
Citation: Berlotti, M.; Di Grande, S.;

Cavalieri, S. Proposal of a Machine

Learning Approach for Traffic Flow

Prediction. Sensors 2024, 24, 2348.

https://doi.org/10.3390/s24072348

Academic Editor: Kyandoghere

Kyamakya

Received: 4 March 2024

Revised: 28 March 2024

Accepted: 4 April 2024

Published: 7 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Proposal of a Machine Learning Approach for Traffic
Flow Prediction
Mariaelena Berlotti * , Sarah Di Grande and Salvatore Cavalieri

Department of Electrical Electronic and Computer Engineering, University of Catania, Viale A. Doria 6,
95125 Catania, Italy; sarah.digrande@phd.unict.it (S.D.G.); salvatore.cavalieri@unict.it (S.C.)
* Correspondence: mariaelena.berlotti@phd.unict.it

Abstract: Rapid global urbanization has led to a growing urban population, posing challenges in
transportation management. Persistent issues such as traffic congestion, environmental pollution,
and safety risks persist despite attempts to mitigate them, hindering urban progress. This paper
focuses on the critical need for accurate traffic flow forecasting, considered one of the main effective
solutions for containing traffic congestion in urban scenarios. The challenge of predicting traffic
flow is addressed by proposing a two-level machine learning approach. The first level uses an
unsupervised clustering model to extract patterns from sensor-generated data, while the second
level employs supervised machine learning models. Although the proposed approach requires the
availability of data from traffic sensors to realize the training of the machine learning models, it allows
traffic flow prediction in urban areas without sensors. In order to verify the prediction capability of
the proposed approach, a real urban scenario is considered.

Keywords: forecasting; artificial intelligence; traffic congestion; urban scenario; smart city

1. Introduction

According to recent studies, more than half of the population of the world currently
resides in cities and, in a few decades, this percentage is expected to rise [1].

This ever-increasing urban population has led to an exponential rise in the number of
vehicles to record highs, putting transport systems under enormous pressure and causing
problems such as congestion control, directly affecting citizens through increased travel
times, traffic, accidents, and traffic law violations [2].

Despite the many attempts made to mitigate the grave effects of the car industry
expansion, traffic congestion, with its associated issues, persists and slows down the
development of urban areas.

The prediction of future traffic conditions plays an important role in mitigating traffic
congestion issues and their related problems. Machine learning models provide a data-
driven approach to traffic forecasting, utilizing historical traffic data to make accurate
predictions. Accurate and timely traffic flow prediction is crucial for government agencies,
as they can promptly intervene in decisions about traffic management based on the results
of traffic flow forecasting [3–10]. Individual travelers can also benefit from traffic flow
prediction systems allowing them to adapt their routes inside an urban scenario to future
traffic conditions, reducing time wasted in traffic [11,12]. In addition, knowing traffic
patterns in advance allows for a strategical allocation of resources (e.g., traffic police,
emergency services) to be deployed to areas expected to experience higher traffic volumes.
Efficient traffic flow forecasting can enhance environmental impact, reducing emissions,
optimizing traffic light timings, and promoting public transportation usage during peak
hours. For all these reasons, these tools can lead to significantly enhanced public safety,
and reduced environmental impact and provide useful information for urban planners,
politicians, and stakeholders.

Sensors 2024, 24, 2348. https://doi.org/10.3390/s24072348 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072348
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0009-0007-6564-704X
https://orcid.org/0009-0008-8895-2175
https://orcid.org/0000-0001-9077-3688
https://doi.org/10.3390/s24072348
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072348?type=check_update&version=1

Sensors 2024, 24, 2348 2 of 19

Traffic flow prediction could be divided into short-term forecasting and long-term
forecasting. The former relates to traffic in the near future from a few seconds to a few hours
based on current and past traffic information [13,14], while the latter relates to traffic for
entire days in the future. Short-term forecasting aids users in optimizing their paths, while
long-term forecasting is useful for agencies focused on management and signal control
plans for efficient operations [15].

Due to the importance of both kinds of prediction, the authors propose a 24 h forecast-
ing model that is able to predict from the next timestep (1 h) up to 24 h later. Following
the recommendation in [16], data were aggregated hourly to reduce the noise impact on
the measuring similarity between traffic flow patterns. By evaluating the approach on a
real-world case study, the authors want to emphasize the potential of these technologies.
The paper presents an extended version of the work developed in [17]. The authors en-
hanced the earlier research by introducing a more intricate model, trained using one year
of data instead of the initial 3-month period. This model is able to detect diverse patterns,
identifying not only the daily seasonality across different hours of the day and the weekly
seasonality, but also the yearly seasonality. Furthermore, additional experiments were
conducted to test the models during holidays such as Christmas, when there are temporal
irregularities in the traffic flow.

The remainder of the paper is structured as follows. Section 2 will provide an overview
of the state-of-the-art methods regarding this paper’s subject; it ends with the novelty of
the proposed approach. In Section 3, the authors provide a detailed explanation of the
proposed approach. Section 4 will display the principal outcomes of the proposal testing.
Finally, in Section 5, concluding remarks will summarize the contents of this paper.

2. Related Work

The aim of this section is to provide an overview of the approaches for traffic flow
forecasting that exist in the current literature to point out the differences with the proposal
here presented.

In the current literature, traffic flow prediction methods are broadly categorized into
three groups [18,19]. The first category comprises statistical methods based on mathemat-
ical theory. For instance, [20] proposed a History Average Model for static prediction in
urban traffic control systems. Instead, according to [21], the Autoregressive Integrated
Moving Average model (ARIMA model) is suitable for predicting stable traffic flows by con-
sidering the sequence as a random time sequence. The second category involves machine
learning (ML) techniques such as regression analysis [22] and boosting algorithms [23]
like LightGBM [24] and CatBoost [25], often used to identify the traits and patterns within
historical data progression and to perform predictions. Finally, the third category encom-
passes deep learning (DL) techniques, particularly neural networks like Back Propagation
(BP) [26] and Long Short-Term Memory (LSTM) [27] neural networks. Recently, many
works have demonstrated the power of CNNs in a wide variety of tasks [28]. Space graph
convolutional networks extend the idea of convolutional neural networks (CNNs) gaining
popularity in traffic prediction tasks as they capture the topological structure of trans-
portation networks [29]. In [30], the authors proposed the so-called Phase Space Graph
Convolutional Network (PSGCN), an innovative framework based on a graph convolu-
tional network architecture, engineered to model chaotic time series. The uniqueness of the
PSGCN lies in its ability to map complex systems into a graph-based representation, that is,
the phase space, enabling the analysis of nonlinear dynamics and patterns. This aspect is
particularly advantageous for modeling traffic flow data, known for their chaotic nature
due to a complex mix of factors such as vehicle speeds, densities, traffic regulations, and
the influence of unpredictable events such as accidents and road closures.

Similarly to Spatial CNNs, space visibility graphs are emerging in real-time traffic
management and traffic flow prediction applications. Transforming time series into a
graph format through a visibility algorithm allows us to model extremely unstable traffic

Sensors 2024, 24, 2348 3 of 19

volumes as complex networks and propose deep learning frameworks for network-scale
prediction [31].

Traffic flow prediction approaches are generally based on the analysis of input data
obtained from traffic sensors installed on urban roads. Typically, these sensors count the
number of vehicles passing in front of them, allowing the estimation of relevant traffic flow.
The installation of traffic sensors on all roads of an urban scenario is not possible due to
costs and other logistical reasons. Consequently, many current approaches utilize data
collected by sensors on a subset of urban roads to predict traffic flow not only on roads
where sensors are installed, but also on others where data collection is not feasible. This
is often achieved by examining spatio-temporal characteristics between neighboring and
distant sensors to predict traffic flow in urban areas similar to the ones of the collected
data [32]. For example, [33] introduced a spatio-temporal traffic flow estimation model
that utilizes data from multiple locations within the network. The approach incorporates
various features beyond solely relying on traffic flow data.

The analysis of traffic sensor data considering other information different from the
trivial vehicle counts requires a lot of effort; moreover, this extra information may be
too tied to a specific urban scenario (e.g., the road paving and size), making the traffic
flow prediction approach difficult to be extended to different scenarios. For these reasons,
many current approaches limit the analysis of data to information obtained only from
traffic sensors. Among the existing solutions, the analysis of data is realized by classifying
sensor data using machine learning clustering approaches. Sometimes, a two-level machine
learning method is adopted; an unsupervised clustering model organizes sensor data into
clusters (grouping data sharing similar features), while a supervised machine learning
model predicts traffic flow for each cluster.

Among two-level data-driven approaches present in the literature, the most recent is
presented in [34]; the authors of this paper proposed a traffic flow method based on the
application of a clustering algorithm for the short-term forecasting of traffic flow in the
highways of Seattle. In their scenario, only one sensor was considered to be producing
traffic flow information. The traffic flow time series for a single sensor was segmented
into 24 h intervals, given as input to the clustering algorithm to identify days with similar
patterns. As a result of the clustering procedure, four groups were created. Four different
predictors were trained, one for each group. These predictors will always look at the
target day to predict 24 h, meaning that they are specialized for a single daily pattern.
Consequently, if predictors are tested with a day experiencing a significantly different traffic
flow pattern from the four target days, the algorithm will not make accurate predictions.

In this paper, the authors propose a two-level machine learning methodology that
involves the use of clustering and forecasting models. Differently from the researchers of
the approach discussed before (i.e., that described in [34]), the authors applied a clustering
methodology to group roads with similar patterns using one year of data for several
sensors as input to the algorithm. Furthermore, the sensor data used in this work refer to
heterogeneous roads with different physical and traffic flow characteristics, including not
just highways, but also roads located in downtown and suburban areas.

After clustering the roads, a predictor was trained with one year of data for each
cluster. Differently from [34], the authors tested each model on a time series excluded from
the training set, exhibiting a similar pattern to the ones present in the clusters. Additionally,
the approach was evaluated on a greater number of sensors using two weeks of data as a
test set, including working days, weekends, and holidays.

Another difference from the work in [34] concerns the type of prediction; that study
focused on short-term forecasting, whereas the current paper proposes a combination of
short- and long-term forecasts, as highlighted in the Introduction and further detailed in
the remainder of the paper.

In conclusion, this section pointed out that the proposed approach significantly differs
from existing methodologies found in the current literature. Section 3 will delve into a
detailed description of the approach.

Sensors 2024, 24, 2348 4 of 19

3. Materials and Methods

In this section, the authors delve into the materials and methods used to tackle the
specified forecasting problem when employing a two-level machine learning approach. To
begin, since real-world data were used to test the proposed approach, detailed descriptions
of the urban scenario from where data were collected and its relevant traffic patterns will be
provided. Additionally, the preprocessing steps taken to prepare the final dataset before the
construction of the machine learning models will be elucidated. Finally, a comprehensive
description of the proposed approach will be outlined in detail.

3.1. Case Study Description

The traffic flow prediction approach presented here is based on real data obtained
from a network of traffic sensors located in Catania, Italy.

The city forms the core of a larger metropolitan area that includes the primary mu-
nicipality of Catania along with 26 adjacent urban centers. The transportation demand
of the city primarily depends on private vehicles, influenced by the lifestyle choices and
preferences of its residents. This reliance on private transport is due to the concentration of
economic and residential activities within the main boundaries of the city.

Over time, the population of Catania has expanded beyond the city limits, resulting in
the formation of an integrated urban network that extends beyond municipal boundaries.
This expansion has significantly increased traffic influx from the surrounding suburbs and
neighboring municipalities, leading to daily congestion in the city center and heightened
levels of environmental pollution. This surge in transportation demand has substantially
augmented individual vehicle ownership, further burdening an already stressed urban in-
frastructure. Consequently, there has been a marked escalation in congestion, underscoring
the urgent necessity for an effective management of traffic congestion in Catania through
the adoption of traffic flow forecasting methodologies.

3.2. Data Collection and Preprocessing

Data about traffic flow were collected through sensors, specifically 21 microwave
traffic counters known as MobilTraf300 manufactured by FAMAS [35], placed across the
Catania urban area. These traffic counters harness the most recent technologies in 24 GHz
radar frequency microwaves, signal analysis, and both local and remote communications
fields. Furthermore, these stand-alone devices integrate sensors, control electronics, and
a hybrid power system consisting of batteries and photovoltaic panels to operate with
minimal energy consumption while delivering precise measurements.

Different kinds of information are collected using traffic counters. When a vehicle
passes through the electromagnetic field produced by two MobilTraf300 sensors, these
units capture various vehicle-related data, including the date and time of passage, travel
direction, and the specific lane used for transit.

To retrieve this information, MobilTraf MANAGER, a traffic manager software devel-
oped by FAMAS, was utilized. Data from each traffic sensor are obtained in 5 min intervals
for the specified timeframe. For each timestamp, the number of vehicles passed in the last
5 min is collected.

Twelve operational traffic counters (TCs) were selected from the available ones at the
time of data retrieval. The analysis period covers 1 January 2022 to 31 December 2022.

Each TC corresponds to a specific road, displaying distinct characteristics. These roads
are categorized as follows:

• Single-lane roads;
• Two-lane roads in the same direction;
• Two-lane roads in opposite directions.

For single-lane roads, the downloaded time series contains ‘Timestamp’ and ‘Traffic
Flow’ columns. Table 1 reports an example of a dataset for the single-lane road. In the
dataset, the ‘Traffic Flow’ column represents the total traffic flow for each timestamp.

Sensors 2024, 24, 2348 5 of 19

Table 1. Example of traffic flow dataset for a single-lane road.

Timestamp Traffic Flow

2022-01-01 00:00:00 tf0
.

2022-12-31 23:55:00 tfn

For two-lane roads, the dataset maintains the same structure for both cases of lanes
with the same and opposite directions, including timestamps, traffic flow in the first lane,
and traffic flow in the second lane. Table 2 provides an example of this type of dataset for a
two-lane road, with two distinct columns representing the traffic flows in the two lanes.

Table 2. Example of traffic flow dataset for a two-lane road.

Timestamp Traffic Flow 1◦ Lane Traffic Flow 2◦ Lane

2022-01-01 00:00:00 tfL0,1 tfL0,2
.

2022-12-31 23:55:00 tfLn,1 tfLn,2

To prepare a well-structured dataset suitable for traffic flow prediction using machine
learning algorithms, distinct data preprocessing steps were performed, aiming to organize
data according to the template shown in Table 3. For roads featuring a single lane, Table 3
includes one column representing the traffic flow for that road. For roads with two lanes
in the same direction, Table 3 presents a single column that sums the traffic flows from
both lanes of the same road. For roads with two lanes in opposite directions, Table 3 has
two adjacent columns, each corresponding to the traffic flow in one of the two lanes of the
same road.

Table 3. Example of traffic flow dataset obtained after preprocessing steps.

Timestamp Traffic Flow_id_1 Traffic Flow_id_2 . . . Traffic Flow_id_m

2022-01-01 00:00:00 tfL0,1 tfL0,2 . . . tfL0,m
.

2022-12-31 23:00:00 tfLn,1 tfLn,2 . . . tfLn,m

The timestamps shown in Table 3 match those in the various tables containing traffic
flow data for each road. As mentioned, these timestamps correspond to 5 min inter-
vals, reflecting that data from each traffic sensor are collected in 5 min periods over the
specified timeframe.

As said in the Introduction, in this study, the authors adopted both short-term and
long-term forecasting approaches. In detail, the model forecasts traffic flow for the next
hour up to the next 24 h. According to this assumption, the traffic flow information is
aggregated at a time interval of 1 h instead of the original 5 min interval. Subsequently,
the first operation conducted on the dataset, with a structure as depicted in Table 3, was
aggregation; in particular, the traffic flow information present in each column of Table 3, was
summed inside each time interval of 1 h. Due to this aggregation, timestamps correspond
to 1 h intervals.

The treatment of outliers and missing values within the dataset was executed as fol-
lows. Outliers were identified using a boxplot and subsequently removed from the dataset.
This method facilitated the recognition of aberrant data points that significantly deviated
from the typical value range present in the dataset. Addressing these outliers was imper-
ative due to their potential to distort subsequent analysis or modeling outcomes [36,37].
Hence, upon visual identification using the boxplot, these outliers were eliminated from
the dataset to uphold the integrity and accuracy of subsequent procedures. Besides the
removed outliers, additional missing values were found in the dataset. These missing

Sensors 2024, 24, 2348 6 of 19

values were attributed to sensor malfunctions. The malfunctioning sensors resulted in
missing observations when a particular TC ceased to function, failing to collect traffic
information for specific dates and times. To handle missing observations, the selected
approach entailed filling in missing values using a time-based averaging technique. This
method computes the average traffic values for the corresponding road, day of the week,
and time within the same month. Utilizing this technique ensures data integrity while
addressing missing data points in a meaningful and statistically informed manner.

The final dataset comprised a timestamp column with 1 h intervals and 14 columns
representing the total vehicle count for each lane at all hours of the day across 365 days; the
total number of rows was 8769.

Before proceeding with the development of machine learning models, it was necessary
to perform data normalization due to the significant diversity in the value ranges of the
considered time series. In this analysis, Min–Max scaling was utilized as the normalization
technique, which standardizes the range of each variable to a uniform 0–1 scale. Indeed,
this normalization technique was applied to each variable in the dataset independently.
The formula used to calculate normalization is the following, where x = (x1, . . ., xn) is a
variable with different observations and zi is the normalized value:

zi =
xi − min(x)

max(x)− min(x)
(1)

The formula computes the normalized value for a specific data point by subtracting
the minimum value of the variable from the data point and then dividing this difference by
the range of values. This process scales the data proportionally, ensuring that the minimum
value maps to 0 and the maximum value maps to 1 while retaining the relationship between
all other values within the range.

3.3. Overview of the Proposed Machine Learning Approach

As mentioned previously, the main objective of this study involved employing a two-
level machine learning methodology that integrates both unsupervised and supervised
models. First, an unsupervised model was employed to analyze the time series data col-
lected from the sensors, which depict traffic flow. This involves using clustering techniques
to group similar data and unveiling unseen patterns, relationships, or structures within the
dataset. These discovered patterns are then organized into distinct clusters based on their
similarities. More detailed information about the clustering technique will be provided in
Section 3.3.1.

Afterward, a supervised machine learning model is created for each of these clusters.
These models are specifically designed to predict traffic flow for data within their respective
clusters. To decide which cluster a new road with limited available data belongs to, distance
metrics are used to find the closest match among the existing clusters.

Once the appropriate cluster for the new road segment is identified, a machine learning
model that was previously trained on traffic flow data from similar roads within the same
cluster is applied to forecast traffic flow for this new segment. This method results in the
development of multiple distinct models, each focused on forecasting traffic flow for roads
that have limited observations but sharing similar patterns within their respective clusters.
More details about the forecasting approach will be provided in Section 3.3.2.

Figure 1 presents a visual representation of the proposed two-level approach to traffic
flow forecasting. Starting on the left, t denotes the yearly time series of traffic flow. More
precisely, traffic data aggregated on an hourly basis over an entire year from each road
segment were utilized as input for a clustering model. This model generated a set of
clusters, (e.g., C1, C2, C3, and C4, as shown), with group roads exhibiting similar traffic flow
patterns. Subsequently, a distinct forecasting model is trained for each cluster, utilizing
the subset of time series data corresponding to the roads within that cluster. Finally, every
forecasting model—each calibrated to a specific cluster—aims to predict the traffic flow for
the forthcoming 24 h period for each subset of the time series within its cluster.

Sensors 2024, 24, 2348 7 of 19
Sensors 2024, 24, x FOR PEER REVIEW 7 of 20

Figure 1. Two-level ML approach for traffic flow prediction.

The findings presented in this paper highlight that each model, trained extensively
on time series data within the same cluster, can proficiently generate forecasts for similar
yet unseen series during its training, demanding only a small number of observations
from these new series. In instances where roads lack sensors, essential traffic data for the
forecasting models can be obtained from various sources like Floating Car Data (FCD).
Therefore, in scenarios where sensors are unavailable for a particular road, forecasting for
that road can be accomplished using a small subset of data acquired from alternative
sources. The use of FCD is outside the scope of this paper.

3.3.1. Clustering Step
In this study, clustering was applied to time series data. Clustering this type of data

involves grouping similar temporal sequences or patterns within datasets. Unlike tradi-
tional clustering applied to static data, clustering for time series considers the sequential
nature of data points and aims to identify similar trends, patterns, or behaviors over time.

The clustering algorithm utilized in this study, known as Time Series K-Means (TSk-
means), represents an adaptation of the traditional K-means algorithm specifically de-
signed for clustering time series data [38,39].

TSkmeans diverges from the conventional K-means applied to static data by incor-
porating not only the values of data points, but also their temporal relationships when
forming clusters. Unlike standard K-means, which primarily considers the magnitude of
data points, TSkmeans places significant emphasis on the sequential order and patterns
exhibited over time within the data.

The presented clustering algorithm involves the utilization of the Dynamic Time
Warping (DTW) metric for assessing similarity among temporal sequences. Unlike the
typical Euclidean distance utilized in standard K-means, DTW is a specialized distance
metric specifically tailored for time series data. It accounts for temporal shifts, varying
speeds, and local distortions present in sequences, thus providing a more comprehensive
measure of similarity between time-dependent data points.

By incorporating DTW into the clustering process, TSkmeans offers a more nuanced
understanding of similarities and dissimilarities within time series data. This integration
of temporal considerations enhances the abilities of the algorithm to capture and identify
patterns that might otherwise be overlooked by traditional clustering techniques, thereby
enabling more accurate and meaningful cluster formations in time series analysis.

The initial phase of clustering involves the critical task of determining the optimal
number of clusters (K). To accomplish this, a silhouette score was employed as a metric.

Figure 1. Two-level ML approach for traffic flow prediction.

The findings presented in this paper highlight that each model, trained extensively
on time series data within the same cluster, can proficiently generate forecasts for similar
yet unseen series during its training, demanding only a small number of observations
from these new series. In instances where roads lack sensors, essential traffic data for the
forecasting models can be obtained from various sources like Floating Car Data (FCD).
Therefore, in scenarios where sensors are unavailable for a particular road, forecasting
for that road can be accomplished using a small subset of data acquired from alternative
sources. The use of FCD is outside the scope of this paper.

3.3.1. Clustering Step

In this study, clustering was applied to time series data. Clustering this type of data
involves grouping similar temporal sequences or patterns within datasets. Unlike tradi-
tional clustering applied to static data, clustering for time series considers the sequential
nature of data points and aims to identify similar trends, patterns, or behaviors over time.

The clustering algorithm utilized in this study, known as Time Series K-Means
(TSkmeans), represents an adaptation of the traditional K-means algorithm specifically
designed for clustering time series data [38,39].

TSkmeans diverges from the conventional K-means applied to static data by incor-
porating not only the values of data points, but also their temporal relationships when
forming clusters. Unlike standard K-means, which primarily considers the magnitude of
data points, TSkmeans places significant emphasis on the sequential order and patterns
exhibited over time within the data.

The presented clustering algorithm involves the utilization of the Dynamic Time
Warping (DTW) metric for assessing similarity among temporal sequences. Unlike the
typical Euclidean distance utilized in standard K-means, DTW is a specialized distance
metric specifically tailored for time series data. It accounts for temporal shifts, varying
speeds, and local distortions present in sequences, thus providing a more comprehensive
measure of similarity between time-dependent data points.

By incorporating DTW into the clustering process, TSkmeans offers a more nuanced
understanding of similarities and dissimilarities within time series data. This integration
of temporal considerations enhances the abilities of the algorithm to capture and identify
patterns that might otherwise be overlooked by traditional clustering techniques, thereby
enabling more accurate and meaningful cluster formations in time series analysis.

The initial phase of clustering involves the critical task of determining the optimal
number of clusters (K). To accomplish this, a silhouette score was employed as a metric. The

Sensors 2024, 24, 2348 8 of 19

silhouette score serves as a statistical measure to evaluate the overall quality of clustering by
considering two essential aspects: the degree of separation between data points within the
same cluster and the degree of separation between data points assigned to different clusters.

For each data point, the silhouette score is computed considering the intra-cluster
distance—the mean distance between the data point and all the other points in the same
cluster—and the inter-cluster distance—the mean distance between the data point and
all the other points in the nearest neighboring cluster. The overall silhouette score of the
clustering result is calculated by averaging the individual silhouette score of all the points.

This scoring system operates within a range from −1 to +1. A silhouette score of
+1 signifies an ideal scenario where clusters are perfectly distinct and well separated,
indicating robust and accurate clustering. Conversely, a score of −1 indicates suboptimal
clustering, revealing a considerable overlap or misallocation of data points among clusters,
signifying poor clustering quality. Moreover, a score close to 0 suggests ambiguity or
uncertainty in the assignment of data points to clusters, indicating challenges in defining
clear boundaries between clusters. In utilizing the silhouette score, the number of clusters
that obtained the highest cluster score was selected to develop the final model, thus ensuring
well-defined and distinct clusters for the given dataset.

3.3.2. Traffic Flow Forecasting Step

Different sub-steps were performed for the forecasting part. Initially, the dataset was
divided into two segments: a training set and a test set. The training set encompassed
observations from 1 January 2022 to 16 December 2022. In contrast, the test set comprised
time series data spanning 17 December 2022 to 31 December 2022. All the machine learning
models used for forecasting purposes in this study were implemented using Darts, a
specialized Python library for time series data analysis, particularly focused on time series
prediction. Darts offers an intuitive API design and a comprehensive suite of contemporary
machine learning tools [40]. The following steps were iterated using four distinct algorithms
to determine the optimal one: CatBoost, LightGBM, Random Forest, and XGBoost. Further
details of these machine learning algorithms will be provided in Section 4.

The overarching objective of the forecasting process was to predict the traffic flow for a
specific road direction by employing a model trained on time series exhibiting comparable
patterns. This model was designed to generate forecasts based on a minimal set of observa-
tions. Consequently, despite training the model with a substantial dataset spanning a year
collected from sensors distributed in the city, it has the capability to provide forecasts for
similar series with a limited dataset downloaded from alternative sources. This robustness
in training enables the model to effectively anticipate traffic flow patterns despite the
reduced amount of input data, showcasing its adaptability and efficiency in forecasting for
comparable scenarios.

To thoroughly evaluate the effectiveness of the approach, several experiments were
undertaken. Specifically, for every cluster, multiple iterations were carried out, each
involving the creation of various models. During each iteration, a distinct time series
was systematically removed from the training data, and the model performances were
assessed based on the model’s ability to forecast this excluded time series. This process
simulated scenarios where a particular series had a limited number of available data points
for which accurate forecasts were needed. In systematically excluding different time series
and evaluating the predictive capabilities of the models in such scenarios, the robustness
of the approach in handling situations with sparse or limited data was thoroughly tested
and assessed.

For instance, in a cluster Cx comprising nx time series, the methodology was tested
by repeating the process nx − 1 times. Each iteration utilized nx − 1 out of the nx time
series for training the model and reserved the last one for testing. This cycle was iterated
nx times in total, ensuring that each time series was excluded once from the training data
and exclusively used for testing. Thus, when considering, for example, three clusters C1,

Sensors 2024, 24, 2348 9 of 19

C2, and C3, with, respectively, n1, n2, and n3 series, the total number of models developed
and tested is the sum of n1, n2, and n3.

Each model was tested for four different machine learning algorithms, as explained
before, and different sets of hyperparameters. These hyperparameters, crucially chosen be-
fore model training, significantly impact model performance. To optimize these parameters,
the Optuna 3.6.1 Python library was employed [41].

The chosen objective function for optimization across the training set was the vali-
dation loss. This function measures how well a model performs on a separate validation
dataset during the process of optimizing hyperparameters. Specifically, it quantifies the er-
ror or deviation between the model predictions and the actual values within this validation
dataset. To carry out this evaluation, the last 24 h of the training set were set aside as the
validation window.

Each time a model was created, for each combination of algorithm and set of hyperpa-
rameters, 100 different trials were conducted to find the best configuration of hyperparame-
ters for the selected algorithm and the series used for model development.

The ML algorithms implemented in the forecasting process, used in this proposal are
the following: LightGBM version 4.1.0, XGBoost version 2.0.2, CatBoost version 1.2.2, and
Random Forest from scikit-learn 1.4.0 Python library. In Section 4, the authors provide an
overview of these ML algorithms.

During forecasting, the models’ performances were evaluated through a walk-forward
validation method. Unlike standard cross-validation methods that involve random splits,
walk-forward validation preserves the temporal order of the data. This technique is well
suited for identifying time-dependent patterns in time series data [42–44].

The validation process starts by initially training the model using historical time series
data ranging from January to 16 December. Once trained, the model makes predictions for
the next 24 consecutive time steps in the sequence. These predictions are compared against
the actual observed values to evaluate the initial performance of the models.

After this initial phase, the training data window is shifted forward by 24 steps. This
prompts the model to be retrained using the updated dataset, incorporating new information.

Subsequently, the model generates predictions for the upcoming time steps based on
these new training data. These predictions are then compared with the actual observed
values to assess the model performance in this updated timeframe.

This iterative process continues as the window progresses through the entire time
series. With each shift of the training data window, the model is repeatedly trained and
tested on new data, allowing for the continuous evaluation and refinement of its predictive
accuracy throughout the entire time series. This iterative approach enables the model to
adapt to evolving patterns or changes in the data distribution, enhancing its ability to make
accurate predictions across different time periods within the series.

The walk-forward validation method closely simulates a model behavior in a dynamic,
real-world setting. Regular retraining allows the model to adapt dynamically to changes in
data distributions or patterns over time, significantly enhancing its practical effectiveness.

The metrics used to compare predicted and actual values were the mean absolute
error (MAE), the symmetric mean absolute percentage error (SMAPE), the mean square
error (MSE), and the root mean square error (RMSE) [45–48]. The mean absolute error
(MAE) calculates the average of the absolute errors in the predictions, quantifying the
disparity between predicted and actual values. The symmetric mean absolute percentage
error (SMAPE) measures accuracy through relative errors expressed as a percentage. The
mean square error (MSE) determines the average squared deviation between predicted and
actual values. The root mean square error (RMSE) represents the square root of the mean of
squared errors, functioning as an additional performance metric used to assess prediction
accuracy. Lower values for each metric indicate a better model performance. It is essential
to highlight that while SMAPE is the primary performance metric used to select the best
model, the other measures, MAE, MSE, and RMSE, are also considered supplementary
indicators during the evaluation process.

Sensors 2024, 24, 2348 10 of 19

4. Overview of Machine Learning Models

In this section, the authors provide overviews of the machine learning models imple-
mented in the forecasting process, providing a clearer understanding of their roles and how
they impact the model’s learning and performance.

LightGBM, short for Light Gradient Boosting Machine, is a gradient-boosting frame-
work that uses tree-based learning algorithms. Proposed by [24] to solve the issue of the
Gradient Boosting Decision Tree (GBDT) in conventional implementations, it is based on
two novel techniques, Gradient-Based One-Side Sampling (GOSS) and Exclusive Feature
Bundling (EFB) [49]. In [24], the experiment demonstrated that LigthGBM can accelerate
the training process by up to over 20 times. In addition, the model grows trees leaf-wise
(vertically) rather than level-wise (horizontally) which leads to a better reduction in loss
and, hence, generally, more accurate predictions. Some hyperparameters directly influence
the complexity, speed, and performance of the model; brief explanations are provided
as follows:

• n_estimators: common in ensemble methods like LightGBM, XGBoost, and Random
Forest, it specifies the number of trees to build. More trees can capture more complex
patterns but also increase the risk of overfitting and increase the computational costs.

• learning_rate: found in gradient boosting models like LightGBM, XGBoost, and
CatBoost, this parameter controls the rate at which the model adapts to the problem
over each boosting round. A smaller learning rate requires a higher number of boosting
rounds (n_estimators) to be performed by the model. Tuning this parameter is crucial
for controlling overfitting and the convergence speed of the model.

• num_leaves: as the most critical parameter in LightGBM, it controls the complexity of
the tree model. A higher number of leaves allows the model to learn finer details but
also makes it more susceptible to overfitting. The optimal number of leaves needs to
be established by also looking at the size of the dataset.

• max_depth: this parameter sets the maximum depth of a tree. It is used to control
overfitting as deeper trees can learn more complex patterns but might also learn noise
in the data.

• min_child_samples: specifies the minimum number of samples (data points) needed
to create a new node in a tree. A higher number makes the model more conservative,
preventing it from learning from very small, potentially noisy groups.

XGBoost, or eXtreme Gradient Boosting [23], is another ML algorithm belonging to
the gradient boosting framework. As it has been widely used by data scientists in many
machine learning and data mining challenges, the key factor contributing to the success
of XGBoost lies in its scalability across various scenarios (i.e., see [50,51]). Operating over
ten times faster than existing popular solutions on a singular machine, the algorithm
achieves this great scalability thanks to the combination of crucial system and algorithmic
optimizations. Notable innovations of the XGBoost algorithm include Exact Greedy Algo-
rithm, Weighted Quantile Sketch, and Sparsity-Aware Split Finding [52]. Like LightGBM,
the XGBoost algorithm features the hyperparameters n_estimators, learning_rate, and
max_depth. In addition, the following hyperparameters directly influence the performance
of the ML algorithm:

• min_child_weight: as the minimum sum of instance weight needed in a child, this
parameter is like min_child_samples in LightGBM and helps control overfitting.

• gamma: serving as a regularization parameter, it specifies the minimum loss reduction
required to make a further partition on a leaf node of the tree.

• reg_aplha and reg_lambda: corresponding to the L1 (Lasso regression) and L2 (Ridge
regression) regularization terms, these add penalties to the magnitude of the coeffi-
cients to prevent overfitting by keeping the weights as small as possible.

The CatBoost algorithm is a Gradient Boosting Decision Tree (GDBT) framework based
on a symmetric decision tree. Proposed by [53], in recent years, this algorithm turned out
to be particularly effective for both classification and regression tasks. The main idea of

Sensors 2024, 24, 2348 11 of 19

ensemble learning methods like the CatBoost algorithm is to generate a stronger predictive
model by combining weak learners as decision trees. Indeed, the algorithm processes
a series of simple decision tree models sequentially to optimize their performances by
reducing the errors made by the previously trained models. Further details on the CatBoost
algorithm are provide in [54]. Below, the hyperparameters involved in the CatBoost
algorithm are described:

• iterations: this is the number of trees that the algorithm builds before stopping. More
iterations allow the model to fit the data better but can lead to overfitting.

• l2_leaf_reg: used to prevent overfitting by penalizing large weights, this parameter
represents the coefficient for L2 regularization.

• random_strength: this parameter is used for adding randomness to the objective
function. It makes the model more robust by providing a smoother decision boundary.

In addition to these specific hyperparameters of the CatBoost algorithm, learning_rate
and depth, which are described above, must be optimized in order to improve the perfor-
mance of the algorithm.

Finally, the Random Forest algorithm, proposed by [55], is an ensemble learning
technique that is exceedingly used for both classification and regression tasks. The approach
combines multiple decision trees during training, and it outputs the average prediction (for
regression) or the mode prediction (for classification) of the individual trees. The key idea
behind Random Forest is to introduce randomness into the training process to improve the
overall performance and the robustness of the model [56]. Specific hyperparameters of the
Random Forest algorithm are as follows:

• min_samples_split: this is the minimum number of samples required to split an
internal node. Higher values prevent the model from learning relations that might be
highly specific to the sample selected for a tree.

• min_samples_leaf: this is the minimum number of samples required to be at a leaf node.
Setting this parameter helps in smoothing the model, especially in regression tasks.

5. Results and Discussions

As a result of the clustering process, a specific cluster configuration was obtained,
yielding a silhouette score of 0.52. This outcome is considered quite favorable, suggesting
that the clusters are adequately separated, though not entirely distinct. It is also noteworthy
that a team of experts in the field verified the efficacy of the clustering algorithm in grouping
roads with similar structural characteristics.

Figure 2 illustrates the results of the clustering step. In the graph, every curve corre-
sponds to the time series data recorded by a sensor placed on a particular road in Catania.
Due to limitations in space, the figure shows up to just one week of data even if the
algorithm was run with an entire year of data as input.

The resulting clustering configuration shows a first cluster made of five time series,
a second cluster consisting of three time series, and a third cluster encompassing five
time series.

As it consisted of only one time series, the fourth clustering was excluded from the
figure, because of its singular nature.

In keeping in mind the outcomes of the clustering step, forecasting was imple-
mented. Firstly, the authors tested the set of optimized machine learning models described
in Section 4.

The dataset was divided into two sets: a training set including data from 1 January
2022 to 16 December 2022 and a test set consisting of two weeks of observations, spanning
from 17 December 2022 to 31 December 2022. This choice was influenced by the fact that in
Italy, the last week of December is Christmas week. The traffic patterns in Catania during
this period deviate from the usual, particularly impacting certain roads that are notably
affected by the onset of the Christmas holidays. For instance, the traffic recorded by the
MT9 sensor predominantly involved private vehicles heading toward the University of

Sensors 2024, 24, 2348 12 of 19

Catania. With the closure of universities during Christmas, there is a marked alteration in
the traffic dynamics along this road.

Sensors 2024, 24, x FOR PEER REVIEW 12 of 20

Figure 2. Time series data distributed in the three clusters.

In keeping in mind the outcomes of the clustering step, forecasting was implemented.
Firstly, the authors tested the set of optimized machine learning models described in Sec-
tion 4.

The dataset was divided into two sets: a training set including data from 1 January
2022 to 16 December 2022 and a test set consisting of two weeks of observations, spanning
from 17 December 2022 to 31 December 2022. This choice was influenced by the fact that
in Italy, the last week of December is Christmas week. The traffic patterns in Catania dur-
ing this period deviate from the usual, particularly impacting certain roads that are nota-
bly affected by the onset of the Christmas holidays. For instance, the traffic recorded by
the MT9 sensor predominantly involved private vehicles heading toward the University
of Catania. With the closure of universities during Christmas, there is a marked alteration
in the traffic dynamics along this road.

In the optimization framework, two hyperparameters had to be configured: in-
put_chunk_length and output_chunk_length. The input_chunk_length represents the

Figure 2. Time series data distributed in the three clusters.

In the optimization framework, two hyperparameters had to be configured: in-
put_chunk_length and output_chunk_length. The input_chunk_length represents the
amount of time steps (in hours) that the model utilized to perform predictions. Conversely,
the output_chunck_length is the number of time steps (in hours) predicted at once by the
internal model. If the input_chunk_length was optimized, the output_chunck_length was
set to 24 h. The decision to set the prediction step size to the next 24 h was dictated by the
authors’ motivation to present their model as a useful tool for urban planning. Essentially,

Sensors 2024, 24, 2348 13 of 19

long-term forecasting provides a comprehensive projection of traffic flow patterns to assess
future capacity needs, allowing for more precise urban planning and improved infrastruc-
ture development decisions [57]. Meanwhile, real-time traffic management systems require
predictions at shorter intervals [58].

The proposed models utilize a predetermined number of hours (input chunk length)
to forecast the upcoming 24 h.

The hyperparameters of the optimized models are listed as follows:

• LightGBM: {input_chunk_length = 354, num_leaves = 85, max_depth = 1, learning_rate = 0.1620,
n_estimators = 23, min_child_samples = 35}.

• XGBoost: {input_chunk_length = 224, n_estimators = 30, learning_rate = 0.1980,
max_depth = 6, min_child_weight = 4, gamma = 3, reg_alpha = 0.3216, reg_lambda = 0.9846}.

• CatBoost: {input_chunk_length = 287, iterations = 989, learning_rate = 0.1559, depth = 5,
l2_leaf_reg = 3, random_strength = 7}.

• Random Forest: {input_chunk_length = 263, n_estimators = 58, max_depth = 10,
min_samples_split = 3, min_samples_leaf = 5}.

In Tables 4 and 5, the authors report the average performance metrics obtained from
testing the models on data from all 14 sensors for both the week from 17 December
to 23 December 2022 and on the Christmas week from 24 December to 31 December
2022, respectively.

Table 4. Performance metrics of optimized models on the week of 17 December to 23 December.

Models MAE SMAPE MSE RMSE

LightGBM 0.0679 23.3168 0.0103 0.0204
XGBoost 0.0649 21.6715 0.0098 0.0198
CatBoost 0.0637 21.8361 0.0092 0.0185

Random Forest 0.0792 27.0989 0.01259 0.0251

Table 5. Performance metrics of optimized models on Christmas week.

Models MAE SMAPE MSE RMSE

LightGBM 0.0655 27.2436 0.0098 0.0343
XGBoost 0.0632 23.6044 0.0095 0.0327
CatBoost 0.0710 26.8008 0.0109 0.0368

Random Forest 0.0752 28.4701 0.0114 0.0366

In analyzing the performance metrics, the XGBoost and CatBoost outperformed Light-
GBM and Random Forest across all metrics. This consistency suggests the robustness and
reliability of these boosting algorithms in handling the forecasting task compared to the
other models.

Focusing on the comparison between XGBoost and CatBoost, as reported in Table 4,
they exhibited very similar performances during the week from 17 December to 23 Decem-
ber, suggesting that they are both effective choices for the task. However, while there was
little difference in performance between these two models during this tested week, XGBoost
demonstrated superiority over CatBoost during the Christmas week. This result suggests
that the XGBoost model is more robust than CatBoost when variations in the normal traffic
flow patterns are introduced. Based on these considerations, the third best-performing
model utilized the LightGBM algorithm, and the fourth best-performing model employed
the Random Forest algorithm. Based on these results, the XGBoost algorithm was used for
the short-term forecasting task.

To test the approach, the model was trained on all the available time series belonging
to a cluster, excluding data from a different sensor each time. In other words, this process
involved creating different XGBoost models repeatedly, leaving out one specific time series
from the training data each time and then evaluating the performance of the model based
on the omitted time series.

Sensors 2024, 24, 2348 14 of 19

Below, the authors listed the XGBoost models obtained by excluding a different time
series from the first cluster each time:

• First model: {input_chunk_length = 214, n_estimators = 100, learning_rate = 0.6171,
max_depth = 1, min_child_weight = 5, gamma = 2, reg_alpha = 0.8155, reg_lambda = 0.4019}.

• Second model: {input_chunk_length = 239, n_estimators = 65, learning_rate = 0.2549,
max_depth = 6, min_child_weight = 8, gamma = 1, reg_alpha = 0.0128, reg_lambda = 0.3413}.

• Third model: {input_chunk_length = 198, n_estimators = 32, learning_rate = 0.8024,
max_depth = 0, min_child_weight = 8, gamma = 5, reg_alpha = 0.6796, reg_lambda = 0.0242}.

• Fourth model: {input_chunk_length = 362, n_estimators = 61, learning_rate = 0.7500,
max_depth = 0, min_child_weight = 3, gamma = 4, reg_alpha = 0.9530, reg_lambda = 0.0577}.

• Fifth model: {input_chunk_length = 202, n_estimators = 53, learning_rate = 0.6013,
max_depth = 4, min_child_weight = 2, gamma = 2, reg_alpha = 0.4324, reg_lambda = 0.3886}.

• Next, the best hyperparameters for the second cluster are listed as follows:
• First model: {input_chunk_length = 294, n_estimators = 48, learning_rate = 0.9116,

max_depth = 5, min_child_weight = 8, gamma = 2, reg_alpha = 0.7541, reg_lambda = 0.1687}.
• Second model: {input_chunk_length = 242, n_estimators = 21, learning_rate = 0.8160,

max_depth = 5, min_child_weight = 10, gamma = 5, reg_alpha = 0.2143, reg_lambda = 0.2808}.
• Third model: {input_chunk_length = 247, n_estimators = 60, learning_rate = 0.7606,

max_depth = 0, min_child_weight = 8, gamma = 2, reg_alpha = 0.2381, reg_lambda = 0.7919}.
• Finally, the same procedure was applied for the third cluster, for which the following

best hyperparameters were obtained:
• First model: {input_chunk_length = 201, n_estimators = 22, learning_rate = 0.8273,

max_depth = 1, min_child_weight = 9, gamma = 1, reg_alpha = 0.3290, reg_lambda = 0.4874}.
• Second model: {input_chunk_length = 207, n_estimators = 70, learning_rate = 0.1490,

max_depth = 9, min_child_weight = 3, gamma = 53 reg_alpha = 0.8095, reg_lambda = 0.9837}.
• Third model: {input_chunk_length = 192, n_estimators = 21, learning_rate = 0.9600,

max_depth = 6, min_child_weight = 5, gamma = 2, reg_alpha = 0.7949, reg_lambda = 0.3499}.

As explained before, the ‘input_chunk_length’ parameter signifies the duration, in
hours, that the model requires to comprehend patterns and generate forecasts for the
subsequent 24 h. Upon examining each model, the longest duration needed was 362 h,
which is equivalent to approximately 15 days. Consequently, the model necessitates only
a minimal number of observations during the forecasting phase. In other words, a small
number of observations from unseen roads are needed to forecast these new roads.

Tables 6 and 7 show the effectiveness of the models in predicting the traffic volume for
each sensor of every cluster for the last two weeks of December. These tables report the
average performance metrics of the roads included in the training.

Table 6. Performances test week from 17 to 23 Dember 2022 for roads included in the training.

Cluster SensorID MAE SMAPE MSE RMSE

1

MT10a 0.0476 16.1572 0.0036 0.0108
MT10b 0.0449 9.0797 0.0042 0.0113
MT6a 0.0591 18.2712 0.0066 0.0134
MT6b 0.0341 10.3941 0.0024 0.0086
MT7a 0.0438 12.3279 0.0036 0.0121

2
MT13a 0.1084 31.3894 0.024 0.0325
MT13b 0.0979 30.4161 0.0202 0.0305
MT17a 0.0788 23.6740 0.0103 0.0256

3

MT14a 0.0818 34.0268 0.0105 0.0248
MT14b 0.0424 14.8554 0.0039 0.0109
MT18b 0.0350 18.9106 0.0028 0.0087
MT9a 0.0676 20.1880 0.0095 0.0202
MT9b 0.0966 40.1665 0.0193 0.0348

Sensors 2024, 24, 2348 15 of 19

Table 7. Performances test for Christmas week for roads included in the training.

Cluster SensorID MAE SMAPE MSE RMSE

1

MT10a 0.0647 18.9955 0.0076 0.0316
MT10b 0.0549 12.9024 0.0077 0.0284
MT6a 0.0691 19.9931 0.0094 0.0355
MT6b 0.0437 14.1862 0.0044 0.0264
MT7a 0.0685 25.1541 0.0105 0.0428

2
MT13a 0.0858 25.5183 0.0111 0.0426
MT13b 0.0854 24.5521 0.0152 0.0448
MT17a 0.0933 30.7933 0.0122 0.0402

3

MT14a 0.0468 29.0485 0.0068 0.0224
MT14b 0.0774 28.9589 0.0116 0.0347
MT18b 0.0657 29.7903 0.0122 0.0355
MT9a 0.0752 31.8823 0.0153 0.0362
MT9b 0.0848 48.4313 0.0166 0.0374

Tables 8 and 9 report the performance metrics computed each time a road was excluded
from the three clusters. Also, in this case, the test was conducted on both the week spanning
from 17 to 23 December 2022 and on the Christmas week.

Table 8. Performance metrics on excluded time series for the week of the 17th to December 23rd.

Cluster SensorID MAE SMAPE MSE RMSE

1

MT10a 0.0506 18.3951 0.0043 0.0116
MT10b 0.0473 9.4515 0.0047 0.0124
MT6a 0.0598 19.1754 0.0073 0.0145
MT6b 0.0436 16.0013 0.0045 0.0242
MT7a 0.0483 14.7691 0.0040 0.0115

2
MT13a 0.1184 39.1892 0.0261 0.0405
MT13b 0.1208 35.1176 0.0315 0.0409
MT17a 0.0883 25.5717 0.0125 0.0271

3

MT14a 0.0818 34.0268 0.0105 0.0248
MT14b 0.0838 32.7789 0.0111 0.0233
MT18b 0.0467 21.3571 0.0045 0.0113
MT9a 0.0779 23.0636 0.0129 0.0273
MT9b 0.1100 53.3995 0.0233 0.0400

Table 9. Performance metrics on excluded time series for the week of 24 to 31 December.

Cluster SensorID MAE SMAPE MSE RMSE

1

MT10a 0.0631 19.8354 0.0071 0.0307
MT10b 0.0570 13.4556 0.0077 0.0293
MT6a 0.0676 20.1005 0.0097 0.0351
MT6b 0.0681 23.2950 0.0102 0.0314
MT7a 0.0741 29.0209 0.0113 0.0459

2
MT13a 0.1025 35.4457 0.0176 0.0552
MT13b 0.0853 24.7775 0.0106 0.0434
MT17a 0.0940 30.1814 0.0119 0.0424

3

MT14a 0.0818 34.0268 0.0105 0.0248
MT14b 0.0883 31.5855 0.0163 0.0393
MT18b 0.0682 40.6155 0.0138 0.0359
MT9a 0.0716 41.6216 0.0126 0.0321
MT9b 0.0824 58.9492 0.0159 0.0403

Sensors 2024, 24, 2348 16 of 19

Examining the performance metrics in the two tables reveals that the predictions for
the week of 17 to 23 December across the three clusters achieved good accuracy. The authors
obtained an average error rate (SMAPE) of 15.5585 for Cluster 1, 33.2928 for Cluster 2, and
28.8474 for Cluster 3. As concerns predictions for the week of 24 to 31 December, an overall
decrease can be noticed in terms of performance in the majority of the sensors. This can be
justified by the abnormal pattern that occurs in the streets of Catania during the Christmas
holidays. Finally, a note must be made about the performance of sensor MT9b; indeed,
for this sensor, the error rate was quite elevated. The traffic flow of this road is strictly
characterized by private and public vehicles moving to universities. To the best knowledge
of the authors, in the two tested weeks from 17 to 31 December, universities in Catania
closed for the Christmas holidays.

Figure 3 presents the actual and predicted values of traffic flow for some time series
excluded by each cluster on the two test weeks spanning from 17 to 23 December 2022 and
on Christmas week.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 20

Figure 3. Example test results on excluded time series for the two weeks.

6. Conclusions
In this study, the authors proposed a two-level machine learning methodology for

forecasting traffic flow data. In detail, they tried to overcome the problems of predicting
traffic flow for roads where there are no sensor data available. In using Catania as a refer-
ence city for its complex transportation network, a TSkmeans algorithm was used to group
data sharing similar patterns, obtaining a final silhouette score of 0.52. After the clusters
were detected, an optimized XGBoost model was created, one for each group of data. This
model resulted as the best performing and most robust one, able to efficiently predict traf-
fic on roads exhibiting a different pattern from the normal one. Unlike in [28], an extended
year of data was provided as input to the model to overcome the limit of having too spe-
cialized algorithms for single daily patterns. Moreover, the authors used data from 14 sen-
sors referring to different roads located in the center and suburban areas.

Ultimately, the methodology involved training the model on the entire set of time
series within a cluster with the exclusion of a different sensor in each iteration. To clarify,
this entails iteratively building distinct XGBoost models by omitting a specific time series
from the training data each time and subsequently assessing the model performances by
forecasting the traffic flow of the excluded time series. This test aimed to evaluate the

Figure 3. Example test results on excluded time series for the two weeks.

Sensors 2024, 24, 2348 17 of 19

As can be seen from the graphs, for these three tested excluded sensors, the model
was able to predict, quite accurately, the traffic flow registered in the week from 17 to 23
December 2022. Moreover, as concerns the holiday week, for the majority of the sensors,
the model accuracy slightly decreased when predicting the traffic flow on Christmas and
Boxing day (25 and 26 December 2022).

6. Conclusions

In this study, the authors proposed a two-level machine learning methodology for
forecasting traffic flow data. In detail, they tried to overcome the problems of predicting
traffic flow for roads where there are no sensor data available. In using Catania as a
reference city for its complex transportation network, a TSkmeans algorithm was used to
group data sharing similar patterns, obtaining a final silhouette score of 0.52. After the
clusters were detected, an optimized XGBoost model was created, one for each group of
data. This model resulted as the best performing and most robust one, able to efficiently
predict traffic on roads exhibiting a different pattern from the normal one. Unlike in [28], an
extended year of data was provided as input to the model to overcome the limit of having
too specialized algorithms for single daily patterns. Moreover, the authors used data from
14 sensors referring to different roads located in the center and suburban areas.

Ultimately, the methodology involved training the model on the entire set of time
series within a cluster with the exclusion of a different sensor in each iteration. To clarify,
this entails iteratively building distinct XGBoost models by omitting a specific time series
from the training data each time and subsequently assessing the model performances by
forecasting the traffic flow of the excluded time series. This test aimed to evaluate the
capability of the models to generalize on series that exhibit similar patterns to those used
during training but were not part of the training dataset. The results indicate a positive
outcome, demonstrating the ability of the models to forecast traffic flows on series not
encountered during training, even with a limited number of input days (e.g., two weeks).

Future plans involve increasing the number of sensors to cover a large urban area under
study. Furthermore, the authors expect to gather diverse data from various sources and to in-
clude them in the model (e.g., weather conditions, traffic congestion, roadwork information).

Author Contributions: Conceptualization, S.C., M.B. and S.D.G.; methodology, S.C.; software, M.B.
and S.D.G.; validation, M.B. and S.D.G.; formal analysis, S.C.; writing—original draft preparation,
M.B. and S.D.G.; funding acquisition, S.C. All authors have read and agreed to the published version
of the manuscript.

Funding: The results presented in this paper were achieved under the research project of the Spoke
9 “Digital Society & Smart Cities” inside the “National Centre for HPC, Big Data and Quantum
Computing” (Code: CN00000013, CUP: E63C22001000006). This research project is currently running
and is funded under PNRR M4C2 Line 1.4 by the Italian Ministry for Research.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data and the codes presented in this study are available upon
request from the corresponding author.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. ONU World Population Prospects 2019: Highlights. Available online: https://population.un.org/wpp/publications/files/wpp2

019_highlights.pdf (accessed on 11 March 2024).
2. Xu, T.; Han, G.; Qi, X.; Du, J.; Lin, C.; Shu, L. A Hybrid Machine Learning Model for Demand Prediction of Edge-Computing-Based

Bike-Sharing System Using Internet of Things. IEEE Internet Things J. 2020, 7, 7345–7356. [CrossRef]
3. Lv, Z.; Li, X.; Zhang, B.; Wang, W.; Zhu, Y.; Hu, J.; Feng, S. Managing Big City Information Based on WebVRGIS. IEEE Access 2016,

4, 407–415. [CrossRef]
4. Ndikumana, A.; Ullah, S.; Thar, K.; Tran, N.H.; Ju Park, B.; Hong, C.S. Novel Cooperative and Fully-Distributed Congestion

Control Mechanism for Content Centric Networking. IEEE Access 2017, 5, 27691–27706. [CrossRef]

https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf
https://population.un.org/wpp/publications/files/wpp2019_highlights.pdf
https://doi.org/10.1109/JIOT.2020.2983089
https://doi.org/10.1109/ACCESS.2016.2517076
https://doi.org/10.1109/ACCESS.2017.2778339

Sensors 2024, 24, 2348 18 of 19

5. Nie, J.; Zhang, J.; Ding, W.; Wan, X.; Chen, X.; Ran, B. Decentralized Cooperative Lane-Changing Decision-Making for Connected
Autonomous Vehicles. IEEE Access 2016, 4, 9413–9420. [CrossRef]

6. Ma, D.; Luo, X.; Jin, S.; Wang, D.; Guo, W.; Wang, F. Lane-Based Saturation Degree Estimation for Signalized Intersections Using
Travel Time Data. IEEE Intell. Transp. Syst. Mag. 2017, 9, 136–148. [CrossRef]

7. Liu, B.; Zhang, T.; Hu, W. Intelligent traffic flow prediction and analysis based on internet of things and big data. Comput. Intell.
Neurosci. 2022, 2022, 1–12. [CrossRef] [PubMed]

8. Ma, D.; Luo, X.; Li, W.; Jin, S.; Guo, W.; Wang, D. Traffic Demand Estimation for Lane Groups at Signal-Controlled Intersections
Using Travel Times from Video-Imaging Detectors. IET Intell. Transp. Syst. 2017, 11, 222–229. [CrossRef]

9. Kotapati, G.; Ali, M.A.; Vatambeti, R. Deep Learning-Enhanced Hybrid Fruit Fly Optimization for Intelligent Traffic Control in
Smart Urban Communities. Mechatron. Intell. Transp. Syst. 2023, 2, 89–101. [CrossRef]

10. Feroz Khan, A.B.; Ivan, P. Integrating Machine Learning and Deep Learning in Smart Cities for Enhanced Traffic Congestion
Management: An Empirical Review. J. Urban Dev. Manag. 2023, 2, 211–221. [CrossRef]

11. Yang, Y.; Xu, Y.; Han, J.; Wang, E.; Chen, W.; Yue, L. Efficient Traffic Congestion Estimation Using Multiple Spatio-Temporal
Properties. Neurocomputing 2017, 267, 344–353. [CrossRef]

12. French, S.; Barchers, C.; Zhang, W. Moving beyond Operations: Leveraging Big Data for Urban Planning Decisions. In Proceedings
of the CUPUM 2015—14th International Conference on Computers in Urban Planning and Urban Management, Cambridge, MA,
USA, 7–10 July 2015.

13. Levin, M.W.; Boyles, S.D.; Duthie, J.; Pool, C.M. Demand Profiling for Dynamic Traffic Assignment by Integrating Departure
Time Choice and Trip Distribution. Comput. -Aided Civ. Infrastruct. Eng. 2016, 31, 86–99. [CrossRef]

14. Xia, D.; Wang, B.; Li, H.; Li, Y.; Zhang, Z. A Distributed Spatial–Temporal Weighted Model on MapReduce for Short-Term Traffic
Flow Forecasting. Neurocomputing 2016, 179, 246–263. [CrossRef]

15. Kong, X.; Song, X.; Xia, F.; Guo, H.; Wang, J.; Tolba, A. LoTAD: Long-Term Traffic Anomaly Detection Based on Crowdsourced
Bus Trajectory Data. World Wide Web 2018, 21, 825–847. [CrossRef]

16. Habtemichael, F.G.; Cetin, M. Short-Term Traffic Flow Rate Forecasting Based on Identifying Similar Traffic Patterns. Transp. Res.
Part C Emerg. Technol. 2016, 66, 61–78. [CrossRef]

17. Berlotti, M.; Di Grande, S.; Cavalieri, S.; Torrisi, V.; Inturri, G. Proposal of an AI Based Approach for Urban Traffic Prediction
from Mobility Data. In Proceedings of the IEEE BigData2023–2023 IEEE International Conference on Big Data, Sorrento, Italy,
15–18 December 2023. [CrossRef]

18. Medina-Salgado, B.; Sánchez-DelaCruz, E.; Pozos-Parra, P.; Sierra, J.E. Urban Traffic Flow Prediction Techniques: A Review.
Sustain. Comput. Inform. Syst. 2022, 35, 100739. [CrossRef]

19. Liu, J.; Guan, W. A Summary of Traffic Flow Forecasting Methods. J. Highw. Transp. Res. Dev. 2004, 21, 82–85.
20. Lin, S.-L.; Huang, H.-Q.; Zhu, D.-Q.; Wang, T.-Z. The Application of Space-Time ARIMA Model on Traffic Flow Forecasting. In

Proceedings of the ICMLC 2009–International Conference on Machine Learning and Cybernetics, Baoding, China, 12–15 July 2009.
[CrossRef]

21. Zhou, J.; Yang, Q.; Zhang, X.; Han, C.; Sun, L. Traffic Prediction Method for GEO Satellites Combining ARIMA Model and Grey
Model. J. Shanghai Jiaotong Univ. Sci. 2020, 25, 65–69. [CrossRef]

22. Liu, Y.; Liu, C.; Zheng, Z. Traffic Congestion and Duration Prediction Model Based on Regression Analysis and Survival Analysis.
Open J. Bus. Manag. 2020, 8, 943–959. [CrossRef]

23. Chen, T.; Guestrin, C. XGBoost: A Scalable Tree Boosting System. In Proceedings of the 22nd ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016. [CrossRef]

24. Ke, G.; Meng, Q.; Finley, T.; Wang, T.; Chen, W.; Ma, W.; Ye, Q.; Liu, T.-Y. LightGBM: A Highly Efficient Gradient Boosting
Decision Tree. In Proceedings of the NIPS 2017—The 31st Conference on Neural Information Processing Systems, Long Beach,
CA, USA, 4–9 December 2017.

25. Prokhorenkova, L.; Gusev, G.; Vorobev, A.; Dorogush, A.V.; Gulin, A. CatBoost: Unbiased boostimg with categorical features.
In Proceedings of the NeurIPS 2018—The 32nd Conference on Neural Information Processing Systems, Montreal, QC, Canada,
3–8 December 2018.

26. Li, Y.; Huang, J.; Chen, H. Time Series Prediction of Wireless Network Traffic Flow Based on Wavelet Analysis and BP Neural
Network. J. Phys.Conf. Ser. 2020, 1533, 032098. [CrossRef]

27. Ma, X.; Tao, Z.; Wang, Y.; Yu, H.; Wang, Y. Long Short-Term Memory Neural Network for Traffic Speed Prediction Using Remote
Microwave Sensor Data. Transp. Res. Part C Emerg. Technol. 2015, 54, 187–197. [CrossRef]

28. Alzubaidi, L.; Zhang, J.; Humaidi, J.A.; Al-Dujaili, A.; Duan, Y.; Omran Al-Shamma, O.; Santamaría, J.; Fadhel, A.M.; Al-Amidie,
M.; Farhan, L. Review of deep learning: Concepts, CNN architectures, challenges, applications, future directions. J. Big Data 2021,
8, 53. [CrossRef]

29. Zhou, S.; Shen, S.; Zeng, D.; Fang, M.; Zhang, Z.M. Spatial–temporal convolutional neural networks for anomaly detection and
localization in crowded scenes. Signal Process. Image Commun. 2016, 47, 358–368. [CrossRef]

30. Ren, W.; Jin, N.; OuYang, L. Phase Space Graph Convolutional Network for Chaotic Time Series Learning. IEEE Trans. Ind. Inform.
2024, 20, 1–9. [CrossRef]

31. Jie, Z.; Tang, J. Modeling dynamic traffic flow as visibility graphs: A network-scale prediction framework for lane-level traffic
flow based on LPR data. IEEE Trans. Intell. Transp. Syst. 2022, 24, 4173–4188. [CrossRef]

https://doi.org/10.1109/ACCESS.2017.2649567
https://doi.org/10.1109/MITS.2017.2709881
https://doi.org/10.1155/2022/6420799
https://www.ncbi.nlm.nih.gov/pubmed/35755732
https://doi.org/10.1049/iet-its.2016.0233
https://doi.org/10.56578/mits020204
https://doi.org/10.56578/judm020404
https://doi.org/10.1016/j.neucom.2017.06.017
https://doi.org/10.1111/mice.12140
https://doi.org/10.1016/j.neucom.2015.12.013
https://doi.org/10.1007/s11280-017-0487-4
https://doi.org/10.1016/j.trc.2015.08.017
https://doi.org/10.1109/BigData59044.2023.10386509
https://doi.org/10.1016/j.suscom.2022.100739
https://doi.org/10.1109/ICMLC.2009.5212785
https://doi.org/10.1007/s12204-019-2152-9
https://doi.org/10.4236/ojbm.2020.82059
https://doi.org/10.1145/2939672
https://doi.org/10.1088/1742-6596/1533/3/032098
https://doi.org/10.1016/j.trc.2015.03.014
https://doi.org/10.1186/s40537-021-00444-8
https://doi.org/10.1016/j.image.2016.06.007
https://doi.org/10.1109/TII.2024.3363089
https://doi.org/10.2139/ssrn.4054273

Sensors 2024, 24, 2348 19 of 19

32. Guo, S.; Lin, Y.; Feng, N.; Song, C.; Wan, H. Attention Based Spatial-Temporal Graph Convolutional Networks for Traffic Flow
Forecasting. Proc. AAAI Conf. Artif. Intell. 2019, 33, 922–929. [CrossRef]

33. Zhang, Y.; Cheng, Q.; Liu, Y.; Liu, Z. Full-Scale Spatio-Temporal Traffic Flow Estimation for City-Wide Networks: A Transfer
Learning Based Approach. Transp. B Transp. Dyn. 2023, 11, 869–895. [CrossRef]

34. Ma, D.; Sheng, B.; Jin, S.; Ma, X.; Gao, P. Short-Term Traffic Flow Forecasting by Selecting Appropriate Predictions Based on
Pattern Matching. IEEE Access 2018, 6, 75629–75638. [CrossRef]

35. MOBILTRAF 300|Famas System. Available online: http://www.famassystem.it/it/prodotto/mobiltraf-300 (accessed on
11 March 2024).

36. Arimie, C.O.; Biu, E.O.; Ijomah, M.A. Outlier Detection and Effects on Modeling. Open Access Libr. J. 2020, 7, 1–30. [CrossRef]
37. Kolbaşı, A.; Ünsal, A. A Comparison of the Outlier Detecting Methods: An Application on Turkish Foreign Trade Data. J. Math.

Sci. 2021, 5, 213–234.
38. Huang, X.; Ye, Y.; Xiong, L.; Lau, R.Y.K.; Jiang, N.; Wang, S. Time Series K-Means: A New k-Means Type Smooth Subspace

Clustering for Time Series Data. Inf. Sci. 2016, 367, 1–13. [CrossRef]
39. Tslearn.Clustering.TimeSeriesKMeans—Tslearn 0.6.3 Documentation. Available online: https://tslearn.readthedocs.io/en/

stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html (accessed on 11 March 2024).
40. Time Series Made Easy in Python—Darts Documentation. Available online: https://unit8co.github.io/darts/ (accessed on

11 March 2024).
41. Optuna: A Hyperparameter Optimization Framework. Available online: https://optuna.readthedocs.io (accessed on

11 March 2024).
42. Bergmeir, C.; Benítez, J.M. On the Use of Cross-Validation for Time Series Predictor Evaluation. Inf. Sci. 2012, 191, 192–213.

[CrossRef]
43. Ngoc, T.T.; Dai, L.V.; Phuc, D.T. Grid Search of Multilayer Perceptron Based on the Walk-Forward Validation Methodology. Int. J.

Electr. Comput. Eng. IJECE 2021, 11, 1742. [CrossRef]
44. Di Grande, S.; Berlotti, M.; Cavalieri, S.; Gueli, R. A Machine Learning Approach for Hydroelectric Power Forecasting. In

Proceedings of the IREC 2023—The 14th International Renewable Energy Congress, Sousse, Tunisia, 16–18 December 2023.
45. Bandara, K.; Hewamalage, H.; Liu, Y.-H.; Kang, Y.; Bergmeir, C. Improving the Accuracy of Global Forecasting Models Using

Time Series Data Augmentation. Pattern Recognit. 2021, 120, 108148. [CrossRef]
46. Koutsandreas, D.; Spiliotis, E.; Petropoulos, F.; Assimakopoulos, V. On the Selection of Forecasting Accuracy Measures. J. Oper.

Res. Soc. 2022, 73, 937–954. [CrossRef]
47. Botchkarev, A. Performance Metrics (Error Measures) in Machine Learning Regression, Forecasting and Prognostics: Properties

and Typology. Interdiscip. J. Inf. Knowl. Manag. IJIKM 2019, 14, 45–76. [CrossRef]
48. Hyndman, R.J.; Koehler, A.B. Another Look at Measures of Forecast Accuracy. Int. J. Forecast. 2006, 22, 679–688. [CrossRef]
49. Abdurrahman, M.H.; Irawan, B.; Setianingsih, C. A Review of Light Gradient Boosting Machine Method for Hate Speech

Classification on Twitter. In Proceedings of the ICECIE 2020—The 2nd International Conference on Electrical, Control and
Instrumentation Engineering, Kuala Lumpur, Malaysia, 28 November 2020.

50. Jabeur, S.B.; Mefteh-Wali, S.; Viviani, J.L. Forecasting gold price with the XGBoost algorithm and SHAP interaction values. Ann.
Oper. Res. 2021, 334, 679–699. [CrossRef]

51. Dong, W.; Huang, Y.; Lehane, B.; Ma, G. XGBoost algorithm-based prediction of concrete electrical resistivity for structural health
monitoring. Autom. Constr. 2020, 114, 103155. [CrossRef]

52. Mounika, N.; Mounika, P.; Nageswara, R.E. A Scalable Tree Boosting System: XG Boost. Int. J. Res. Stud. Sci. Eng. Technol. 2020, 7,
36–51. [CrossRef]

53. Herzen, J.; Lässig, F.; Piazzetta, S.G.; Neuer, T.; Tafti, L.; Raille, G.; Van Pottelbergh, T.; Pasieka, M.; Skrodzki, A.;
Huguenin, N.; et al. Darts: User-Friendly Modern Machine Learning for Time Series. J. Mach. Learn. Res. 2023, 23,
5442–5447.

54. Hancock, J.T.; Khoshgoftaar, T.M. CatBoost for big data: An interdisciplinary review. J. Big Data 2020, 7, 94. [CrossRef] [PubMed]
55. Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [CrossRef]
56. Biau, G.; Scornet, E. A Random Forest Guided Tour. TEST 2016, 25, 197–227. [CrossRef]
57. Pengjun, W.; Zhang, Z.; Pengo, X.; Wang, R. Deep learning solutions for smart city challenges in urban development. Sci. Rep.

2024, 14, 5176. [CrossRef]
58. Chen, D.; Wang, H.; Zhong, M. A short-term traffic flow prediction model based on AutoEncoder and GRU. In Proceedings of the

12th International Conference on Advanced Computational Intelligence, Dali, China, 14–16 March 2020.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1609/aaai.v33i01.3301922
https://doi.org/10.1080/21680566.2022.2143453
https://doi.org/10.1109/ACCESS.2018.2879055
http://www.famassystem.it/it/prodotto/mobiltraf-300
https://doi.org/10.4236/oalib.1106619
https://doi.org/10.1016/j.ins.2016.05.040
https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
https://tslearn.readthedocs.io/en/stable/gen_modules/clustering/tslearn.clustering.TimeSeriesKMeans.html
https://unit8co.github.io/darts/
https://optuna.readthedocs.io
https://doi.org/10.1016/j.ins.2011.12.028
https://doi.org/10.11591/ijece.v11i2.pp1742-1751
https://doi.org/10.1016/j.patcog.2021.108148
https://doi.org/10.1080/01605682.2021.1892464
https://doi.org/10.28945/4184
https://doi.org/10.1016/j.ijforecast.2006.03.001
https://doi.org/10.1007/s10479-021-04187-w
https://doi.org/10.1016/j.autcon.2020.103155
https://doi.org/10.22259/2349-476X.0712005
https://doi.org/10.1186/s40537-020-00369-8
https://www.ncbi.nlm.nih.gov/pubmed/33169094
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1007/s11749-016-0481-7
https://doi.org/10.1038/s41598-024-55928-3

	Introduction
	Related Work
	Materials and Methods
	Case Study Description
	Data Collection and Preprocessing
	Overview of the Proposed Machine Learning Approach
	Clustering Step
	Traffic Flow Forecasting Step

	Overview of Machine Learning Models
	Results and Discussions
	Conclusions
	References

