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Abstract: Accurately identifying adulterants in agriculture and food products is associated with
preventing food safety and commercial fraud activities. However, a rapid, accurate, and robust
prediction model for adulteration detection is hard to achieve in practice. Therefore, this study aimed
to explore deep-learning algorithms as an approach to accurately identify the level of adulterated
coconut milk using two types of NIR spectrophotometer, including benchtop FT-NIR and portable
Micro-NIR. Coconut milk adulteration samples came from deliberate adulteration with corn flour
and tapioca starch in the 1 to 50% range. A total of four types of deep-learning algorithm architecture
that were self-modified to a one-dimensional framework were developed and tested to the NIR
dataset, including simple CNN, S-AlexNET, ResNET, and GoogleNET. The results confirmed the
feasibility of deep-learning algorithms for predicting the degree of coconut milk adulteration by corn
flour and tapioca starch using NIR spectra with reliable performance (R2 of 0.886–0.999, RMSE of
0.370–6.108%, and Bias of −0.176–1.481). Furthermore, the ratio of percent deviation (RPD) of all
algorithms with all types of NIR spectrophotometers indicates an excellent capability for quantitative
predictions for any application (RPD > 8.1) except for case predicting tapioca starch, using FT-NIR
by ResNET (RPD < 3.0). This study demonstrated the feasibility of using deep-learning algorithms
and NIR spectral data as a rapid, accurate, robust, and non-destructive way to evaluate coconut milk
adulterants. Last but not least, Micro-NIR is more promising than FT-NIR in predicting coconut milk
adulteration from solid adulterants, and it is portable for in situ measurements in the future.

Keywords: adulteration; chemometric; coconut milk; deep learning; food; non-destructive

1. Introduction

Adulteration in agriculture and food products is an essential safety and control area
requiring rapid, accurate, robust, and automated methods for detecting, identifying, and
quantifying adulteration, including coconut milk products. Coconut milk is generally
extracted from grated coconut meat after pressing or squeezing with or without the addition
of water. Coconut milk has been used as a major ingredient in several cuisines, such as
curries and desserts [1]. There are two common reasons for adulteration in coconut milk
products. The first reason is to increase production volume and reduce costs by adding tap
water or old coconut water to coconut milk. The second reason is an attempt to boost the
apparent carbohydrate content by adding corn flour.

Accurately identifying adulterants is important for controlling coconut milk prod-
uct adulteration. The main content of coconut milk (moisture, total fat, carbohydrates,
protein, and ash) will be changed when mixed with other materials. As reported by
Lakshanasomya et al. [2], laboratory testing can measure the total solids and total fat in
coconut milk by drying it in a hot air oven or using a vacuum oven, which takes more than
2 h to prepare one sample. Although accurate, this method is time-consuming and requires
complicated sample pre-treatments and well-trained technicians, so it cannot be relied on
to carry out rapid monitoring. Near-infrared (NIR) and mid-infrared spectroscopy have

Sensors 2024, 24, 2362. https://doi.org/10.3390/s24072362 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s24072362
https://doi.org/10.3390/s24072362
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0003-3544-5977
https://doi.org/10.3390/s24072362
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s24072362?type=check_update&version=2


Sensors 2024, 24, 2362 2 of 23

gained considerable interest among the approaches to physical properties, particularly
for detecting adulteration in many agricultural and food products. Compared with the
above methods, NIR and mid-infrared spectroscopy are analytical techniques with the
advantages of rapid response in real time, simplicity in testing, and are non-destructive.
However, this method requires the development of a calibration model before it can be
used to make predictions.

Several efforts to develop calibration models have been created using a chemometrics
approach to achieve better performance prediction of coconut milk adulteration based on
NIR spectroscopy. For instance, Azlin-Hashim et al. [3] employed partial least squares (PLS)
regression to quantitatively determine the concentration of corn flour in the coconut milk
using an FT-IR spectrometer. This study used spectroscopic techniques in mid-infrared
zones combined with classical chemometrics. Although advantageous, classical chemo-
metric analysis is frequently criticized for its requirement of expertise and subjectivity in
elaborating spectral data, including selecting an excellent preprocessing method based
on what worked well on a previous data set and how to highlight important spectral
regions [4,5]. Therefore, Sitorus and Lapcharoensuk [6] adopted a machine-learning al-
gorithm with automatic preprocessing to predict water in coconut milk using an FT-NIR
spectrometer. Al-Awadhi and Deshmukh [7] utilized linear discriminant analysis (LDA)
and K-nearest neighbors (KNN) from machine learning as a classifier to detect water in
coconut milk using an FTIR spectrometer. They succeeded in improving model accuracy
but were observed to be complicated structures that were difficult to train and with ap-
parent risks of over-fitting. Moreover, although robust and accurate, these strategies have
drawbacks related to data dimensionality and higher entropy apart from efforts and practi-
cal feasibility [5,8,9]. Furthermore, efforts related to learning representations of the data
that identify and highlight the underlying explanatory factors hidden in the data are still
challenging in machine-learning applications [10]. Consequently, some studies are probing
for a shift in the paradigm toward applying deep learning to resolve the issues related to
classical and feed-forward neural network approaches.

Deep learning is a branch of machine learning that begins with images as input
and learns to identify patterns within their spatial dimensions. Deep learning consists
of multiple processing layers to automatically learn complex representations from data
without introducing hand-coded rules or human domain knowledge. Among deep-learning
algorithms, convolutional neural networks (CNNs) are presently one of the most trending
models since they do not require manual feature extraction and have several network
architecture types. CNNs are constructed with a series of convolutional layers that act
as feature extractors, followed by fully connected layers at the end of the network that
serve as predictors. For processing NIR spectral data, it was also recently seen to be
useful for one-dimensional (1D) spectroscopy data, as well as for regression tasks wherein
this supervised approach could perform both feature extraction and learning related to
features of interest [8]. Presently, CNN techniques are developing rapidly so many network
architecture variants are found for various analysis purposes, such as AlexNet, ResNET,
GoogLeNet, etc. [11]. Furthermore, in the case of chemometrics data, the use of CNN
can enable training on smaller weights, thereby lowering data complexity as opposed
to fully connected or feed-forward neural networks. Some of the advantages of CNN
are a reduction in neuron interdependence, adaptability to datasets beyond the training,
and reduced risk of over-fitting, which is a common criticism in feed-forward networks.
Moreover, some researchers [4,8] note that CNN can eventually simplify preprocessing
and model development, thereby reducing the complexity of model development and
improving accurate and robust model predictions. Recent papers on the utilization of
CNN for NIR spectroscopy, especially in agricultural and food products, have reported
adulteration in coffee products (Nallan Chakravartula et al. [4]), adulteration in infant
formula products (Liu et al. [12]), adulteration in dairy products (Said et al. [13]), and
adulteration in minced beef products (Weng et al. [14]). This shows the increasing number
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of studies using the CNN algorithm in NIR-based adulteration detection for agricultural
and food products.

To the best of our knowledge, even though coconut milk adulteration was investigated
with another adulterant material and another type of spectroscopy [3,6], no study explored
deep learning as advanced computational algorithms for quantifying adulterants by two
types of NIR spectroscopy, including benchtop FT-NIR and portable Micro-NIR and by
two types of solid adulterants, including corn flour and tapioca starch. Therefore, the
objective of this study was to bridge the gap between advanced perceptual sensors from
NIR spectroscopy and data science by developing and testing the performance of four
types of regressor architecture CNN of deep-learning to detect coconut milk adulteration
from corn flour and tapioca starch.

2. Materials and Methods
2.1. Sample Collection

This study comprised two parts. The first part was to detect the level of coconut milk
adulteration by corn flour and tapioca starch using a benchtop FT-NIR spectrometer. The
second part was to detect coconut milk adulteration levels by corn flour and tapioca starch
utilizing a portable Micro-NIR spectrometer. For this purpose, the spectra of two potential
adulterants (corn flour and tapioca starch) and coconut milk were collected. The adulterants
were purchased from a grocery market around Lat Krabang, Thailand. Adulterant samples
were stored at room temperature under clean and dry conditions. Coconut milk is the
liquid extracted from mature coconut fruit’s endosperm, with no added diluents like water
or other materials. Coconut milk was obtained from traditional markets (Lad Krabang,
Thailand) on 6 January 2024 and processed on the same day.

The coconut milk samples were adulterated by mixing the identified adulterant in the
range of 1–50% (w/w) at different adulteration levels (approximately 1%, 2%, 3%, 4%, 5%,
6%, 7%, 8%, 9%, 10%, 15%, 20%, 30%, 40%, and 50%). The reasons for selecting adulteration
levels in this study were as follows. Selecting different mixing levels can help represent
various levels of mixing severity. Covering low mixing levels (1%) to high levels (50%)
can provide a more complete view of the range of possible mixing situations that will
be encountered in practice. Relevance to practical applications where mixing levels with
minimum conditions for agriculture and food products are more likely to occur frequently
in practical situations in the field so that they have a more significant impact on this study.
Also, selecting various mixing levels can help test the model’s calibration ability to detect
mixing at various severity levels. This can help identify the extent to which the model is
reliable in identifying mixing at different levels.

After the coconut milk samples had been intentionally adulterated to the level of
conditions specified above, all samples were subsequently preserved in glass bottles at
room temperature after being mixed in a glass beaker at a speed of 200 rpm for 1 min and
allowed to equilibrate to ±25 ◦C before scanning. Ten samples were prepared at each level
of adulteration and each of adulterant. Therefore, a total of 150 samples were prepared per
type of adulterant. The total data analyzed in this study were higher than in the suggestion
by Manley [15] that developing regression models, which must have at least more than
100 spectra to obtain a reliable model, has exceeded that.

2.2. NIR Spectroscopy Data Acquisition

NIR spectra were measured using a benchtop FT-NIR spectrometer (Bruker Ltd.,
Ettlingen, Germany) and a portable Micro-NIR spectrometer (MicroNIR OnSite-W, VIAVI
Solutions Inc., Chandler, AZ, USA). Spectra in the 12,500–4000 cm−1 (800–2500 nm) region
were recorded using the benchtop FT-NIR (Figure 1a) with an average spectrum of 32 scans
into one spectrum at a resolution of 8 cm−1. Secondly, portable Micro-NIR (Figure 1b)
scanned in the spectra range from 908 to 1676 nm (11,013–5967 cm−1). The spectral
resolution was set to 6.2 nm. The integration time and scan count were 10 ms and 100,
respectively. FT-NIR and Micro-NIR were used together to obtain more complete and
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comprehensive information about NIR spectra of coconut milk samples adulterated with
two potential adulterants (corn flour and tapioca starch).

A sample of coconut milk (1 mL) that was intentionally adulterated was taken to test
a glass vial with a diameter of 20 mm and a height of 43 mm. After that, an aluminum
reflector (with a path length of 0.35 mm) was also put in a test glass vial and placed on top
of the benchtop FT-NIR and portable Micro-NIR spectrometer. Scanning was performed
triplicated at the same spatial locations for each sample, accumulating 3 scanning ×10 sam-
ples ×15 level adulteration. All of the measurements were taken at room temperature
(±25 ◦C). Scanning was performed in absorption mode (log 1/R).
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Figure 1. Detection conditions for scanning NIR data by (a) FT-NIR and (b) Micro-NIR.

2.3. Data Handling for Modelling

The whole dataset in this study is 1800 NIR spectra consisting of 900 spectra scanned
by benchtop FT-NIR and 900 spectra scanned by portable Micro-NIR. Each NIR spectrum
acquired from these two instruments consists of 450 spectra from adulteration coconut milk
by corn flour and 450 spectra from adulteration coconut milk by tapioca starch. From the
NIR spectra data, each adulteration was split into training and testing subsets. The training
data were used to develop a deep-learning model. Then, the models were applied to the
test dataset to assess the predictive abilities of the models for predicting the adulteration
level of coconut milk by corn flour and tapioca starch. Table 1 summarizes adulteration
coconut milk data spectra, including NIR spectra data collected from benchtop FT-NIR and
portable Micro-NIR. The number of training (70%) and testing (30%) data used in this study
was 315:135 (separated using the random splitting method with a random state of 42).

Table 1. Summary statistics of data for developing a deep-learning model.

Adulteration
Material

Instruments m
Training Testing

Min–Max Mean SD n Min–Max Mean SD n

Corn flour
FT-NIR 1102 1–50 14.00 14.329 315 1–50 14.00 14.359 135

Micro-NIR 125 1–50 14.00 14.329 315 1–50 14.00 14.359 135

Tapioca starch FT-NIR 1102 1–50 14.00 14.329 315 1–50 14.00 14.359 135

Micro-NIR 125 1–50 14.00 14.329 315 1–50 14.00 14.359 135

m, number of features; n, number of samples; SD, standard deviation.
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2.4. Deep-Learning Model Development

For analyzing the NIR datasets with deep-learning models, a unique structure is
required to provide suitable training and improve the feature extraction process. The
proposed deep-learning regressor model for predicting coconut milk adulteration in this
study uses four types of network architecture that are modified to a one-dimensional
framework was developed, including simple convolutional neural network (Simple CNN),
A-AlexNet, ResNET, and GoogleNET, which are presented in Figure 2. The reason for
using simple CNN was based on its effectiveness and efficiency in processing data, which
is particularly suitable for relatively simple datasets [5]. S-AlexNet was selected as an
adaptation of the successful AlexNet architecture, offering a lighter architecture suitable for
smaller datasets [16]. ResNet was chosen for its ability to address the vanishing gradient
problem and enable the training of deeper models, making it suitable for complex datasets
requiring deep feature representations [17]. GoogleNet was selected for its innovative
architecture, particularly the efficient use of inception modules for feature extraction,
making it ideal for complex datasets requiring multi-scale feature representations [18]. In
addition, the original spectral data were preprocessed using standard normal variate (SNV)
to obtain input features spectrum to have zero mean and standard deviation of one. The
SNV preprocessing effectively reduced specific noise appearing in the spectral data due to
the effect of ambient light, the spectrometer used, and the type of lamp [19].

All types of network architecture model deep-learning training procedures in this
study were performed using Adam optimizer. In the simple CNN network architecture
(Figure 2a), the number of batches, epochs per running, validation split, and learning rate
are 128, 1000, 10%, and 5 × 10−3, respectively. In the S-AlexNET network architecture
(Figure 2b), the number of batches, epoch per running, validation split, and learning rate
are 16, 300, 10%, and 10−5, respectively. In the ResNET network architecture (Figure 2c),
the number of batches, epochs per running, validation split, and learning rate are 160,
1000, 10%, and 10−5, respectively. In the GoogleNET network architecture (Figure 2d), the
number of batches, epochs per running, validation split, and learning rate are 160, 1000,
10%, and 10−5, respectively. The total running time is 11 times with early stopping patience
of 200 epochs for simple CNN, ResNET, and GoogleNET and 300 epochs for S-AlexNET. All
network architectures use random split validation at the training stage with 10% from the
training dataset (10% × 315 = 32) with a random state 42. After that, the best deep-learning
regression was evaluated with a testing dataset of as much as 135.

In this study, all of the deep-learning algorithms were programmed on the Jupyter-
Lab interface using the open source platform Python version 6.5.4, Keras library version
2.13.1 [20] with TensorFlow version 2.13.0 backend [21]. The CPU is Intel (R) core (TM)
i9-13900H CPU @ 2.60 Ghz, and the graphics card is NVIDIA Geforce RTX 4060.
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2.5. Performance Model Evaluation

The performance of models was assessed by the coefficient of determination, root-
mean-square error, Bias, and the ratio of percent deviation (RPD), which were calculated
by Equations (1)–(4). The higher coefficient of determination values and lower root-mean-
square error and Bias indicate an accurate model. In food adulteration, spectral modeling
follows predicting grain chemical composition content; RPD < 3.0 shows a poor and unre-
liable model; 3.1 < RPD < 4.9 indicates a fair model (just for screening); 5.0 < RPD < 6.4
shows a good model for quality control; 6.5 < RPD < 8.0 indicates very good model for pro-
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cess control, and RPD > 8.1 indicates an excellent capability of the model for quantitative
predictions for any application [22].

R2 = 1 − ∑n
i=1(Ei − Pi)

2

∑n
i=1

(
Ei − E

)2 (1)

RMSE =

√
∑n

i=1(Ei − Pi)
2

N
(2)

Bias =
∑n

i=1(Ei − Pi)

N
(3)

RPD =
1√

1 − R2
(4)

where R2 is the coefficient of determination; RMSE is root-mean-square error; RPD is a
ratio of percent deviation; Ei is the existing value for point to-i; Pi is the prediction value
for point to-i; N is the number of samples, and E is average of existing value.

To interpret the obtained models, this study proposes a method to visualize the
regression coefficients of neural networks numerically. This method is modified from Cui
and Fearn [8] and can be used for linear predictors. As a black box that maps the input
spectrum, the predictor was treated to a single prediction value using Equation (5). The
single total weight is calculated using Equation (6) (finite difference approximation) from
the main Equation (7).

w =

N
∑

i=1
wi

N
(5)

wi =
f (x1 + ε, . . . xi + ε, . . . , xn + ε)− f (x1, . . . xi, . . . , xn)

ε
(6)

f (x) =

[
N

∑
i=1

(wixi)

]
+ b (7)

where w is the average of weight; wi is weight to-i; N is the number of samples; x1 to xn is the
absorbance of feature NIR spectra; b is the intercept, and ε is perturbation coefficient (10−6).

3. Results
3.1. NIR Spectra Features

NIR spectra to detect coconut milk adulteration in this study were acquired using two
spectrophotometers, benchtop FT-NIR (450 spectra) and portable Micro-NIR (450 spectra).
The original spectrum from the benchtop FT-NIR is presented in Figure 3a,b, and the
original spectrum from the portable Micro-NIR is shown in Figure 3c,d. Figure 3a,c shows
the FT-NIR and Micro-NIR spectra of coconut milk adulteration by corn flour from 1–50%.
Meanwhile, the spectrum of FT-NIR and Micro-NIR of coconut milk adulteration by tapioca
starch from 1–50% is shown in Figure 3b,d. The NIR spectrum indicates the presence of
organic materials resulting from the interaction of molecular bonds of XH with the incident
radiation from coconut milk, corn flour, and tapioca starch. The absorption peak positions
appear almost indistinguishable, with only slight differences in absorption between adul-
teration levels. These bonds are subject to vibrational energy changes, including stretching
and bending. The presence of strong water absorbance bands from FT-NIR was observed
at around 5176 cm−1 (1932 nm) and 6889 cm−1 (1452 nm) because of the OH combination
and its first overtone for both adulterant corn flour and tapioca starch. When utilizing
Micro-NIR, strong water absorbance bands were identified around 1447 nm (6911 cm−1) as
an OH first overtone and 1212 nm (8251 cm−1) as the second overtone of CH stretching for
both the corn flour and tapioca stretching.



Sensors 2024, 24, 2362 9 of 23

Sensors 2024, 24, x FOR PEER REVIEW 9 of 24 
 

 

because of the OH combination and its first overtone for both adulterant corn flour and 
tapioca starch. When utilizing Micro-NIR, strong water absorbance bands were identified 
around 1447 nm (6911 cm−1) as an OH first overtone and 1212 nm (8251 cm−1) as the second 
overtone of CH stretching for both the corn flour and tapioca stretching.  

 

  
Figure 3. The original NIR spectroscopy data. Spectra by benchtop FT-NIR from coconut milk adul-
teration by (a) corn flour and (b) tapioca starch. Spectra by portable Micro-NIR for coconut milk 
adulteration by (c) corn flour and (d) tapioca starch. 

3.2. Calibration Models Development Base on FT-NIR 
3.2.1. Adulteration by Corn Flour 

The results of the prediction of level adulteration corn flour in coconut milk utiliza-
tion benchtop FT-NIR on training and testing data sets are presented in Table 2. The coef-
ficient of determination (R2) for all architecture network regressors was decreased from 
training to testing, which was inversely proportional to Bias and RMSE performance, 
which have increased from training to testing. As can be seen, all types of architecture 
networks have excellent performance model capability (RPD > 8.1) that can be expected 
for predictions of future samples. As for comparing the four architecture networks from 
the deep-learning regressor, the GoogleNET regressor (best RPD = 20.866) possesses much 
higher detection accuracy than the other regressor. In other words, this study may organ-
ize the performance of regressor analysis order according to its RPD as ResNET < Simple 
CNN < S-AlexNET < GoogleNET. However, the GoogleNET regressor requires a higher 
epoch than the others. 

Figure 3. The original NIR spectroscopy data. Spectra by benchtop FT-NIR from coconut milk
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3.2. Calibration Models Development Base on FT-NIR
3.2.1. Adulteration by Corn Flour

The results of the prediction of level adulteration corn flour in coconut milk utiliza-
tion benchtop FT-NIR on training and testing data sets are presented in Table 2. The
coefficient of determination (R2) for all architecture network regressors was decreased
from training to testing, which was inversely proportional to Bias and RMSE perfor-
mance, which have increased from training to testing. As can be seen, all types of ar-
chitecture networks have excellent performance model capability (RPD > 8.1) that can
be expected for predictions of future samples. As for comparing the four architecture
networks from the deep-learning regressor, the GoogleNET regressor (best RPD = 20.866)
possesses much higher detection accuracy than the other regressor. In other words, this
study may organize the performance of regressor analysis order according to its RPD as
ResNET < Simple CNN < S-AlexNET < GoogleNET. However, the GoogleNET regressor
requires a higher epoch than the others.

The regression scatter plots of all architecture networks of deep-learning regression to
predict level adulteration corn flour in coconut milk utilization FT-NIR are illustrated in
Figure 4. The regression coefficient (slope) for all architecture network regressors decreased
from training to testing. The intercept coefficient for simple CNN and GoogleNET is
positive, while S-AlexNET and ResNET are negative for training. However, all regressors’
intercept coefficients are negative, except simple CNN in testing.
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Table 2. Regression model performance to predict corn flour in coconut milk utilizing FT-NIR.

Regressor Epoch
Training Testing

R2 RMSE Bias R2 RMSE Bias RPD

Simple CNN 8035 0.999 0.370 −0.120 0.993 1.204 −0.012 11.884
S-AlexNET 3300 0.999 0.520 0.076 0.997 0.858 0.176 17.213

ResNET 5929 0.996 0.958 0.027 0.992 1.256 0.101 11.429
GoogleNET 10202 0.998 0.601 −0.037 0.998 0.686 0.012 20.866
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The range of the simple CNN coefficient from coconut milk adulteration by corn flour
using FT-NIR is between 69.996 and −83.475 (Figure 5a). The wavenumbers that have
more than score threshold 50% in the range of simple CNN coefficient of architecture are
7236 cm−1 (1382 nm), 7228 cm−1 (1384 nm), 7190 cm−1 (1391 nm), 7182 cm−1 (1392 nm),
7167 cm−1 (1395 nm), 5346 cm−1 (1871 nm), and 5338 cm−1 (1873 nm). They have as many
as seven wavenumbers of feature importance.

Next, the range of the S-AlexNET coefficient is between 40.231 and −37.471 (Figure 5b).
The wavenumbers that have more than score threshold 50% in the range of S-AlexNET
coefficient of architecture are 7421 cm−1 (1348 nm), 7360 cm−1 (1359 nm), 7306 cm−1

(1369 nm), 7282 cm−1 (1373 nm), 7259 cm−1 (1378 nm), 7236 cm−1 (1382 nm), 7190 cm−1

(1391 nm), 7182 cm−1 (1392 nm), 7120 cm−1 (1404 nm), 6542 cm−1 (1529 nm), 6519 cm−1

(1534 nm), 5099 cm−1 (1961 nm), 4883 cm−1 (2048 nm), 4852 cm−1 (2061 nm), 4706 cm−1

(2125 nm), 4698 cm−1 (2129 nm), 4636 cm−1 (2157 nm), 4544 cm−1 (2201 nm), 4482 cm−1

(2231 nm), 4413 cm−1 (2266 nm), 4397 cm−1 (2274 nm), 4336 cm−1 (2306 nm), and 4328 cm−1

(2311 nm). They contain a total of 23 wavenumbers that are of important features.
Also, the range of the ResNET coefficient is between 166.725 and −122.456 (Figure 5c).

The wavenumbers that have more than score threshold 50% in the range of ResNET coeffi-
cient of architecture are 7452 cm−1 (1342 nm), 7421 cm−1 (1348 nm), 7344 cm−1 (1362 nm),
7329 cm−1 (1364 nm), 7244 cm−1 (1380 nm), 5747 cm−1 (1740 nm), 5423 cm−1 (1844 nm),
and 5377 cm−1 (1860 nm). They consist of a total of eight spectral important features.

Finally, the range of the GoogleNET coefficient is between 16.124 and −12.524 (Figure 5d).
The wavenumbers that have more than score threshold 50% in the range of GoogleNET
coefficient of architecture are 7344 cm−1 (1362 nm), 7236 cm−1 (1382 nm), 7213 cm−1

(1386 nm), 5948 cm−1 (1681 nm), 5917 cm−1 (1690 nm), and 4536 cm−1 (2205 nm). There
are a total of six wavenumbers of important features.



Sensors 2024, 24, 2362 11 of 23
Sensors 2024, 24, x FOR PEER REVIEW 11 of 24 
 

 

 
Figure 5. Comparison of the regression coefficients of the four deep-learning calibration approaches 
of adulteration coconut milk by corn flour using FT-NIR. (a) Simple CNN; (b) S-AlexNET; (c) Res-
NET; and (d) GoogleNET.  Feature importance. 

3.2.2. Adulteration by Tapioca Starch 
The results of the prediction of level adulteration tapioca starch in coconut milk uti-

lization benchtop FT-NIR on training and testing data sets are presented in Table 3. It is 
clear that the GoogleNET regressor requires a more increased epoch than the others. The 
coefficient of determination (R2) for all architecture network regressors was decreased 
from training to testing, which is conversely proportional to Bias and RMSE perfor-
mances, which have increased from training to testing. If focused on RPD, all types of 
architecture networks have excellent performance model capability (RPD > 8.1), except 
ResNET (RPD < 3), which shows poor and unreliable performance. As for comparing the 
four architecture networks from the deep-learning regressor, the GoogleNET regressor 
(best RPD = 21.421) possesses a much higher prediction than the other regressor. If orga-
nized in the best possible way (based on RPD), the performance of deep-learning archi-
tecture network regressors of this study can be arranged into GoogleNET > S-AlexNET > 
Simple CNN > ResNET. 

  

Figure 5. Comparison of the regression coefficients of the four deep-learning calibration approaches
of adulteration coconut milk by corn flour using FT-NIR. (a) Simple CNN; (b) S-AlexNET; (c) ResNET;
and (d) GoogleNET.

Sensors 2024, 24, x FOR PEER REVIEW 17 of 24 

908 nm (11013 cm−1), 1385 nm (7220 cm−1), 1391 nm (7189 cm−1), 1404 nm (7123 cm−1), 1410 
nm (7092 cm−1), 1614–1651 nm (6196–6057 cm−1), and 1670 nm (5988 cm−1) (Figure 11a). 

Figure 11. Comparison of the regression coefficients of the four deep-learning calibration ap-
proaches of adulteration
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Feature importance.

3.2.2. Adulteration by Tapioca Starch

The results of the prediction of level adulteration tapioca starch in coconut milk
utilization benchtop FT-NIR on training and testing data sets are presented in Table 3. It is
clear that the GoogleNET regressor requires a more increased epoch than the others. The
coefficient of determination (R2) for all architecture network regressors was decreased from
training to testing, which is conversely proportional to Bias and RMSE performances, which
have increased from training to testing. If focused on RPD, all types of architecture networks
have excellent performance model capability (RPD > 8.1), except ResNET (RPD < 3), which
shows poor and unreliable performance. As for comparing the four architecture networks
from the deep-learning regressor, the GoogleNET regressor (best RPD = 21.421) possesses
a much higher prediction than the other regressor. If organized in the best possible way
(based on RPD), the performance of deep-learning architecture network regressors of this
study can be arranged into GoogleNET > S-AlexNET > Simple CNN > ResNET.
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Table 3. Regression model performance to predict tapioca starch in coconut milk utilizing FT-NIR.

Regressor Epoch
Training Testing

R2 RMSE Bias R2 RMSE Bias RPD

Simple CNN 5633 0.995 0.977 0.039 0.995 1.034 0.034 14.067
S-AlexNET 3000 0.998 0.711 −0.299 0.996 0.951 −0.202 15.631

ResNET 2603 0.892 5.850 1.017 0.886 6.108 1.481 2.958
GoogleNET 10202 0.999 0.482 −0.035 0.998 0.670 0.054 21.421

The regression scatter plots of all architecture networks of deep-learning regression to
predict level adulteration tapioca starch in coconut milk utilization FT-NIR are shown in
Figure 6. The regression coefficient (slope) for all architecture network regressors decreases
from training to testing, except S-AlexNET, which decreases very little (more than three
decimal places), so the effect is minimal. Also, the intercept coefficient for all regressors is
positive, while Simple CNN is negative for training. Inversely proportional to testing, all
regressors are negative except S-AlexNET.
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The simple CNN coefficient range for detecting tapioca starch in coconut milk using
FT-NIR is 1.8127 to −1.892. Wavenumbers with more than score threshold 50% of the simple
CNN coefficient of architecture as many as 51 important features include 7213–7182 cm−1

(1386–1392 nm), 6256–5963 cm−1 (1598–1677 nm), and 5832–5778 cm−1 (1715–1731 nm)
(Figure 7a).

Next, the S-AlexNET coefficient range is from 21.049 to −24.092 (Figure 7b). Wavenum-
bers with more than score threshold 50% of the S-AlexNET coefficient of architecture include
11,926 cm−1 (839 nm), 11,865 cm−1 (843 nm), 11,556 cm−1 (865 nm), 8208 cm−1 (1218 nm),
7190 cm−1 (1391 nm), 6542 cm−1 (1529 nm), 6380 cm−1 (1567 nm), 6148 cm−1 (1627 nm),
5007–4690 cm−1 (1997–2132 nm), 4667 cm−1 (2143 nm), 4636 cm−1 (2157 nm), 4413 cm−1

(2266 nm), 4328 cm−1 (2311 nm), 4289 cm−1 (2332 nm), and 4266 cm−1 (2344 nm) (a total of
51 important wavenumbers).

Also, the range of the ResNET coefficient is from 20.277 to −20.429. Wavenum-
bers with more than score threshold of 50% of the ResNET coefficient of architecture
as many as 32 importance spectral include 7090 cm−1 (1410 nm), 7074 cm−1 (1414 nm),
7012 cm−1 (1426 nm), 6982–6750 cm−1 (1432–1481 nm), 6434–6403 cm−1 (1554–1562 nm),
5693–5408 cm−1 (1757–1849 nm), and 4621–4498 cm−1 (2164–2223 nm) (Figure 7c).

Finally, the GoogleNET coefficient range is from 5.915 to −6.067 (Figure 7d). Wavenum-
bers with more than a score threshold of 50% of the GoogleNET coefficient of archi-
tecture include 7221–7190 cm−1 (1385–1391 nm), 6349–6226 cm−1 (1575–1606 nm), and
5979–5902 cm−1 (1673–1694 nm) (a total of 22 importance wavenumbers).
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3.3. Calibration Models Development Base on Micro-NIR
3.3.1. Adulteration by Corn Flour

The performances of the different network architectures to predict the level of adul-
teration of coconut milk by corn flour using Micro-NIR during training and testing are
summarized in Table 4. The GoogleNET regressor needs a more significant number of
epochs compared to the other regressors. The ResNET regressor is the one that provided
the best results (same R2 with GoogleNET regressor but with the lowest RMSE) during
training. The GoogleNET regressor possesses a much higher coefficient of determination
(R2) and lowest RMSE than the other regressor in the test set. This is confirmed by the RPD
parameter for the GoogleNET regressor, which has excellent performance model capability
(RPD = 31.094). In simpler terms, this study may also arrange the performance of regressor
order according to its RPD as Simple CNN < ResNET < S-AlexNET < GoogleNET.



Sensors 2024, 24, 2362 14 of 23

Table 4. Regression model performance to predict corn flour in coconut milk utilizing Micro-NIR.

Regressor Epoch
Training Testing

R2 RMSE Bias R2 RMSE Bias RPD

Simple CNN 6596 0.998 0.706 −0.084 0.998 0.597 −0.023 23.981
S-AlexNET 3300 0.998 0.603 −0.183 0.999 0.532 −0.123 28.599

ResNET 6091 0.999 0.363 −0.129 0.998 0.575 −0.065 25.210
GoogleNET 10128 0.999 0.414 −0.053 0.999 0.463 −0.029 31.094

All predictive performances from deep-learning regressors in scatter plots to predict
the level adulteration of corn flour in coconut milk operating Micro-NIR are shown in
Figure 8. The regression coefficient (slope) for S-AlexNET and ResNET regressors decreased
from training to testing. Meanwhile, Simple CNN tends to be stable, and GoogleNET
overlooks the increase. The intercept coefficient for all regressors, both in training and
testing, is positive except for the GoogleNET regressor in the testing stages.
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The range of the simple CNN coefficient from coconut milk adulteration by corn
flour using Micro-NIR is between 24.486 and −29.476 (Figure 9a). The wavelengths that
have more than score threshold 50% in the range of simple CNN coefficient of architecture
(seven wavelengths) are 921 nm (10858 cm−1), 1206–1212 nm (8292–8251 cm−1), 1224 nm
(8170 cm−1), 1385 nm (7220 cm−1), 1391 nm (7189 cm−1), and 1410 nm (7092 cm−1).

Next, the range of the S-AlexNET coefficient is between 61.807 and −70.932 (Figure 9b).
The wavelengths that have more than score threshold 50% in the range of S-AlexNET
coefficient of architecture (15 wavelengths) are 1119 nm (8937 cm−1), 1175 nm (8511 cm−1),
1199 nm (8340 cm−1), 1205–1212 nm (8299–8251 cm−1), 1230–1236 nm (8130–8091 cm−1),
1249–1255 nm (8006–7968 cm−1), 1280 nm (7813 cm−1), 1317 nm (7593 cm−1), 1404 nm
(7123 cm−1), 1416 nm (7062 cm−1), 1428 nm (7003 cm−1), and 1515 nm (6601 cm−1).

Likewise, the range of the ResNET coefficient is between 140.050 and −122.771
(Figure 9c). The wavelengths that have more than score threshold 50% in the range
of ResNET coefficient of architecture are 1106 nm (9042 cm−1), 1150 nm (8696 cm−1),
1181 nm (8467 cm−1), 1212 nm (8251 cm−1), 1224 nm (8170 cm−1), 1274 nm (7849 cm−1),
1342–1360 nm (7452–7353 cm−1), 1385–1391 nm (7220–7189 cm−1), 1515 nm (6601 cm−1),
1540 nm (6494 cm−1), 1559 nm (6414 cm−1), 1590 nm (6289 cm−1), 1602 nm (6242 cm−1),
1614 nm (6196 cm−1), 1627 nm (6146 cm−1), 1639 nm (6101 cm−1), 1645 nm (6079 cm−1), and
1664 nm (6010 cm−1). They contain a total of 22 wavelengths that are of important features.

Lastly, the range of the GoogleNET coefficient is between 28.666 and −26.421 (Figure 9d).
The wavelengths that have more than score threshold 50% in the range of GoogleNET
coefficient of architecture are 964–970 nm (10,373–10,309 cm−1), 1199 nm (8340 cm−1),
1224 nm (8170 cm−1), 1249–1255 nm (8006–7968 cm−1), 1274 nm (7849 cm−1), 1342–1348 nm
(7452–7418 cm−1), 1354 nm (7386 cm−1), 1373 nm (7283 cm−1), 1385 nm (7220 cm−1),
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1422 nm (7032 cm−1), 1435 nm (6969 cm−1), 1447 nm (6911 cm−1), 1459 nm (6854 cm−1),
1509 nm (6627 cm−1), 1521–1528 nm (6575–6545 cm−1), 1534 nm (6519 cm−1), 1546 nm
(6468 cm−1), and 1621 nm (6169 cm−1). They have as many as 22 wavelengths that
feature importance.
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3.3.2. Adulteration by Tapioca Starch

Results of the prediction for the adulteration degree of corn flour in coconut milk
using Micro-NIR, as seen in the training and testing data sets, are displayed in Table 5.
The coefficient of determination (R2) for all architecture network regressors is a teeny
change from training to testing. The RMSE performance decreased for simple CNN
and S-AlexNET while increasing for ResNET and GoogleNET from training to testing.
However, Bias performance for simple CNN and ResNET decreased during training to
testing, and S-AlexNET and GoogleNET increased during training to testing. Regard-
ing RPD, all architecture networks demonstrate excellent performance model capability
(RPD > 8.1), with the best coming from ResNET (RPD = 39.349). To elaborate, this study
may organize the best performance of regressor analysis order according to its RPD as
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ResNET > S-AlexNET > GoogleNET > Simple CNN with GoogleNET regressor requires a
higher epoch than others.

Table 5. Regression model performance to predict tapioca starch in coconut milk using Micro-NIR.

Regressor Epoch
Training Testing

R2 RMSE Bias R2 RMSE Bias RPD

Simple CNN 8872 0.998 0.637 −0.105 0.998 0.611 −0.044 23.521
S-AlexNET 2700 0.999 0.428 −0.029 0.999 0.419 −0.065 34.880

ResNET 7814 1.000 0.298 −0.111 0.999 0.370 −0.068 39.349
GoogleNET 9840 0.999 0.431 0.041 0.999 0.461 0.035 31.095

The regression scatter plots for predicting the adulteration level of tapioca starch
in coconut milk using Micro-NIR with various deep-learning architecture networks are
depicted in Figure 10. The regression coefficient (slope) for all architecture network regres-
sors increases during training to testing except GoogleNET, which decreases very little
(more than three decimal places), so the effect is minimal. Also, all regressors’ intercept
coefficients are positive during training and testing, while GoogleNET is negative for both
training and testing.
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Figure 10. Regression plots obtained to detect adulteration of coconut milk by tapioca starch using
Micro-NIR. (a) Simple CNN; (b) S-AlexNET; (c) ResNET; and (d) GoogleNET.

The simple CNN coefficient range for detecting tapioca starch in coconut milk using
Micro-NIR is from 25.180 to −32.352. Wavelengths with more than score threshold 50% of
the simple CNN coefficient of architecture with as many as 13 importance features include
908 nm (11013 cm−1), 1385 nm (7220 cm−1), 1391 nm (7189 cm−1), 1404 nm (7123 cm−1),
1410 nm (7092 cm−1), 1614–1651 nm (6196–6057 cm−1), and 1670 nm (5988 cm−1) (Figure 11a).

Next, the S-AlexNET coefficient range is from 80.792 to −114.579 (Figure 11b). Wave-
lengths with more than score threshold 50% of the S-AlexNET coefficient of architec-
ture include 1218 nm (8210 cm−1), 1249 nm (8006 cm−1), 1255 nm (7968 cm−1), 1267 nm
(7837 cm−1), 1354 nm (7386 cm−1), 1367 nm (7315 cm−1), 1404 nm (7123 cm−1), 1410 nm
(7092 cm−1), 1416 nm (7062 cm−1), 1428 nm (7003 cm−1), 1435 nm (6969 cm−1), and 1453 nm
(6882 cm−1) (a total of 12 importance wavelengths).

Likewise, the range of the ResNET coefficient is from 178.959 to −219.921. Wavelengths
with more than a score threshold of 50% of the ResNET coefficient of architecture as many
as five important spectra include 1187 nm (8425 cm−1), 1193 nm (8382 cm−1), 1360 nm
(7353 cm−1), 1552 nm (6443 cm−1), and 1559 nm (6414 cm−1) (Figure 11c).

Lastly, the GoogleNET coefficient range is from 28.693 to −36.384 (Figure 11d). Wave-
lengths with more than score threshold of 50% of the GoogleNET coefficient of architecture
include 914 nm (10,941 cm−1), 921 nm (10,858 cm−1), 939 nm (10,650 cm−1), 952 nm
(10,504 cm−1), 964 nm (10,373 cm−1), 976 nm (10,246 cm−1), 1224 nm (8170 cm−1), 1255 nm
(7968 cm−1), 1261 nm (7930 cm−1), 1274 nm (7849 cm−1), 1367 nm (7315 cm−1), 1373 nm
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(7283 cm−1), 1379 nm (7252 cm−1), 1422–1459 nm (7032–6854 cm−1), 1509 nm (6627 cm−1),
1521–1552 nm (6575–6443 cm−1), and 1602–1633 nm (6242–6124 cm−1) (a total of 33 impor-
tance wavelengths).
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4. Discussion

This study explored the feasibility of using deep learning to create a rapid, accurate,
and robust prediction model to predict adulteration levels of coconut milk by corn flour and
tapioca starch using FT-NIR and Micro-NIR spectroscopy. Presently, the non-destructive
testing of adulteration in agriculture and food products by NIR spectrometer based on labo-
ratory conditions has been widely introduced. However, the procedures and development
of the calibration model under which it can be applied are still limited. The use of deep
learning can be a good solution to such problems. Additionally, compared with the results
of this study’s use of deep learning, for example, coffee adulteration prediction [4], adulter-
ation in infant formula [12], cow milk fat content adulteration by water [13], and minced
beef adulteration [14], we also obtained equally superior prediction results. Furthermore,
the operation of the NIR spectrophotometer is simpler and easier to promote.
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This article presents a novel deep-learning regression method for quantitative NIR
spectrum analysis. This method utilizes four network architectures: Simple convolutional
neural network (Simple CNN); S-AlexNET; ResNET; and GoogleNET. However, as is
known, a robust NIR model for adulteration detection is hard to achieve due to multiple
variation factors, such as different brands and batches of product, the simultaneous ex-
istence of several adulterants, temperature, humidity, and spectral drift of light sources,
making it hard to obtain stable applications in practice. Therefore, more advanced modeling
investigations should be carried out and prepared to evaluate and improve the robustness
of the proposed method for the future. However, the limitations of the proposed method
should also be further considered and improved. For example, the deep-learning method
is much more time-consuming in training than the traditional method and the regular
machine-learning algorithm. Therefore, some adulteration studies in food and agriculture
products are based on NIR spectroscopy run deep-learning algorithms on graphics process-
ing units (GPU), such as the assurance of tea quality by Yang et al. [17] and detection of
adulteration of minced beef by Weng et al. [14]. However, thanks to the fast development
of deep-learning hardware, for instance, graphics processing unit (GPU), associative pro-
cessing unit (APU), tensor processing unit (TPU), and quantum processing unit (QPU), the
testing time for the proposed network is acceptable.

As can be observed from Figure 2, the spectral profiles of the degree of coconut
milk adulterants by corn flour and tapioca starch were similar and characterized by few
substantial differences in peak positions and curve trends. In general, for all the sample
adulterants, a few characteristic overlapping peaks contributed by the presence of the main
content of coconut milk and adulterant material, including fat, protein, moisture, ash, and
carbohydrates. Samples with more adulterant material caused the peak absorbance level to
decrease, both for adulteration by corn flour and tapioca starch. This corresponds to the
difference in moisture content between coconut milk and adulterant, which causes the free
moisture content in the coconut milk to be absorbed by the admixture agent to reach an
equilibrium point. As a result, coconut milk that has been adulterated more with a solid
adulterant material has a lower absorption spectral ability. This is in line with the report by
Malvandi et al. [23], who stated in their study that peak values and their corresponding
wavelengths in the NIR region changed as the moisture content altered. Büning-Pfaue [24]
emphasized that the strength and weakness of this absorption band come from the strong
effect of hydrogen bonds on organic monomers, ions, and polymers in the sample. The
presence of content in adulteration coconut milk samples was observed at the main peaks
of the following wavebands, both FT-NIR and Micro-NIR: 1210 nm (8262 cm−1) related
predominantly to CH bond stretching with the second overtone; 1453 nm (6881 cm−1)
to the first overtone of OH stretching bonds attributed to starch and water; 1728 nm
(5786 cm−1) and 1764 nm (5670 cm−1) to the resonance bands of CH bond stretching with
the first overtone; and 1929 nm (5184 cm−1) to the CH bonds stretching with the second
overtone [25–27].

The performance criteria for the prediction model using deep learning in this study
were evaluated based on predicting grain chemical composition content. A study by
Chu et al. [22] examined the regression model’s capacity to classify RPD in the following
manner: less than 3 as a poor or unreliable model, 3.1–4.9 as a fair model, 5.0–6.4 as
a good model, 6.5–8.0 as a very good model and more than 8.1 as an excellent model.
When comparing the RPD results for the prediction degree of adulteration of coconut milk
with corn flour using all the network architectures, it was observed that Micro-NIR was
superior to using FT-NIR (for all network architectures). At the same time, all the network
architectures were considered excellent models. For tapioca starch in coconut milk case,
Micro-NIR performed better than FT-NIR based on RPD among the spectrophotometer to
predict the degree of adulteration (Table 6). Subsequently, only ResNET has lower RPD
and weak performance (FT-NIR data set) among the network architectures. Regarding the
comparison between FT-NIR and Micro-NIR, the models developed for the prediction of
coconut milk by adulterant material corn flour and tapioca starch seem to give comparable
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results using the FT-NIR. The performance of FT-NIR slightly reduced RPD, perhaps due
to some factors, including a lack of explanatory variables and collinearity, but fortunately,
the RPD obtained is still higher than eight [28,29].

Table 6. Summary of the performance of FT-NIR and Micro-NIR.

Adulteration Material Instruments The Best Regressor RPD

Corn flour
FT-NIR GoogleNET 20.866

Micro-NIR GoogleNET 31.094

Tapioca starch
FT-NIR GoogleNET 21.421

Micro-NIR ResNET 39.349

In chemometrics, a limited number of samples with high-dimensional data of features
pose common problems like data overfitting and multicollinearity and do not show the
main features that are more dominant in the data. Selection of the most important features
can lead to the dominant variables in a high-dimensional dataset. In case studies on NIR
spectra, this can be represented in many methods, one being by expressing slope coeffi-
cients or regression coefficients. According to a study from Palermo et al. [30], regression
coefficients can be used to select appropriate predictors according to the magnitude of their
absolute values. Even according to a study by Wold et al. [31], in classical chemometric
analysis using partial least squares (PLS), small regression coefficients can be ignored as
an unimportant term to find the most prominent features and correlate them with the
chemical assignment of some structure and bond vibration in the NIR spectroscopy. Ad-
ditionally, compared with the results of previous research using this approach in analysis
in NIR spectroscopy, for example, extra virgin olive oil adulteration prediction by PLS
regressor [32], adulteration in quinoa flour by PLS regressor [33], aged-rice adulteration by
competitive adaptive reweighted sampling (CARS) combined with PLS regressor [34], and
adulterants of notoginseng powder by CARS-PLS regressor [35]. However, in applying
advanced chemometrics using machine learning and deep learning, it is still a challenge to
demonstrate coefficients that can represent important features.

The regression coefficients from deep-learning algorithms used in this study can
be represented using weight coefficients. Even though it is not strictly identical to the
regression coefficients in classical chemometric analysis using PLS, at least the weight
coefficients of each deep-learning network architecture can indicate variables for each
response that are more important than others. Regression coefficients for the case of
deep-learning regressors were first introduced by Cui and Fearn [8] and tested on three
NIR datasets, including the wheat flour dataset, wheat flour dataset, and protein content
dataset. In their study, they randomly draw a few spectra from the dataset and plot the
corresponding regression coefficients. This is understandable because deep learning is
a non-linear approach, so each spectrum will have its own regression coefficient value,
different from the PLS regression coefficient, which has the same value for all sample spectra.
However, in this study, because the aim of showing the coefficients of weight of each deep-
learning network architecture is to find the dominant features in high-dimensional data, we
use all training data spectra. Next, we average the weight coefficients of all the training data
spectra, which are called regression coefficients for each deep-learning network architecture.
In this study, we apply a threshold score of 50% of the maximum and minimum peaks
in the regression coefficient, as shown in Figures 5, 7, 9 and 11. This approach is similar
to the system applied in the variable importance in projection (VIP) approach from PLS
regression, which applies a threshold score rule that can be data specific, ranging between
0.83 and 1.21 [33,36].

In the case of scanning corn flour in coconut milk (Figures 5 and 9), we can see regres-
sion coefficients related to the presence of the structural groups CH and OH. In general,
the regression coefficients in this study are in the range of 1200–1500 nm (8333–6667 cm−1),
which is related to the main wavelength of corn flour found by Jiang and Lu [37]. In
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the case of scanning with FT-NIR, we can see regression coefficients that overlap with all
deep-learning network architectures, at least across nine NIR bands. This starts from wave
7421 cm−1 (1348 nm), which is related to the fourth overtone of CH2 [25]. Next, waves
at 7306–7329 cm−1 (1369–1364 nm) and 7344 cm−1 (1362 nm) are a combination of CH
stretching and CH deformation from CH3 [26]. Waves at 7213–7228 cm−1 (1386–1384 nm)
and 7236–7244 cm−1 (1382–1380 nm) correspond to OH stretching from H2O [27]. Fur-
thermore, waves at 7167–7190 cm−1 (1395–1391 nm) and 7182 cm−1 (1392 nm) are re-
lated to a combination of CH stretching and CH deformation from CH2 [26]. Lastly, the
wave at 4536–4544 cm−1 (2205–2201 nm) is related to CH stretching and C=O stretching
from CHO [26]. However, the regression coefficients that overlap with all deep-learning
network architectures that scan using Micro-NIR are 12 NIR bands. The wave was de-
tected starting from 1205–1206 nm (8299–8292 cm−1), the fourth overtone of aromatic
CH, to 1212 nm (8251 cm−1) and 1224 nm (8170 cm−1), the second overtone of CH2
and CH [25,26]. In addition, waves in the range of 1249–1274 nm (8006–7849 cm−1),
1342–1348 nm (7452–7418 cm−1), and 1354–1404 nm (7386–7123 cm−1) are the fourth over-
tone beta-diketone, the fourth overtone CH2, and the third overtone aldehydes, respec-
tively [25]. Furthermore, waves at 1391 nm (7189 cm−1), 1404–1410 nm (7123–7092 cm−1),
and 1416–1422 nm (7062–7032 cm−1) are the representations of combination CH stretching
with CH deformation, the first overtone of OH stretching, and a combination CH stretching
with CH deformation and the first overtone OH stretching, respectively [26]. Finally, the
waves at 1515 nm (6601 cm−1), 1540 nm (6494 cm−1), and 1614–1621 nm (6196–6169 cm−1)
are related to the first overtone of CH, the first overtone of OH (starch), and the first
overtone of =CH2, respectively [25,26].

When examining the tapioca starch in coconut milk (Figures 7 and 11), we see re-
gression coefficients associated with the existence of the structural groups CH, CC, CNO,
and OH. The structural groups detected in this sample were relatively slightly differ-
ent from the adulteration of coconut milk with corn flour. This is due to the compo-
sition of the adulterant material, which is also different. The study by Williams [38]
was confirmed by Phetpan and Sirisomboon [39], who stated that the peak in the 1400
nm (7143 cm−1) region was associated with the glucose molecules in the tapioca starch
constituents. The regression coefficients that cover the overlap for all deep learning net-
work architectures when using FT-NIR spectroscopy are in the five NIR spectral bands.
Starting from waves 7213–7221 cm−1 (1386–1385 nm), 7182–7190 cm−1 (1392–1391 nm),
6380–6403 cm−1 (1567–1562 nm), 5963–5979 cm−1 (1677–1673 nm), and 4621–4636 cm−1

(2164–2157 nm), which correspond to the third overtone carbonyl stretching, CH2 combi-
nation stretching and deformation, the second overtone CC stretching, the first overtone
aromatic CH stretching, and the second overtone CNO, respectively [25,26]. Furthermore,
the regression coefficients that cover the overlap for all deep-learning network architec-
tures when using Micro-NIR spectroscopy are in the 11 NIR spectral bands. Starting from
waves 1255–1276 nm (7968–7837 cm−1), 1360–1367 nm (7353–7315 cm−1), 1379–1385 nm
(7252–7220 cm−1), 1404 nm (7123 cm−1), and 1410 nm (7092 cm−1), which correspond to the
third overtone CC stretching, combination stretching, and deformation from CH3, the third
overtone carbonyl stretching, the third overtone carbonates, and the first overtone of OH
stretching, respectively [25,26]. Next, waves at 1416 nm (7062 cm−1), 1428 nm (7003 cm−1),
1552–1553 nm (6443–6882 cm−1), 1614–1621 nm (6196–6169 cm−1), and 1627–1633 nm
(6146–6124 cm−1) are related to combination stretching and deformation of CH2, the first
overtone of NH stretching, the third overtone carbonyl stretch, the first overtone of OH
stretching, the first overtone of =CH2 stretching, and the first overtone of CH stretching,
respectively [25,26].

This study analyzed important wavelengths by deep learning and found that not
all important wavelengths will be the same for all deep-learning network architectures.
In addition, even though the FT-NIR wavelength range covers the wavelength range
in Micro-NIR, the important wavelength will not be precisely the same for both. How-
ever, in the case of FT-NIR and Micro-NIR instruments, it was still found that some
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important waves overlapped between them. In the case of corn flour, waves 7421 cm−1

(1348 nm) and 7167–7190 cm−1 (1395–1391 nm) were found in FT-NIR, and 1342–1348 nm
(7452–7418 cm−1) and 1391 nm (7189 cm−1) were found in Micro-NIR. In the case of
tapioca starch, the waves at 7213–7221 cm−1 (1386–1385 nm) were found in FT-NIR and
1379–1385 nm (7252–7220 cm−1) in Micro-NIR. This may be caused by the nature of each
regressor, which in the convolutional layer stage can transform the spectra to fit in the fol-
lowing regression scheme. In other words, the regressor from deep learning has carried out
automatic preprocessing, as reported by Cui and Fearn [8]. This causes the final shape of
each spectrum before the “flatten” to the “dense fully connected” stage to differ according
to the output variable. This difference will eventually result in differences in important
wavelengths for each deep-learning network architecture. Even though they are different,
several wavelengths from all deep-learning network architectures are still the same.

5. Conclusions

Deep learning as a novel approach to predict the level of adulteration of coconut
milk was successfully developed and tested based on spectra from benchtop FT-NIR
and portable Micro-NIR. Models based on FT-NIR spectroscopy to be able to predict the
adulteration level of corn flour in coconut milk (1–50%) can be generated using architecture
network regressor from deep learning (Simple CNN, S-AlexNET, ResNET, GoogleNET) in
the performance ranges of R2, RMSE, and Bias at their training from 0.996 to 0.999, from
0.370 to 0.958%, and from −0.027 to 0.120, respectively. Next, R2, RMSE, Bias, and RPD at
the testing stage are from 0.992 to 0.998, 0.686 to 1.256%, from −0.012 to 0.176, and from
11.429 to 20.866, respectively. Even though it is still as good, the performance based on
the FT-NIR prediction model is still lower than that of Micro-NIR with the same regressor
network architecture from deep learning. Performance ranges R2, RMSE, and Bias at their
training using Micro-NIR are from 0.998 to 0.999, from 0.363 to 0.706%, and from −0.053 to
−0.183, respectively. At the testing stage, R2, RMSE, Bias, and RPD are from 0.998 to 0.999,
from 0.463 to 0.597%, from −0.023 to 0.123, and from 23.981 to 31.094, respectively.

Relatively similar to the case of the model to predict tapioca starch adulteration in
coconut milk, the performance based on the Micro-NIR dataset is better than using FT-NIR
with the same regressor network architecture from deep learning. Performance ranges at
their training (R2, RMSE, Bias) and testing (R2, RMSE, Bias, RPD) using Micro-NIR are
from 0.998 to 1.000, from 0.298 to 0.637%, from −0.029 to −0.111, from 0.998 to 0.999, from
0.370 to 0.611%, from −0.035 to −0.068, and from 23.521 to 39.349, respectively. Meanwhile,
performance ranges at their training (R2, RMSE, Bias) and testing (R2, RMSE, Bias, RPD)
using FT-NIR are from 0.892 to 0.999, from 0.482 to 5.850%, from −0.035 to 1.017, from 0.886
to 0.998, from 0.670 to 6.108%, from −0.202 to 1.481, and from 2.958 to 21.421, respectively.

In closing, the prediction results demonstrated that the proposed architecture from
the deep-learning method yielded superior regression performance for the FT-NIR and
Micro-NIR to predict the level of adulterants (corn flour and tapioca starch) in coconut milk.
While finding that the optimal deep-learning architecture is complex and computationally
expensive, implementation and training are straightforward once found. Furthermore,
developing deep-learning architectures and applying them are two different study matters
that should not be confused. This study also indicated that deep learning for NIR spec-
troscopy data is less dependent on preprocessing than the classical chemometrics method
and still can achieve excellent performance.
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