained least squares estimator that leverages
both Lagrange multiplier and quadratic constraints to formulate the cost function. The
resulting estimator offers an approximate closed-form solution, significantly reducing
computational complexity while maintaining high accuracy. Through simulation and field
experimental validation, the proposed method demonstrates superiority over traditional
linear and nonlinear estimators, demonstrating its potential for robust and efficient direction
finding in practical applications.

Reference [27] introduces a novel approach for distributed acoustic tracking by incorpo-
rating the coherent-to-diffuse ratio (CDR) as a measure of DoA reliability. Utilizing the CDR
as the concentration parameter in the DoA-likelihood function—modeled by a von Mises
distribution—enables the tracking of source positions over time at individual nodes using
a von Mises filter. By evaluating the von Mises filter for a range of uninformative range
hypotheses, the method leverages network fusion to exploit spatial diversity among nodes,
probabilistically triangulating the relevant source positions and range hypotheses. Real-
istic simulation results demonstrate significant improvements over classical approaches,
enhancing accuracy by up to 39% compared to constant concentration parameter methods
and up to 74% compared to least-squares source triangulation techniques [21].

2.2. Beamforming Techniques

Reference [28] provides a focused analysis of common beamforming algorithms,
presenting both theoretical insights and recent applications in real cases. Rather than
a broad exploration, the emphasis is on harmonizing the sector through a combined



Sensors 2024, 24, 2344 5 of 21

approach. The goal is to offer a resource for academics seeking theoretical understanding
and technicians selecting algorithms for varied measurement conditions. With a lack of
comparative studies in the literature, the authors address this gap, advocating for research
in algorithm performance in similar scenarios. While acknowledging the limitations of
certain algorithms, the work generally recommends deconvolution algorithms (CLEAN-SC,
DAMAS) or MUSIC for acoustic camera users due to their accuracy, even though they are
slower and more complex. The authors propose a combination of algorithms for research
purposes, anticipating future implementations in commercial acoustic camera software.

Reference [29] introduces the use of delay-and-sum to enhance sniper positioning
estimates. The delay-and-sum beamforming is used for improved detection of shockwave
and muzzle blast acoustic signatures. The approach not only enhances the signal-to-noise
ratio—doubling the detection range for a four-microphone array—but also demonstrates
robustness in handling single- and multi-shot events and reflections, contributing to more
reliable sniper location estimation. Other contributions to DoA estimation using delay-and-
sum techniques can be found in [30,31].

Reference [32] investigates DoA for multiple acoustic sources using the approximate
maximum likelihood (AML) algorithm. This algorithm facilitates the estimation of DoAs
through an iterative search process, demonstrating versatility in both 2D and 3D scenarios.
By employing blind beamforming techniques, the study showcases the capability of the
AML algorithm to estimate azimuth angles for sources in the far field of the array, as well as
azimuth and elevation angles. The authors provide comprehensive analyses, including the
calculation of Cramér–Rao bound (CRB) on DoA estimation, and introduce the concept of an
isotropic array to enhance accuracy across the spatial domain. Simulation and experimental
results validate the performance of the 3D AML algorithm in scenarios involving multiple
sources at varying azimuth and elevation angles.

Reference [33] proposes an innovative approach to address the DOA estimation chal-
lenge within acoustic environments utilizing microphone arrays. The method initially
transforms the received noisy speech signals into the STFT domain. Subsequently, a House-
holder transformation is constructed and applied to the multichannel STFT coefficients,
segregating them into components dominated by the signal of interest and noise. By form-
ing a cost function from the transformed coefficients, the method facilitates the extraction
of DOA information by searching for extremum values within the angle range between 0
and 180 degrees. Simulation results presented in the paper demonstrate the effectiveness
of this approach in achieving accurate DOA estimation.

In [34], the authors advocate an in-depth exploration of various algorithms, such as
Bartlett beamforming, Capon beamforming, eigenvector, and the acoustic intensity vector
for the DoA estimation of both single and multiple sources employing an L-shaped acoustic
vector sensor (AVS). This specialized AVS configuration integrates three homogenous
sensors, each comprising omnidirectional microphones with a 14.14 mm aperture. To
facilitate experimental signal recording within the L-shaped AVS environment, the authors
employ COMSOL Multiphysics, leveraging its finite element method capabilities. Through
systematic investigation and comparative analysis, the study offers valuable insights into
the efficacy and performance nuances of different DoA estimation algorithms within the
context of the L-shaped AVS configuration.

Reference [35] proposes a calibration procedure for custom 3D AVS tailored for accu-
rate DoA estimation. This calibration method addresses amplitude and phase differences
among sensor components, crucial for precise DoA computation. Through experimental
validation using low-cost MEMS microphones and DSP boards, the proposed procedure
matches the accuracy of high-cost, factory-calibrated sensors. The study underscores the
applicability of the calibration algorithm in practical scenarios such as environmental and
traffic monitoring, offering a cost-effective solution for reliable sound source localization.
Further research is suggested to expand the evaluation scope and refine the calibration
approach for broader deployment.
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Reference [36] introduces a novel approach for multiple source DOA estimation using
the maximum likelihood method in the spherical harmonic domain. By employing an
efficient sequential iterative search of maxima on the cost function, the proposed method
achieves superior performance compared to traditional beamformer-based and subspace-
based methods. Notably, the method avoids the computational burden associated with
high-dimensional grid search, making it suitable for both rigid-sphere and open-sphere
configurations. Simulation and experimental validations conducted in various acous-
tic environments demonstrate the effectiveness and stability of the proposed method,
highlighting its potential for practical applications in room geometry inference, source
separation, and speech enhancement.

2.3. AI-Oriented DoA Estimation

Reference [37] reviews the cutting-edge applications of artificial intelligence (AI) in the
domain of beamforming. Through a comprehensive exploration of AI-centric beamforming
studies, the work aims to elucidate and extract meaningful insights into the role of AI in
enhancing beamforming performance. Beginning with an overview of beamforming and
its adaptive algorithms, as well as DOA estimation methods, the analysis explores machine
learning classes, basic neural network topologies, and efficient deep learning schemes.
The paper further explores the optimal utilization of ML and NNs, both independently
and in conjunction with other applications such as ultrasound imaging, massive multiple-
input multiple-output structures, and intelligent reflecting surfaces. Special emphasis is
placed on the realization of beamforming or DOA estimation setups through deep learning
topologies. Concluding with significant insights and a discussion on prospects and research
challenges, the survey provides a comprehensive overview of the evolving landscape of AI
in beamforming.

Reference [38] explores deep learning-based time-frequency masking to enhance
TDOA estimation in challenging noisy and reverberant environments. Three algorithms
are introduced to fortify conventional methods used for speaker localization, utilizing deep
neural networks to identify cleaner time-frequency units for more accurate TDOA estima-
tion. These algorithms exhibit robustness in scenarios with low SNR, high reverberation,
and a low direction-to-reverberant energy ratio.

Reference [39] introduces a novel high-resolution beamforming method employing ge-
netic algorithms. By leveraging the sparsity of acoustic sources, the approach reconstructs
the source vector through optimization within a sound propagation model. To enhance
efficiency, the algorithm narrows down the search domain through prior correlation analy-
sis. Numerical and experimental comparisons with conventional beamforming methods
demonstrate the superior accuracy and robustness of the proposed genetic algorithm beam-
forming. Breaking through resolution limits, it accurately recovers the distribution of
acoustic sources in two- and three-dimensional spaces.

Reference [40] presents a cost-effective small UAS acoustic detection system utilizing
a four-microphone array that estimates DOA and UAS identification via machine learning
techniques. Extensive outdoor experiments validate its efficacy in reliably detecting UAS at
distances exceeding 70 m, offering enhanced situational awareness of surrounding airspace.
Future research aims to address DOA angle fluctuations in real-time experiments and
explore enhancements for UAS identification, including diverse sound sample collection
and neural network architecture exploration.

In [41], the authors advocate a learning-based approach for DOA from microphone
array input, addressing limitations inherent in traditional signal processing methods like the
classic LS method. These conventional techniques are constrained by stringent assumptions
on signal models and require precise estimations of TDOA, making them susceptible to
noise and reverberation distortions. By contrast, the proposed learning-based approach
leverages a multilayer perceptron neural network to learn from extensive simulated noisy
and reverberant microphone array inputs, enabling robust DOA estimation. Extracting
features from GCC vectors, the model effectively captures the nonlinear mapping to the
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DOA. Notably, the method’s accuracy improves with the availability of more training
data. Experimental evaluations on both simulated and real data demonstrate significant
performance gains over the state-of-the-art LS method, with reduced root-mean-square
error (RMSE) particularly evident in real-world scenarios such as meeting rooms.

In [42], the authors advocate a novel CNN approach for broadband DOA estimation,
wherein the phase component of short-time Fourier transform coefficients from microphone
signals serves as direct input to the CNN. During training, the network autonomously
learns the requisite features for accurate DOA estimation. Leveraging only the phase
component of input facilitates training with synthesized noise signals, simplifying the
dataset preparation compared to utilizing speech signals. Experimental assessments vali-
date the framework’s capability to generalize to speech sources and its robustness to noise,
minor microphone position perturbations, and diverse acoustic conditions. Through both
simulated and real data experiments, the study underscores the CNN’s adaptability and
resilience, signaling the promising potential for practical DOA estimation applications.

2.4. Partial Conclusions

According to the literature review, GCC-PHAT performs well at localizing acoustic
sources even in reverberant and noisy environments, making it well-suited for the often
complex acoustic conditions associated with outdoor drone detection scenarios. Beam-
forming algorithms involve complex mathematical operations. In scenarios with real-time
processing requirements, the computational load can become prohibitively high, leading to
delayed DoA estimations and resource-intensive operations.

Based on the characteristics of the methods investigated herein, the GCC-PHAT
method emerges as the technique to explore for estimating drone DoA using acoustics,
owing to its potential for use in adverse environments and its lower computational cost.
In addition, there is a gap in the literature that can unleash the potential of GCC-PHAT in
highly noisy environments: the utilization of secondary peaks in the cross-correlations.

3. DoA Estimation Techniques

This section details the DoA estimation techniques employed in this work.

3.1. GCC-PHAT (Classic DOA Estimation)

The foundation of the GCC method lies in the utilization of the cross-correlation
function, which gauges the resemblance between two signals concerning their time delay [7].
The GCC method computes the cross-correlation function between pairs of microphone
signals in order to derive the TDE between these signals. The basic principle is to find the
time delay that maximizes the cross-correlation function, rxixj(τ), defined as follows [7]:

rxixj(τ) = E[xi(k)xj(k − τ)], (1)

where E[·] is the expectation operator and τ is the delay (in number of samples) between
the signals of two given sensors, xi(k) and xj(k). By identifying peaks within the cross-
correlation function, potential time delay values between the signals are discerned, offering
a basis for determining the DoA of a given sound source.

The GCC is usually obtained as follows:

r̂GCC
xixj

(τ) =
1

2π

∫ π

−π
ψ(ω)Xi(ejω)Xj(ejω) dω , (2)

where ψ(ω) is the GCC-PHAT method that normalizes the magnitude spectrum of the
cross-correlation function through the following process:

ψPHAT(ω) =
1

|Xi(ejω)Xj(e−jω)|
, (3)
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such that [7]

r̂PHAT
xixj

(τ) =
1

2π

∫ π

−π

Xi(ejω)Xj(ejω)

|Xi(ejω)Xj(ejω)|
dω . (4)

Finally, the TDE is obtained as follows:

τ̂ij = arg max
|τ|≤τmax

|r̂PHAT
xixj

(τ)|, (5)

where τmax represents the highest achievable delay, determined by the spatial separation
between microphones i and j. Additionally, a regularization term in the denominator of
ψPHAT(ω) can be used to avoid division by zero.

This normalization procedure efficiently improves the phase information while reduc-
ing the disparities in signal amplitudes, leading to enhanced accuracy in the estimation of a
time delay. By incorporating phase information, the GCC-PHAT method attains increased
resilience against reverberation and noise in contrast to the original GCC method [7].

Upon deriving the delay estimations, it is possible to estimate the unit norm vector
aDoA (pointing toward the DoA) by minimizing the LS cost function, i.e.,

ξ =
k

∑
i=0

(τ̂ − ∆pT
ijaDoA)

2, (6)

with respect to the closed-form LS solution, as follows:

aDoA = R−1p, (7)

where the 3 × 3 matrix R is given by the following:

R = ∆p12∆pT
12 + ∆p13∆pT

13 + · · ·+ ∆p(N−1)N∆pT
(N−1)N , (8)

∆pij with pi − pj, pi, and pj corresponding to the positions of sensors i and j, and the
3 × 1 vector p is given by the following:

p = τ̂12∆p12 + τ̂13∆p13 + · · ·+ τ̂(N−1)N∆p(N−1)N . (9)

Vector aDoA = R−1p readily provides the direction of arrival, encompassing both
azimuth (the horizontal angle ϕ) and zenith (the vertical angle θ, complement of the
elevation) [11].

Another critical function in the GCC-PHAT method involves interpolation, which
serves to improve the accuracy and precision of time delay estimation. Through the
application of interpolation methods, the GCC-PHAT method can achieve more precise
time delay estimations and effectively manage sub-sample time delay resolutions [4].
This technique is only effective in refining the precision of a DoA estimation from the
correct peaks.

3.2. TDE Problem

A frequent error encountered in time delay estimation based on cross-correlation arises
from the existence of noise. When noise affects the correlated signals, it has the potential
to introduce false correlations, causing inaccurate time delay estimations. This noise can
distort the cross-correlation function, thereby causing misleading peak positions or the
appearance of false peaks with high amplitudes that do not align with the actual time delay
of the signal of interest.

Inaccurate time delay estimation can also stem from strong reverberation or multipath
effects within the received signals. The presence of reverberation markedly impacts the
form and strength of the cross-correlation function, complicating the precise identification
of the genuine peak denoting the direct path time delay. Sound’s reflections and diverse
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pathways may generate extra peaks or alter the primary peak, resulting in erroneous
estimations.

Figure 1 illustrates pertinent issues associated with TDE when the SNR is low. In
Figure 1a, the accurate TDE in the fifth peak, sorted by descending amplitude order, should
be noted. Figure 1b showcases a worse case in which only the ninth peak corresponds
to the correct time delay. In conclusion, the cross-correlations encapsulate the requisite
information for accurate DoA estimation. However, the efficacy of these estimations is
compromised by the low SNR of the target signal.
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Figure 1. Cross-correlations of acoustic signals collected from a Phantom 4 drone hovering in an
outdoor environment: (a) 5th peak corresponds to the correct time delay; (b) 9th peak corresponds to
the correct time delay.

The multitude of distinct peaks in the cross-correlations related to drone noise presents
intriguing opportunities for simulations and experimental investigations. These opportu-
nities involve exploring the secondary peaks, leveraging interpolated peaks to enhance
estimation precision, and comparing them with classical DoA estimation methods that
solely consider the central peak of the cross-correlations. A comprehensive exploration
of these aspects can contribute to an improved understanding and the refinement of TDE
methodologies in real-world scenarios.

3.3. Impact of TDE Error in DoA Estimation

Figure 2 depicts the relationship between the DoA error and TDE error, providing
valuable insights into the accuracy of the localization process. The graph illustrates that as
the TDE estimation error increases, there is a corresponding rise in the DoA error, indicating
a direct correlation between the two parameters. The analysis reveals that TDE errors
within a maximum range of three samples remain acceptable, as they correspond to DoA
errors of less than 5 degrees for zenith and azimuth angle estimations. This observation
underscores the robustness of the localization system, suggesting that minor deviations in
TDE estimation do not significantly compromise the accuracy of DoA predictions within a
reasonable margin.

3.4. ZCS Condition

The ZCS condition is obtained with a set of microphones that forms a closed loop. The
theoretical time delays obtained by the spatial distance between each pair of microphones
that forms a closed loop is an abelian group, i.e., a commutative set of delays. The sum of
all elements of an abelian group is known to be 0, regardless of the order in which they are
added [43]. This criterion finds practical application in digital signal processing within an
array of sensors [5].
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Figure 2. Error of DoA according to the TDE additive noise.

4. Dataset and Preprocessing

This research focuses on using drone noise as the signal of interest for experimental
tests aimed at estimating the DoA. The choice of drone noise as the experimental input
evaluates the method under conditions that are of great interest to defense forces, law
enforcement, and surveillance agencies.

4.1. Data Acquisition

Figure 3 illustrates the Phantom 4 drone (DJI, Shenzhen, China), an array of Behringer
ECM8000 [44,45] microphones (Willich, Germany), and the Zoom F8 recorder (Hauppauge,
NY, USA), the latter serving to convert analog signals into digital format. The data acquisi-
tion process involves capturing acoustic signals emitted by the drone and background noise.
Following this signal acquisition, the dataset undergoes comprehensive offline analysis to
extract valuable insights and make well-founded assessments.

Figure 3. Drone data acquisition setup featuring a close-up view of the four upward-pointing
microphones employed for signal collection. Note the unit vector in the direction of the wave’s front:
a = −[sin θ cos ϕ sin θ sin ϕ cos θ]T, where ϕ corresponds to the azimuth and θ to the zenith.

4.2. Acoustic Drone Noise Analysis

Figure 4 depicts both the background noise and the signals emitted by the hovering
Phantom 4 drone, illustrating a duration of 500 ms. The figure also includes a spectrogram
computed with a sample rate of 48 kHz. Notably, in optimal conditions and when the
drone is near the microphone array, it becomes feasible to capture drone noise in higher
frequency ranges, extending up to 13.5 kHz.
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For a more comprehensive exploration of the acoustic characteristics of drone noise,
interested readers are encouraged to refer to the extensive study presented in [46–48]. These
references analyze drone noise and provide valuable insights into the subject matter.
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Figure 4. Background noise and drone noise 10 m away from the microphone: (a) Background
noise time domain, (b) spectrogram background noise; (c) drone noise time domain, (d) drone
noise spectrogram.

5. Proposed Method

In the initial stage of the ZCS-LS method, an exhaustive search is performed, calculat-
ing the ZCS cost function of all possible combinations of TDE. This computation identifies
a small set of candidate time delay vectors characterized by the lowest ZCS cost function
values. Transitioning to the second stage, one vector from this set is selected. This selection
process is guided by the LS cost function, ensuring that the chosen candidate time delay
vector possesses one of the lowest ZCS cost functions among all possible time delay vectors
and aligns optimally with the LS solution. By systematically navigating through these
stages, the ZCS method reduces the complexity of obtaining an accurate DoA estimate that
considers the cross-correlations’ primary and secondary peaks. At the same time, the use
of the LS cost function enhances the DoA estimation performance.

5.1. Exhaustive Search with ZCS

For an exhaustive search, careful consideration is given to the number of microphones
in the array. The selection of a four-microphone array over a larger array, such as a
seven-microphone configuration, is grounded in computational feasibility and efficiency.
The restriction to four microphones allows a manageable number of microphone pairs,
specifically N = (M

2 ). For each pair of microphones, we window the signal and apply
the cross-correlation function to estimate the time delay. In this method, primary and
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secondary peaks of the cross-correlations are taken into account, achieving (C) candidate
time delays for each cross-correlation.

The method explores the entire solution space, denoted as S, which is the set of all
possible time delay combinations S = CN within a four-microphone array (M = 4), consid-
ering (C) time delay candidates for each of the six cross-correlations of N = (4

2) = 6. This
choice ensures a systematic evaluation of feasible delay combinations. Ten is considered
the maximum delay to encompass the widest range of the rightmost peak in the signal.

In contrast, the computational complexity grows exponentially with an increase in the
number of microphones. For instance, in a seven-microphone array, denoted by M = 7,
the solution space, denoted as S with C, representing the set of possible choices of delays
estimated using the cross-correlation function, is determined by S = CN , where N = 21
for M = 7 microphones. If C = 2, the solution space is C2 = 2,097,152. As C increases,
the solution space expands rapidly. When C = 3, the solution space grows to a massive
10,460,353,203 potential solutions, and for C = 4, it reaches 4,398,046,511,104 possible solu-
tions, representing trillions of unique combinations. This exponential growth underscores
the practical advantages of utilizing a four-microphone array, ensuring computational
efficiency in exploring the solution space for optimal DoA estimation.

The enormous solution space for a four-microphone array constrains the cost function
used in the exhaustive search process. This is where the reduced complexity cost functions
using ZCS excel. By applying a low complexity cost function, the exhaustive search
can efficiently explore these expansive solution spaces and navigate toward the global
optimal solution.

Each time delay combination is evaluated based on the ZCS cost function that quanti-
fies their proximity to a zero-sum. The closer to a zero-sum, the more coherent the time
delays for a given DoA. The ZCS method can efficiently identify the correct delays from a
multitude of incorrect delays, particularly in situations with low SNR. The (C) candidate
delays for each cross-correlation function, rxixj , are the elements of each row of the data
matrix, V. For M = 4, which results in N = 6, the N × C matrix V with all candidate
delays is defined as follows:

V =


τ̂12,1 τ̂12,2 τ̂12,3 . . . τ̂12,C
τ̂13,1 τ̂13,2 τ̂13,3 . . . τ̂13,C
τ̂14,1 τ̂14,2 τ̂14,3 . . . τ̂14,C

...
...

...
...

...
τ̂34,1 τ̂34,2 τ̂34,3 . . . τ̂34,C

, (10)

such that each column corresponds to each possible combination of delays, denoted as the
N × 1 vector vc, 1 ≤ c ≤ C.

The ZCS cost function [5] plays a pivotal role in this method, assessing the sum
of delays in defined subsets that form closed loops to minimize instances of inaccurate
zero-sum outcomes. By comprehensively examining all potential subsets that form closed
loops, and summing their results, the method effectively diminishes the probability of
encountering a zero-sum outcome that lacks the correct delays.

To facilitate the computational calculation of the ZCS cost function, a method was
devised to identify and enumerate closed loops based on the number of delays. More
specifically, when employing an M = 4 microphone array, we find that, with three delays,
there are four closed loops, and with four delays, one closed loop. In this context, the total
number of closed loops, denoted as L, corresponds to L = 4 + 1 = 5. It is important to note
that delay, τ31, which closes the loop, can be determined by taking the negative value of
τ13. Similarly, τ43 can be expressed as −τ34, and in general, any delay, τji, that closes the
loop can be written as τji = −τij. By utilizing this property, it is possible to compute all
possible delays and then manipulate them to identify the correct value of τ, which closes
the loop. This approach saves computational resources by avoiding redundant calculations
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and facilitates the determination of the correct delay for loop closure. The complete listing
of all possible closed loops for three and four delays can be found in Table 1.

Table 1. All possible cyclic paths in a four-microphone array.

# Delays Closed Loops

3

τ12 τ23 τ31
τ12 τ24 τ41
τ13 τ34 τ41
τ23 τ34 τ42

4 τ12 τ23 τ34 τ41

Based on Table 1, we create an L × N matrix D, such as for M = 4:

D =


1 −1 0 1 0 0
1 0 −1 0 1 0
0 1 −1 0 0 1
0 0 0 1 −1 1
1 0 −1 1 0 1

; (11)

such that, for a given choice of delays in v, each element of vector f = Dv corresponds to
the sum of all subsets (closed loops). The ZCS cost function is then calculated as follows:

f = fTf = ∥f∥2. (12)

This ZCS cost function captures the squared norm of the resulting vector f, encom-
passing the contributions from all subsets and providing a measure of the coherence among
the time delays concerning an arbitrary DoA.

The best Z vectors, determined by the ascending order of ZCS scores, are stored and
form a collection of potential solutions to the problem achieved with low computational
effort. Each combination of time delays serves as a plausible solution to the DoA estimation
problem represented as a column within matrix PN×Z:

P =


τ̂11 τ̂12 τ̂13 . . . τ̂1Z
τ̂21 τ̂22 τ̂23 . . . τ̂2Z
τ̂31 τ̂32 τ̂33 . . . τ̂3Z
...

...
...

...
...

τ̂N1 τ̂N2 τ̂N3 . . . τ̂NZ

, (13)

while matrix PN×Z presents a range of potential solutions, it is essential to note that the time
delay vector with the lowest ZCS score may not always constitute the optimal combination
for accurate DoA estimation. Consequently, a second phase is introduced to refine the
ultimate selection from the pool of Z candidate vectors further. This additional step aims
to enhance the precision and reliability of the chosen solution, ensuring that the DoA
estimation is not solely dependent on the ZCS score but also considers an additional LS
cost function for a more precise outcome.

5.2. Least-Squares Cost Function

This extra method aims to enhance accuracy and efficiency in DoA estimation, ensur-
ing that the selected delays contribute significantly to the DoA estimated. It consists of
estimating the DoA with a given time delay vector and analyzing the sum of the squared
error of the time delay calculated according to the DoA and each original time delay.

5.3. Summary

The ZCS-LS method is detailed in Algorithm 1.
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Algorithm 1 Exhaustive search using ZCS and LS.

// Compute all (C) candidate delays for every rxixj :
for i = 1 : N do

Compute r̂xixj , ij = 12 to 34
Obtain (C) candidate delays (larger peaks of r̂xixj )
Vi,: ⇐ [τ̂ij,1 τ̂ij,2 . . . τ̂ij,C]

end for
// Create a combination of time delays and compute ZCS:
for i = 1 : S do

P:,i ⇐ map τ̂ij,i in Vi,:

f = fTf = ∥f∥2

PN+1,i = f
end for
// Compute LS cost function of the Z time delay vectors with the lowest ZCS:
for i = 1 : Z do

ξ = ∑k
i=0(τ̂ − ∆pT

ijaDoA)
2

PN+2,i = ξ
end for
// Choose the time delay vector with the lowest ξ (LS cost function):
v = P1:N,i = arg min ξ

6. Results
6.1. Effects of Signal Window Length

Before conducting simulations, a comprehensive evaluation of the actual signals was
undertaken to achieve a more faithful emulation of real-world conditions. This experimental
assessment is imperative to understand the frequency with which primary and secondary
peaks accurately indicate the actual time delay. Figure 5 illustrates the histogram detailing
the position of the actual time delay. Specifically, it showcases the number of peaks sorted in
amplitude descending order, highlighting instances where the correct time delay is successfully
retrieved (with a permissible error of ±3 samples). This scrutiny serves as a foundational step
in ensuring the potential to explore the secondary peaks to estimate the DoA.
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Figure 5. The statistics of the cross-correlations rxi xj . They reveal the number of accurately estimated
delays (comprising all peaks from rxi xj and considering ±3 samples error) within distinct time
windows of 100 ms, 200 ms, 500 ms, and 1000 ms for cases (a,c,e,g), respectively. In addition to the
number of accurately estimated delays, the statistics of the cross-correlations rxi xj provide insights
into the peak position based on the descent amplitude criterion within specific time windows of
100 ms, 200 ms, 500 ms, and 1000 ms for cases (b,d,f,h), respectively.
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6.2. DoA Estimation with Simulated Data

To run simulations, we created simulated V matrices according to τmax between each
pair of microphones. Figure 6 describes the cost function computed with simulated data. In
Figure 6a, all delay combinations are calculated using ZCS and sorted in ascending order
according to the ZCS cost function. Figure 6b depicts the first Z = 100 ZCS and LS cost
function using actual data.
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Figure 6. Evolution ZCS and LS cost functions. (a) ZCS cost function computed for all possible
combinations of delays and (b) ZCS and LS cost functions computed for the first 100 combinations that
minimize ZCS. The delay vector that minimizes the ZCS cost function is not the one that minimizes
the LS cost function.

The ZCS cost function facilitates the computation of all S potential combinations of
time delays presented in matrix V. Figure 7 illustrates 1000 runs with simulated data,
displaying the position at which the correct time delay vector is situated according to
the ZCS. Although the ZCS itself does not determine the optimal combination of time
delays, Figure 7 illustrates that this cost function effectively places the correct time delay
vector among the Z = 100 vectors, thereby reducing the solution space S to 0.01%. With a
streamlined solution space, it is feasible to calculate all Z vectors using the LS cost function,
a more computationally complex method to further refine the estimation.

Figure 7. Histogram of the position of the correct set of delays (1000 independent trials).

Figure 8 depicts the DoA estimation results for 1000 trials. The accuracy rates ob-
tained with simulated data are as follows: classic estimations = 0% [7], ZCS = 34%, and
ZCS-LS = 74%. The classic estimation method fails to handle complex acoustic environ-
ments properly, i.e., when the primary peaks of the cross-correlations do not correspond to a
specific source. This highlights the need for more sophisticated methods capable of account-
ing for secondary peaks that are complexities inherent to real-world acoustic environments.
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Figure 8. Comparison among Classic, ZCS, and ZCS-LS DoA estimations (1000 independent
simulations).

6.3. DoA Estimation with Experimental Data

Figure 9 illustrates the drone DoA estimation results using different window sizes.
The GCC-PHAT method yielded 0% accuracy, indicating poor performance in handling
the complexities of the acoustic environment. The ES(4) achieved an average accuracy
of 81.1%, indicating that the exclusion of peaks that do not contribute to minimizing the
error can significantly enhance the results. In contrast, the ZCS and ZCS-LS methods
pointed toward the correct direction, achieving accuracies of = 83.5% ± 3.6% for ZCS
and = 90.2% ± 4.4% for ZCS-LS. Using ZCS and ZCS-LS results in a high-density area of
estimations around the actual angles, θ = 10 and ϕ = −25. It should be noted that the ZCS
facilitates exhaustive computations of all possible delay combinations, and the additional
computation of the LS cost function enhances estimations by approximately 7%. The
experimental outcomes surpassed the simulation’s, primarily attributable to the variable
number of delay candidates (C) encountered. While the simulation phase maintained
a fixed value of C = 10, the experimental phase yielded a fluctuating range of peaks,
ranging from 1 to 8 for each cross-correlation. This variability in delay candidates in the
experimental setting contributed to the enhanced performance observed, demonstrating
the method’s adaptability in real-world scenarios. The microphone array is positioned on
the floor; thus, it is possible to exclude the wrong estimations pointing to the floor. This
procedure enhances the utility of the method in real-world applications. Therefore, the
experimental results of both ZCS and ZCS-LS techniques improved to 89.4% ± 2.7%, and
94.0% ± 3.1%, respectively.
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Figure 9. Experimental results: drone DoA estimates 100 m away from the microphone.
(a) 209 estimations with 100 ms windows (ZCS-LS accuracy of 88.0%) and (e) 100 ms windows
(ZCS-LS accuracy of 92.9% discarding estimations pointing to the floor); (b) 104 estimations with
200 ms windows (ZCS-LS accuracy of 89.4%) and (f) 200 ms windows (ZCS-LS accuracy of 93.0%
discarding estimations pointing to the floor); (c) 104 estimations with 800 ms windows (ZCS-LS accu-
racy of 96.1%) and (g) 800 ms windows (ZCS-LS accuracy of 96.1% discarding estimations pointing
to the floor); (d) accuracy of DoA estimators with different signal window sizes and (h) accuracy of
DoA estimators with different signal window sizes (discarding estimations pointing to the floor)

7. Discussion

The main question addressed by our research is to unleash the potential of TDE-based
DoA estimators by minimizing TDE errors using both primary and secondary peaks of
the cross-correlation functions. Our previous work used genetic algorithms with a ZCS
fitness function to perform a heuristic search for the best combination of peaks of the
cross-correlations. Still, genetic algorithms often return a sub-optimal solution (this is the
previously mentioned gap). In this paper, a method was devised to calculate the ZCS
cost function of all combinations of delays to obtain the optimal solution related to this
cost function. It was necessary to reduce the number of combinations of peaks of the
cross-correlations by reducing the number of microphones in the array.

The proposed method tackles the problem by assuming that the correct delay between
pairs of microphones can be the secondary peaks (peaks of the cross-correlations that do not
have the greatest amplitude), which holds true, for instance, for highly noisy environments.

First stage: comprises the usage of a low complexity ZCS cost function to perform an
exhaustive search (this low complexity cost function is adequate for exhaustive searches
because it primarily involves matrix multiplication), i.e., tests all combinations of τ̂ij (es-
timated delays) with the ZCS cost function from all peaks of each cross-correlation, r̂xixj .
This is how we leverage secondary peaks, by taking them into account while performing
the exhaustive search. Second stage: uses a least squares cost function only in a subset
of the combination of delays that hold the lowest ZCS cost function. By doing this, the
computational complexity is reduced and the accuracy of the DoA estimation is enhanced.
The ZCS condition was used to implement a reduced complexity cost function to perform
a first evaluation of all combinations of delays. In the absence of noise, i.e., when the
theoretical delays τij are available, the DoA estimations could be achieved flawlessly using
the ZCS.

The LS solution refines the DoA estimation process by selecting one combination of
the delays that has the lowest ZCS cost function and minimizes the LS cost function. We
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examined the first delay combinations with the lowest ZCS and observed that the best
combination of delays was among the 100 lowest ZCS cost functions for the drone signals
database. The idea of using the LS cost function was raised from this observation. With
this cost function, it is possible to evaluate each combination (within the reduced set of
candidates that has the lowest ZCS) through the mean squared error of the difference
between the theoretical delays and the estimated delays. This cost function is more complex
and demands more computational efforts, thus it is suitable only for a very small set of
delay combinations.

Experiments were conducted using simulated signals and experimental data. In both
experiments, the performance of the proposed method was evaluated by estimating the
DoA of the drone. Estimations were considered correct if both the error in the estimated
zenith (θ̂) and estimated azimuth (ϕ̂) were within ±5◦.

The proposed method yields this accuracy because it considers the secondary peaks
as candidates of true delay estimations and uses this information to perform DoA esti-
mations using the above-mentioned cost functions in a two-stage method. Conversely,
the GCC-PHAT method does not take into consideration secondary peaks. According to
our investigations, complex acoustic scenarios tend to yield cross-correlation functions in
which the estimated delay is one of the many secondary peaks of each cross-correlation.

The parameter of the proposed method that yields this accuracy is the secondary
peaks of each cross-correlation, i.e., each plausible solution to the DoA estimation problem
is represented as a column within matrix VN×C. The GCC-PHAT method only tests the
primary peaks, i.e., the first column of matrix VN×C.

The lowest ZCS cost function alone does not guarantee the best accuracy in terms of
DoA. We found in our experiments that the best set of delays was among the 100 lowest
ZCS scores. This discovery prompted us to introduce a second stage employing the LS cost
function to enhance the results, resulting in significant improvements.

The ZCS and LS solutions often align and represent optimal solutions. However,
sometimes the ZCS solution may represent a sub-optimal solution. In such cases, we
discovered that the LS could be utilized to select an enhanced set of delays improving the
results, i.e., an additional computational effort can benefit the DoA estimation.

8. Conclusions

In this work, we focused on acoustic source DoA estimation, i.e., the challenging
backdrop of heavily noisy environments. This investigation focused on developing and
validating a DoA estimation method based on finding the correct delays estimated using
the cross-correlation function. The simulation results showed that the simulated data
represented complex environments with many problems that could invalidate the DoA
estimation. However, an exhaustive search with a low complex cost function diminished
the vast solution space and raised the results by 34 percentage points. The second stage of
the method enhanced the results by 74 percentage points. This method is, thus, applicable
to heavily noisy signals whenever the time delay information is present in the first ten peaks.
The experimental findings unveiled the applicability of the ZCS and ZCS-LS methods to
actual signals with accuracies of 83.5% ± 3.6% and 90.2% ± 4.4%, respectively. Given that
the microphone array is positioned on the floor, it becomes feasible to eliminate numerous
estimations pointing toward the floor, indicated by θ > 90◦.

Consequently, the results obtained with these methods in a real-world scenario are
anticipated to exhibit a notable increase in accuracy, benefiting from discarding estimations
that do not align with the physical orientation of the microphone array. By implementing
this refinement, a singular high-density area of estimations persists. The selective exclusion
of estimations pointing toward the floor ensures a focused and accurate representation of
potential drone locations. This precision enhances the practical utility of the methods in
real-world applications. Following this refinement step, the experimental results exhibit
improvement, with ZCS accuracy reaching 89.4% ± 2.7% and ZCS-LS accuracy reaching
94.0% ± 3.1%.
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