
Citation: Karimov, T.; Ostrovskii, V.;

Rybin, V.; Druzhina, O.; Kolev, G.;

Butusov, D. Magnetic Flux Sensor

Based on Spiking Neurons with

Josephson Junctions. Sensors 2024, 24,

2367. https://doi.org/10.3390/

s24072367

Academic Editor: Bin Yang

Received: 11 March 2024

Revised: 5 April 2024

Accepted: 6 April 2024

Published: 8 April 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Magnetic Flux Sensor Based on Spiking Neurons with
Josephson Junctions
Timur Karimov 1 , Valerii Ostrovskii 1 , Vyacheslav Rybin 2 , Olga Druzhina 2 , Georgii Kolev 2

and Denis Butusov 2,*

1 Youth Research Institute, Saint Petersburg Electrotechnical University “LETI”,
197022 Saint Petersburg, Russia; tikarimov@etu.ru (T.K.); vyostrovskii@etu.ru (V.O.)

2 Computer-Aided Design Department, Saint Petersburg Electrotechnical University “LETI”, 5 Professora
Popova St., 197022 Saint Petersburg, Russia; vgrybin@etu.ru (V.R.); osdruzhina@etu.ru (O.D.);
gyukolev@etu.ru (G.K.)

* Correspondence: dnbutusov@etu.ru

Abstract: Josephson junctions (JJs) are superconductor-based devices used to build highly sensitive
magnetic flux sensors called superconducting quantum interference devices (SQUIDs). These sensors
may vary in design, being the radio frequency (RF) SQUID, direct current (DC) SQUID, and hybrid,
such as D-SQUID. In addition, recently many of JJ’s applications were found in spiking models of
neurons exhibiting nearly biological behavior. In this study, we propose and investigate a new circuit
model of a sensory neuron based on DC SQUID as part of the circuit. The dependence of the dynamics
of the designed model on the external magnetic flux is demonstrated. The design of the circuit and
derivation of the corresponding differential equations that describe the dynamics of the system are
given. Numerical simulation is used for experimental evaluation. The experimental results confirm
the applicability and good performance of the proposed magnetic-flux-sensitive neuron concept: the
considered device can encode the magnetic flux in the form of neuronal dynamics with the linear
section. Furthermore, some complex behavior was discovered in the model, namely the intermittent
chaotic spiking and plateau bursting. The proposed design can be efficiently applied to developing
the interfaces between circuitry and spiking neural networks. However, it should be noted that the
proposed neuron design shares the main limitation of all the superconductor-based technologies, i.e.,
the need for a cryogenic and shielding system.

Keywords: Josephson junction; artificial neuron; magnetic flux sensor; spiking neural network;
superconductive device

1. Introduction

Sharing the quantum properties of a superconducting state, the systems with Joseph-
son junctions (JJ) [1] enable various applications in high-performance computing and
advanced sensing. Rapid single flux quantum (RSFQ) circuitry is a well-developed fabri-
cation technology, which makes use of magnetic flux quanta produced by JJs to represent
digital information carried by picosecond pulses via superconducting lines. Compared to
semiconductor logic circuits, RSFQ electronics benefit from low power consumption and
unprecedented clock rates. Numerous ultrafast circuits were created employing the last
property, such as rapid single flux quantum digital dividers that operate up to 770 GHz [2],
digital signal processors with 20 to 40 GHz clock rates [3,4], and serial microprocessors with
nearly 20 GHz operating frequencies [5]. Among JJ-based technologies, superconducting
quantum interference devices (SQUID) merit particular interest. These devices utilize
a special JJ-based superconducting circuit to detect very weak magnetic fields, thereby
SQUID-magnetometers are widely used in biology and medicine, e.g., for magnetic reso-
nance imaging [6], magnetoencephalography [7], and scanning microscopes [8,9]. Classic
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SQUID types include radio frequency (RF) and direct current (DC) SQUIDs; on their ba-
sis, hybrids can be made, e.g., D-SQUID [10,11]. One of the most popular commercial
applications of SQUIDs is magnetic property measurement systems [12].

As the current silicon transistor-based processors approach the limits of miniaturiza-
tion, research on non-von Neumann architectures for in-memory computing and machine
learning intensifies significantly. Neuro-inspired computing electronics, which incorporate
neurobiological features, may also offer an energy-efficient solution for artificial intelli-
gence workloads [13]. Memristive systems are typically viewed as the fundamental circuit
elements for such solutions, serving both for implementing the mechanisms of spike gener-
ation in neurons [14] and for representing the synaptic plasticity [15]. Nanoscale thin film
(metal-insulator-metal) resistive switching devices were introduced as memristors only in
2008 [16]. Being compatible with complementary metal-oxide-semiconductor (CMOS) tech-
nology [17,18] is the main advantage of this type of device, while a major drawback is the
large device-to-device and cycle-to-cycle variability [19]. In turn, the early mention of a JJ as
a memristor dates back to 1974 [20]. Superconducting memristors [21] have the benefits of
lower characteristic times (picoseconds [22] versus 10 nanoseconds [23]), lower power con-
sumption (10−17 J/spike for superconducting neurons [22] versus 6.3× 10−15 J/spike for
CMOS neurons [24], as a reference 10−11 J/spike for biological neurons), and greater stabil-
ity, which comes at a price of cryogenic equipment. Thus, neuromorphic electronic devices
are developing in parallel through competing CMOS and superconducting technologies.

Let us briefly overview the recent progress in developing JJ-based neuromorphic
systems. In 2006, S.K. Dana et al. [25] reported the numerical simulation results on the
neuron-like spiking and bursting activity in a resistive-capacitive-inductive shunted junc-
tion (RCLSJ) model. In 2010, P. Crotty et al. [26] presented the JJ neuron, which models
the voltage dependence of typical ionic currents in biological neurons by junctions whose
dynamics are governed by familiar second-order differential equations. This study also
demonstrated such important characteristics of the JJ neuron as the firing threshold and
refractory period. Then, in [22], the potential of the JJ neuron circuitry was experimentally
demonstrated to simulate somas, axons, and adjustable synapses, as well as to perform
the detection of activity states. In [27], T. Hongray et al. reported the bursting behavior
produced in a system of two resistively coupled resistive-capacitive shunted junction (RCSJ)
models, also explored the parameter space for various operating modes of the system. In
2016, S.E. Russek et al. [28] presented magnetically tunable JJ for synaptic constituent in
neuromorphic computing. In 2019, R. Cheng et al. [29] presented neuromorphic computing
circuitry components (neurons and synapses) based on quantum phase-slip and magnetic
Josephson junctions. M.L. Schneider et al., in [30], proposed SQUID synapse based on the
nanotextured magnetic JJs, modeled by the modified version of the RCSJ, and in [31], they
provided the results for the fabricated devices. In [32], F. Feldhoff and H. Töpfer proposed
the RSFQ circuit design of a spiking neural network grown around a Josephson comparator.
A.E. Schegolev et al. [33] studied two superconducting JJ models of a biological neuron
(from [26]) by marking areas of different operating modes on parametric planes of the
corresponding dynamical systems, and suggested the circuitry for synaptic connection of
the JJ neurons. The physical implementation of two- and three-junction superconducting
quantum interferometers with Josephson weak links based on gold nanowires are investi-
gated in [34]. Another study [35] described a family of logic/memory cells in which stored
multi-bit data are encoded by quasi-analog currents or magnetic flux in superconductor
loops, while transmitted data are encoded as the rate of SFQ pulses. Ref. [36] proposed
a technique to improve artificial neural network (ANN) performance by increasing their
energy efficiency and speed of operation, and also sought to extend the utility of ANNs by
natively adding functionality of spiking operation.

Besides JJ-based electronics, other superconducting neuromorphic technologies exist,
including superconducting nanowires and optoelectronic circuits. An example of the first
type is the study by E. Toomey et al. [37], where the authors compared the platform of
superconducting nanowires with JJ architectures to model spiking neural networks, noting
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the advantages of the presented synapse design in the fan-out property. An example of
research on superconducting optoelectronic circuits for neuromorphic computing is [38],
where J.M. Shainline et al. proposed a hybrid hardware platform that combines semicon-
ducting few-photon light-emitting diodes with superconducting-nanowire single-photon
detectors to behave as spiking neurons.

A new paradigm of quantum machine learning includes spiking neuron models
and also requires the development of neuromorphic sensor prototypes to encode detected
quantities into spike signals. Neuromorphic sensors for detecting gas [39] and humidity [40]
are perfect examples of applications in conventional electronics. Retinomorphic vision
sensor design is another promising field of research and development [41], aiming to
reproduce spiking behavior in CMOS image sensors, and impart on them a natural ability
to detect events. Ref. [42] investigated the presence of unique solutions and quasi-uniform
stability for a class of fractional-order uncertain BAM neural networks utilizing the Banach
fixed point concept. For bio-inspired robotics, researchers have recently proposed spiking-
output tactile sensors based on a piezoelectric field-effect transistor [43], epitaxial VO2
volatile memristor [44], and Mott NbOx memristor [45]. The last sensor presents a general-
purpose device acting like an afferent nerve, which transforms the voltage into a spike train
(Hodgkin’s class 1 excitation).

In our previous works, we presented a single-coil metal detector with information
encoding using a spiking oscillator [46] and memristor-based capacitance-sensing neu-
ron [47]. The current study proposes a novel approach by combining the DC SQUID
with a JJ-based neuron. The proposed neuron model is suggested to be sensitive to an
external magnetic field. The considered model comprises memristive elements, being
a combination of passive R-L-C elements with Josephson junctions, which results in a
structure behaving in a bio-inspired manner. Thus, the proposed scheme is a combined
sensor-transducer device whose behavior can significantly vary while influenced by slight
magnetic field fluctuations. In this case, the external magnetic flux acts as a modulatory
input signal, influencing the rate of spike generation. The supposed application example
for such a device is illustrated in Figure 1. An array of neuron-SQUIDs may constitute a
spike encoder to record the spatiotemporal dynamics of the measured magnetic field for
the spiking neural network (SNN). The example shows a reservoir computing architecture
that includes excitatory and inhibitory neurons, as well as a spike decoder that is typically
represented by the output layer of neurons. In the diagram, the sensory neurons also
receive feedback driving input from the reservoir. Within this configuration, the driving
and modulatory inputs may affect the spike output of sensory neurons jointly. The gain
modulation of the sensory neuron in the present work can be associated with one of the
most established forms of attention mechanisms: an increase in spiking rate when attention
is directed into the receptive field of a neuron [48]. By introducing the attention mechanism,
the SNN becomes able to selectively focus on the important information in the input. That
improves the network’s performance by enhancing meaningful features and smoothening
semantic segmentation boundaries of the sensory perception. In this way, incorporation of
the attention mechanism into superconducting SNN would make magnetometry cognitive.

The key contributions of this paper are as follows:

1. A novel magnetic flux-sensitive neuron model based on Josephson junctions is presented;
2. Potential operational modes for the proposed model are investigated via nonlinear

analysis methods;
3. The numerical simulation confirms that the developed circuit acts like a sensor of flux

quantified in several quanta and is able to convert the acquired values into measurable
bio-inspired dynamics.

The rest of the paper is organized as follows. In Section 2, we present DC SQUID,
the 3-JJ neuron model, and our 3-JJ flux-sensitive neuron model based on the mentioned
models. In Section 3, the numerical results of the simulation are presented, and the action
of the model as a sensor is approved. Section 4 concludes the paper.
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Figure 1. The concept of online magnetic field forecasting using reservoir SNN.

2. Materials and Methods
2.1. Josephson Junction and DC SQUID Basics

The Josephson junction (JJ) is usually described by two Josephson Equations [49]:

IJ = IC sin δ (1)

δ̇ =
2e
h̄

V(t) =
2π

Φ0
V(t) (2)

where δ (often denoted as ϕ) is a phase drop at JJ, V(t) is a voltage drop, IJ is a current flow
through JJ, IC is a critical current, and Φ0 = h/2e is a magnetic flux quantum. In case of
π-junction, a specific type of JJ, the first Equation (1) becomes:

IJ = IC sin(δ + π) = −IC sin δ

Furthermore, we will consider only conventional JJs in this paper. Let us investigate
a DC SQUID, which consists of a ring with two opposite junctions. A corresponding
schematic is presented in Figure 2.

(a) (b)

Figure 2. DC SQUID schematics: (a) electrical circuit, and (b) spatial scheme representing magnetic
fluxes (denoted by red arrows) in the circuit, respectively.
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The total inductance of the ring is L, the flowing current is I, and the external magnetic
flux passing through it is ΦE. Thus:

ΦT = ΦE + LI (3)

where the external flux is divided into two parts and flows through the left branch
and right branch, with their inductance values of L1 = L2 = L/2. Respectively, fluxes Φ1
and Φ2 are:

Φ1 = L1 I1 + ΦE/2

Φ2 = L2 I2 −ΦE/2

The difference in signs near ΦE is due to opposite directions of fluxes Φ1 and Φ2.
Subtracting one equation from another, one can obtain:

Φ1 −Φ2 = ΦE + L1 I1 − L2 I2 = ΦE +
L
2
(I1 − I2) (4)

Recall Faraday’s law of induction:

V(t) = nΦ̇, (5)

where n is the number of turns of a coil, which for DC SQUID is n = 1, and V(t) is an
induced voltage. Combined with the second Josephson law, it gives:

Φ0

2π
δ̇ = Φ̇ −→ δ =

2πΦ
Φ0

(6)

Substitute (6) into (4):

Φ0

2π
(δ1 − δ2) = ΦE +

L
2
(I1 − I2) (7)

If the bias current Ib = I1 + I2 flows though DC SQUID, i.e., I2 = Ib − I1, then with
ϕe = ΦE/Φ0:

I1 =
Ib
2
+

Φ0

2πL
(δ1 − δ2 − 2πϕe)

I2 =
Ib
2
− Φ0

2πL
(δ1 − δ2 − 2πϕe)

(8)

The resistive-capacitive shunted junction (RCSJ) model is a classical model for con-
tinuous description of current flowing through JJ based on the first Josephson law (ideal
junction), with adding parallel resistor and capacitor:

I = CV̇ +
V
R
+ IC sin δ −→ (9)

I1,2 =
CΦ0

2π
δ̈1,2 +

Φ0

2πR
δ̇1,2 + IC sin δ1,2 (10)

Let us denote: i = I/IC, βL = 2ICL/Φ0, βC = ICR2C2π/Φ0, and time scaling constant
ωt = Φ0/(2π ICR), which, being applied to (10), gives the following initial value problem:{

δ̇ = ωtx
ẋ = ωt f (δ, x)

−→ δ̈/ω2
t = f (δ, δ̇/ωt) (11)
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With time scaling τ = tωt:{
dδ
dτ = x
dx
dτ = f (δ, x)

←→
{

δ̇ = x
ẋ = f (δ, x)

(12)

Combining (8) and (12), obtain:

βC δ̈1 =
ib
2
+

δ1 − δ2 − 2πϕe

πβL
− δ̇1 − sin δ1 (13)

βC δ̈2 =
ib
2
− δ1 − δ2 − 2πϕe

πβL
− δ̇2 − sin δ2 (14)

Typical parameters’ values are: βL = 1, βC = 0.8, L = 10 pH, C = 50 fF, IC = 100 µA.
Equations that describe the dynamics of DC SQUID will be further used in our pro-

posed flux-sensitive spiking neuron circuit.

2.2. Neuron Model Based on Josephson Junctions

The model of the spiking neuron based on Josephson junctions was originally pro-
posed by Crotty et al. [26], and recently modified by Schegolev et al. [33]. The authors
of the original work noticed the analogy between single-flux-quantum pulse (SFQ pulse)
phenomena and single biological neuron spike, which both have a similarity with the dy-
namics of the driven and damped pendulum. Indeed, with the designations for normalized
frequency ωp and damping parameter Γ:

ω2
p =

2π IC
Φ0C

, Γ2 =
Φ0

2π ICRN
2C

, (15)

the RCSJ model (10) becomes:

ix =
1

ω2
p

δ̈x +
Γ

ωp
δ̇x + sin δx, (16)

and ωp-time scaling (11) simplifies (16) to:

ix = δ̈x + Γδ̇x + sin δx, (17)

which displays an analogy between the dynamics of a Josephson junction and a gravita-
tional pendulum. In the generalized Equation (17), the state variable δ may represent both
the Josephson phase and the angle of deflection of a pendulum. The model parameters can
be set in such a way that for a time-dependent moment ix, the pendulum will whirl only
once and settle to the initial state. Such a whirling motion is utilized in a digital component
from superconductive logic circuitry called a “DC-to-SFQ converter”. In [26], this schematic
was simplified to obtain a circuit that behaves quite similarly to a biological neuron.

The original scheme contains two Josephson junctions with letter indices p and c,
which stand for pulse and control, respectively. The control junction is located by the node
where the bias current Ib flows in. The signal of the neuron, which travels further to the
synapse, is the voltage across the pulse junction vp = ϕ̇p. The pulse voltage vp simulates a
polarizing ionic current INa+ of a biological neuron, and the control voltage vc simulates
a hyperpolarizing ionic current IK+. To increase the ability to control the throughput
of the input channel, Schegolev et al. [33] replaced the control junction with a two-JJ
superconducting interferometer. In a proposed 3-JJ-based neuron, the switching between
all operating modes is possible by controlling only the bias current Ib in a significantly
larger range of parameters. Another benefit of this circuit is that all the junctions may be
similar with respect to providing a working physical device.

Let us consider the 3-JJ-based neuron model [33] in detail to understand how it can be
described mathematically (see Figure 3).
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Figure 3. Circuit diagram of a modified spiking neuron based on 3 JJs from [33]. Red arrows denote
loops and clarify the application of Kirchhoff’s law.

Using the Kirchhoff’s law to calculate currents in nodes, one can obtain:
Iin = Is + IL;

Is = IJ J1 + IJ J2;

IJ J1 + Ib = ISQ;

IJ J2 + ISQ = Iout + IJ J3.

(18a)

(18b)

(18c)

(18d)

According to Kirchhoff’s law for voltages, we obtain:{
−VL + VS + VJ J2 + VJ J3 = 0;
−VJ J2 + VJ J1 + VSQ = 0.

(19)

Let us recall the equation for inductances and Josephson law, and substitute it in (19):
− LİL + LS İS +

Φ0

2π
δ̇2 +

Φ0

2π
δ̇3 = 0;

− Φ0

2π
δ̇2 +

Φ0

2π
δ̇1 + LSQ İSQ = 0.

(20a)

(20b)

From (20b):

ISQ = − Φ0

2πLSQ
· (δ1 − δ2); (21)

Substituted into (18c):

IJ J1 = −Ib −
Φ0

2πLSQ
· (δ1 − δ2). (22)

From (18b) and (20a):

(IJ J1 + IJ J2) · LS = L · IL −
Φ0

2π
· (δ2 + δ3) (23)

From (18a) and (18b), IL = Iin − IS = Iin − IJ J1 − IJ J2, and thus:

(IJ J1 + IJ J2) =
L
LS
· (Iin − IJ J1 − IJ J2)−

Φ0

2π · LS
· (δ2 + δ3) −→ (24)

LS IS = L · (Iin − IS)−
Φ0

2π
· (δ2 + δ3) −→ (25)
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IS · (LS + L) = Iin · L−
Φ0

2π
· (δ2 + δ3). (26)

Let us introduce the scaling coefficients and designations as follows.

lx =
2π ICLx

Φ0
, λ =

1
l + lS

, i =
I

IC
. (27)

where lx ∈ {l, lS, lSQ}. Then:

iS = l · λ · iin − λ · (δ2 + δ3). (28)

Finally, after some substitutions:
iJ J1 = −ib −

1
lSQ
· (δ1 − δ2);

iJ J2 = ib +
1

lSQ
· (δ1 − δ2) + iin · λ · l − λ · (δ1 + δ2);

iJ J3 = ib + iin · λ · l − λ · (δ1 + δ2)− iout.

(29)

In the final ODE for a real system, the only difference from (17) is in the equation for
iJ J2, where the ratio of cross-sectional areas of the second and third Josephson junctions
η = A2/A3 is considered:

iJ J2 = η · (δ̈J J2 + Γδ̇J J2 + sin δJ J2).

Numerical values for obtaining a realistic bursting mode of operation are as follows:
ib = 1.9, l = 5, ls = 3.85, lSQ = 8.85, λ = 0.113, Γ = 0.75, η = 0.125. The neuron should be
excited by input rectangular pulses with level Ainput = 0.5 and pulse duration τ = 20tp.

2.3. Proposed Neuron-SQUID Model

Figure 4 presents the schematic of the proposed device. Contrary to Schegolev’s
model shown in Figure 3, our device has a DC SQUID (Figure 2) instead of the original
superconducting interferometer.

Figure 4. Proposed circuit design of the modified bio-inspired superconductive spiking neuron with
integrated SQUID. Red arrows denote loops and blue numbers denote node indices in the equation
system (30).



Sensors 2024, 24, 2367 9 of 19

Assume that inductances L1 = L2 = LΣ
2 are the parts of the superconductive ring

used to detect external flux ϕe ∈ N (discrete values of the quantized magnetic flux flowing
through the ring). According to Kirchhoff’s law for currents in nodes, we obtain:


Iin = Is + IL;

Is + Ib = IJ J1 + IJ J2;

IJ J1 + IJ J2 = IJ J3 + Iout;

(30a)

(30b)

(30c)

According to Kirchhoff’s law for voltages:{
−VL + VS + VL1 + VJ J2 + VJ J3 = 0;

−VJ J1 −VL1 + VJ J2 + VL2 = 0.

(31a)

(31b)

Compared with (8), it follows from (30b) and (31b):
IJ J1 =

Ib + Is

2
+

Φ0

2πLΣ
(δ1 − δ2 − 2πϕe);

IJ J2 =
Ib + Is

2
− Φ0

2πLΣ
(δ1 − δ2 − 2πϕe).

(32a)

(32b)

From (30c):

−LIL + LS IS + L1 IJ J1 +
Φ0

2π
(δ1 + δ3) = 0 (33)

From (30a), IL = Iin − IS, and thus:

−L(Iin − IS) + LS IS = − LΣ

2
IJ J1 −

Φ0

2π
(δ1 + δ3) (34)

Using designations (27), one can express the normalized current through the coil LS,
denoted as iS, as follows:

iS = l · λ · iin −
lΣ
2
· λ · iJ J1 − λ · (δ1 + δ3) (35)

Using another Kirchhoff’s law loop for calculating voltages, one may express iS
as follows:

iS = l · λ · iin −
lΣ
2
· λ · iJ J2 − λ · (δ2 + δ3) (36)

Substitute (35) into (32a):(
4 + lΣ · λ

2

)
iJ J1 = ib + l · λ · iin −

λ

2
· (δ1 + δ3) +

1
lΣ
· (δ1 − δ2 − 2πϕe) (37)

Denote λ1 = 2/(4 + lΣ · λ). Furthermore, let iout = 0, so iJ J3 = iJ J1 + iJ J2. Finally,
we get:

iJ J1 = λ1 · ib + l · λ · λ1 · iin − λ · λ1 · (δ1 + δ3) +
2λ1 · (δ1 − δ2 − 2πϕe)

lΣ
;

iJ J2 = λ1 · ib + l · λ · λ1 · iin − λ · λ1 · (δ2 + δ3)−
2λ1 · (δ1 − δ2 − 2πϕe)

lΣ
;

iJ J3 = 2λ1 · ib + 2l · λ · λ1 · iin − λ · λ1 · (δ1 + δ2 + 2δ3).

(38)
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Thus, the RCSJ model of the JJs yields:
iJ J1 = η1 · (δ̈1 + Γδ̇1 + sin δ1);
iJ J2 = η2 · (δ̈2 + Γδ̇2 + sin δ2);
iJ J3 = δ̈3 + Γδ̇3 + sin δ3.

(39)

where the ratios η1 = A1/A3 and η2 = A2/A3 of cross-sectional areas of the first and
third and and second and third Josephson junctions, respectively, should not be similar
to provide the necessary asymmetry of DC SQUID and contribute to the generation of
spikes. Merging (38) and (39), we obtain the differential equation describing neuron
model dynamics.

To facilitate the reproducibility of this model, we provide the corresponding finite-
difference scheme in Appendix A. This scheme is useful when analyzing dynamical regimes
on the model in environments with difficulties in using high-level ODE solvers, e.g.,
in CUDA.

3. Results
3.1. Experimental Setup

We used NI LabVIEW 2022 Q3 as a simulation environment for investigating the
waveforms. To increase performance, two-parameter diagrams were constructed using
proprietary software written in C++ Nvidia CUDA Compiler (NVCC) v. 9.0 by Nvidia cor-
poration (San Tomas Expressway, Santa Clara, CA 95051, USA) to run on GPU supporting
CUDA platform. The utilized computer hardware is as follows:

- Intel Core i9 12,900k CPU;
- Nvidia GeForce RTX 4090 GPU;
- 64 GB DDR4 RAM;
- 2 TB SSD storage device.

Considering recent developments in numerical approaches to nonlinear and chaotic
problems [50], we suggest that the semi-implicit CD numerical integration method [51,52]
would yield better correspondence to the reference and better reflect the dynamical features
of the continuous system, also maintaining acceptable performance for a multi-parametric
examination. To investigate the properties of the flux-sensitive 3-JJ neuron, we simulated
it using the semi-implicit CD method with time step h = 0.01tp (ωp-scaled time). If not
specified otherwise, system parameters in our study are as follows: ib = 1, l = 3, λ = 0.5,
lΣ = 8, ηi = 1, Γ = 2, the amplitude of iin is Ainput = 1, pulse duration τd = 20tp and pulse
period τp = 240tp.

3.2. Dynamical Modes of the Neuron-SQUID

In Ref. [33], the authors distinguish the following types of oscillation modes or regimes:

1. The dead mode, which corresponds to a neuron that does not respond to input
stimuli—this mode can also be characterized by a very small amplitude;

2. The injury mode, where only some of the input stimuli generate a spike in response;
3. The regular mode, where a standard input stimulus generates a response spike;
4. The bursting mode, where a standard input stimulus leads to the generation of a

sequence of spikes, so-called bursts;
5. The nonbiological mode, where the signal is highly biased to the positive region and

the spikes have small amplitude and high frequency. Such an output signal is not
found in biological neurons.

To investigate the dependence between the operational modes of the proposed 3-JJ
neuron and system parameters, we plotted diagrams for two-dimensional dynamics, as
shown in Figure 5. In [33], the authors state that for JJ-based neurons, all modes can be
induced by varying the geometric factor η and damping parameter Γ. In our study, we
introduced two geometric factors, η1 and η2. In the proposed neuron model, we discovered
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some modes that are similar to [33], but also found that the proposed flux-sensitive topology
may demonstrate richer dynamics. Visualization of the dynamical behavior in the presence
of a weak magnetic flux can be seen in Figure 5. One may see that in its parameter plane,
the neuron dynamics reveal its fractal structure inherent to nonlinear systems.

с

c

d

b a

b

f

e

g

d

e

bursting plateau modef

intermittent bursting plateau modeg

a

Dynamical modes legend Dynamical modes presentation

intermittent bursting mode

locked mode

Figure 5. Neuron-SQUID operating modes for damping parameter Γ and geometric factor η1: (a) dead
mode; (b) regular mode; (c) locked spiking mode; (d) nonbiological mode; (e) intermittent bursting
mode; (f) bursting plateau mode; (g) intermittent bursting plateau mode. Violet diamonds on the
parameter plane represent pairs of the parameter values Γ and η1 for the corresponding modes, while
η2 = 1 and ϕe = 2. Other simulation parameters are listed in Section 3.1.
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To characterize the observed dynamics, we introduce the following classification
of modes:

1. Dead mode, or weak dynamical response. In this mode, spikes with low amplitude
follow the input strobe, getting wider and changing their phase with the increase
of ϕe.

2. Regular mode, where a standard input stimulus generates a response spike or a series
of nonuniform spikes. Oscillations in the neuron fade out and do not appear until the
next stimulus.

3. Locked mode [53,54]. In this mode, oscillations in the neuron appear either due to
the input stimulus or autonomously and represent continuous chain spikes following
each other with equal interspike intervals, which decreases with the growth of the
external magnetic flux ϕe. At some combinations of parameters, single spikes are
replaced by short bursts (duplets and triplets of spikes), the regularity of oscillations
disappears and the system goes into chaos. Nevertheless, the total spiking rate is
approximately preserved.

4. Nonbiological mode. Any type of behavior that has no counterpart or analog in
biological neurons. One type of nonbiological behavior is characterized by very fast
spiking with low amplitude around positively biased value Vout >> 0. Another
observed type of nonbiological behavior is chaotic oscillations resembling sinusoidal
beats, which occur at low values of Γ or ηi.

5. Intermittent bursting. In this mode, instead of single spikes or spike groups, the
neuron starts generating a continuous sequence of very short spikes by the action of
an input stimulus. The next stimulus leads the neuron from bursting back to spiking.

6. Bursting plateau mode [55]. Due to the occurrence of a plateau potential inside a
neuron, under the action of the input stimulus, the neuron gets excited and maintains
firing. The next impulse turns the neuron off.

7. Intermittent bursting plateau mode—a combination of the two aforementioned modes.
Under the action of an input stimulus, a neuron may stop spiking, or on the contrary,
maintain bursting. This mode is rather difficult to detect; nevertheless, it is observed
in different regions of parameter values.

It should be noted that the mentioned diversity of neuron-SQUID modes is observed
in the presence of an external magnetic flux. When the external magnetic flux is absent, the
dynamics of the neuron are quite poor (see Figure 6). In particular, no bursting modes can
be observed without flux and even locked spiking mode is questionable to detect and looks
similar to nonbiological modes.

Figure 6. Neuron-SQUID operating modes without external flux. Near the value of damping
parameter Γ = 0, the nonbiological mode predominantly presents.
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Assuming that the complexity of the neuron dynamics is connected to chaotic behavior,
we calculated two-dimensional diagrams of the largest Lyapunov exponents (LLE) (see
Figure 7). Using this type of analysis, we found that the asymmetrical DC SQUID ring
(η1 ̸= η2) is important and provides rich dynamics of the neuron (see Figure 7a). Near the
symmetry line η1 = η2, LLE is mostly negative or has a very small positive value, while at
some nonsymmetrical pair LLE >> 0, which results in complex behavior, e.g., intermittent
bursting plateau mode.

a b

c d

Sym
metr

y l
ine

Non-chaotic region

Non-chaotic region

Chaotic region
Chaotic region

Chaotic region Chaotic region

Figure 7. Neuron-SQUID LLE analysis: (a) in η1-η2 plane; (b–d) in Γ-η1 plane, for different values of
ϕe. The asymmetry of Josephson contacts in the SQUID ring contributes to chaotic dynamics, as well
as the increase of an external magnetic flux.

Speaking of the influence of external flux, its increase causes the neuron to switch from
regular mode to locked spiking, and then to nonbiological mode. Usually, the nonbiological
mode is chaotic. Bursting modes are found in between locked and nonbiological modes.

3.3. Quantification of Neuron-SQUID Reaction to the External Flux

To visualize the dynamics of the spiking behavior, we plotted the distribution of spikes
as a function of the input parameter—external magnetic flux ϕe. The dynamics for different
values of the parameter η are shown in Figure 8. Note that with the change of η1 along the
Y axis, the parameters η2 and Γ of the neuron under study also change. This allows one
to better adapt it to a given range of magnetic flux variation. Speaking of several types of
complex behavior presented in Figure 5, they can be observed on the thin edge between
the locked and nonbiological modes and require different ratios between the three main
parameters to be more noticeable at this scale.
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Figure 8. Evaluation of neuron-SQUID performance as a magnetic flux sensor: (a) neuron-SQUID
operating modes; (b) visualization of a number of spikes count during time t = 1440tp (six periods of
current stimulation) when neuron behaves in the locked mode; (c–e) plots for a number of spikes and
corresponding linear approximations at different values of system parameters.

The experiments show that the system demonstrates activity in a wide range of
magnetic flux ϕe values when the parameters are changed, from a few quanta to tens and
even hundreds (not shown). Thus, by choosing the required geometrical characteristics of
the sensor at the fabrication stage, it is possible to set its sensitivity according to the task.
When ηi < 1, the sensor is capable of detecting a single flux quantum.

A remarkable property of the discovered dependency between the number of spikes in
the locked mode and the magnetic flux is its high linearity. This makes it possible to design
magnetic flux sensors based on the proposed 3-JJ neural structure with a simple interpreta-
tion of the output. In Table 1, the expressions for linear approximation of dependencies
ϕe(n) from Figure 8 are presented.

Table 1. Numerical evaluations of neuron-SQUID performance as a magnetic flux sensor, with a
linear approximation of spiking rate response in the locked spiking mode of operation.

System Parameters ϕe(n) RMSE ϕe Range ϕe Range Width

η1 = 4, η2 = 3.6, Γ = 2 0.0726n + 5.4793 0.59 [11; 25] 14
η1 = 6, η2 = 5.4, Γ = 3 0.1595n + 8.2602 0.34 [19; 42] 23
η1 = 8, η2 = 7.2, Γ = 4 0.2811n + 10.4862 0.35 [28; 58] 30

Note that the choice of neuron-SQUID parameters for the study presented in this
section is grounded by the sensitivity of the neuron. In addition to geometrical parameters
ηi and Γ for an external magnetic flux ϕe, we could also characterize the influence of
the inductance parameters l, lΣ and λ, input bias current ib, and input stimuli A and τi.
However, we did not find any significant nonlinear effects caused by these parameters on
the dynamics of the neuron.
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4. Conclusions

In this study, we considered a novel neuron model based on Josephson junctions (JJs),
which is proven to be sensitive to external magnetic flux. The investigated circuit consists
of several elements: two inductances, a separate Josephson junction, and a DC SQUID ring,
which also includes a couple of JJs. This ring is responsible for the neuron’s sensitivity to
magnetic flux. As the key results of our study, we made the following findings.

1. The performance and key nonlinear properties of the proposed topology were exper-
imentally confirmed by numerical simulation. We discovered that the input pulse
current and external flux provide the device functionality that resembles the activity
of the biological neuron.

2. The system exhibits a wide range of dynamical modes inherent to neurons, including
regular spiking, locked spiking, intermittent bursting, plateau bursting, and the
combination of the two latter. Complex modes of neuron behavior are explained by the
emergence of chaos, which was confirmed by the largest Lyapunov exponent calculation.

3. The sensitivity of the proposed neuron model to an external magnetic field can be
controlled by selecting its physical parameters, such as the ratio of areas of JJs in
the DC SQUID and area of the free-standing JJ (so-called geometric factors ηi), and
the damping parameter Γ. For different values of these parameters, the neuron
demonstrates sensitivity in various ranges of magnetic flux, from single quantum to
tens and hundreds of quants. Moreover, we found that for a certain range of ϕe, the
neuron firing rate is linearly proportional to the magnetic flux ϕe when the neuron
operates in the locked spiking mode. The theoretical precision of such a sensor in
terms of root-mean-square error is less than a single quantum. For example, with
main parameters values η1 = 6, η2 = 5.4 and Γ = 3, the RMSE = 0.34 in the range of
23 quanta, from ϕe = 19 to ϕe = 42.

Following the in-memory computation paradigm which can be implemented using
JJ-based neuromorphic hardware, the outputs of the proposed neurons may drive a spiking
neural network, and the magnetic field values encoded in spiking dynamics could be
naturally processed and recognized by this network. Simulation of such a system, as
well as verification of the physical implementability of the proposed device, are the aims
of further research. However, we must note that processing of incoming data by the
capabilities of superconductor-based neural network computing remains a challenge, since
it requires a cryosystem with appropriate shielding to eliminate adverse external influence.

Author Contributions: Conceptualization, T.K. and V.O.; data curation, O.D. and G.K.; formal
analysis, T.K. and G.K.; funding acquisition, V.O.; investigation, T.K. and V.R.; methodology, T.K. and
D.B.; project administration, V.O. and D.B.; resources, V.O. and D.B.; software, V.R., O.D. and G.K.;
supervision, D.B.; validation, D.B.; visualization, V.R., O.D. and G.K.; writing—original draft, T.K.,
O.D. and D.B.; writing—review and editing, V.O. and V.R. All authors have read and agreed to the
published version of the manuscript.

Funding: This study was supported by the Russian Science Foundation (RSF), project 23-79-10151.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: No new data were created or analyzed in this study.

Acknowledgments: The authors are sincerely grateful to Dmitry Pesterev and Vladislav Kholkin for
fruitful discussions on the neuron oscillation mode detector, and Yulia Bobrova for expert advice in
the design of bio-inspired systems.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Finite-Difference Scheme of the Neuron-SQUID Model

By obtaining the equations for the circuit under investigation, we can finally build a
finite difference scheme of equations for performing numerical experiments. In our study,
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we use the CD integration method [51]. It should be noted that in its original form, the
scheme is a nonautonomous system of ordinary differential equations of the second order,
which can be easily converted into an autonomous system of ordinary differential equations
of the first order by replacing variables and adding another equation for calculating time:

δ̇1 = y1, δ̇2 = y2, δ̇3 = y3 → δ̈1 = ẏ1, δ̈2 = ẏ2, δ̈3 = ẏ3. (A1)

Using the change of variables from (A1) and substituting them into (39), we obtain the
following system of ordinary differential equations:

δ̇1 = y1;
δ̇2 = y2;
δ̇3 = y3;

ẏ1 =
iJ J1(δ1, δ2, δ3, iin)

η1
− Γy1 − sin δ1;

ẏ2 =
iJ J2(δ1, δ2, δ3, iin)

η2
− Γy2 − sin δ2;

ẏ3 = iJ J3(δ1, δ2, δ3, iin)− Γy3 − sin δ3.

(A2)

where:

iJ J1(δ1, δ2, δ3, iin) = λ1 ·
(

ib + l · λ · iin − λ · (δ1 + δ3) +
2(δ1 − δ2 − 2πϕe)

lΣ

)
;

iJ J2(δ1, δ2, δ3, iin) = λ1 ·
(

ib + l · λ · iin − λ · (δ2 + δ3)−
2(δ1 − δ2 − 2πϕe)

lΣ

)
;

iJ J3(δ1, δ2, δ3, iin) = λ1 · (2ib + 2l · λ · iin − λ · (δ1 + δ2 + 2δ3)).

(A3)

Method CD is a composition of a pair of basic adjoint D-methods. The first adjoint
method is fully explicit, and the second adjoint method contains implicitness in the diagonal
elements of the system matrix. A family of adjoint semi-implicit methods with variable
symmetry appears:

Ψh,s = Φh1 ◦Φ∗h2
; (A4)

where: {
h1 = h · s;
h2 = h · (1− s).

(A5)

Let us apply the CD method for the system (A3). Building the explicit half is quite
straightforward and it can be written as follows:

Φh1 =



δ1,n+s = δ1,n + h1 · y1,n;
δ2,n+s = δ2,n + h1 · y2,n;
δ3,n+s = δ3,n + h1 · y3,n;

y1,n+s = y1,n + h1 ·
(

iJ J1(δ1,n+s, δ2,n+s, δ3,n+s, iin)
η1

− Γy1,n − sin δ1,n+s

)
;

y2,n+s = y2,n + h1 ·
(

iJ J2(δ1,n+s, δ2,n+s, δ3,n+s, iin)
η2

− Γy2,n − sin δ2,n+s

)
;

y3,n+s = y3,n + h1 ·
(
iJ J3(δ1,n+s, δ2,n+s, δ3,n+s, iin)− Γy3,n − sin δ3,n+s

)
.

(A6)

Now let us build the one with the implicitness in the diagonal elements of the sys-
tem matrix:
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Φ∗h2
=



y3,n+1 = y3,n+s + h2 ·
(
iJ J3(δ1,n+s, δ2,n+s, δ3,n+s, iin)− Γy3,n+1 − sin δ3,n+s

)
.

y2,n+1 = y2,n+s + h2 ·
(

iJ J2(δ1,n+s, δ2,n+s, δ3,n+s, iin)
η2

− Γy2,n+1 − sin δ2,n+s

)
;

y1,n+1 = y1,n+s + h2 ·
(

iJ J1(δ1,n+s, δ2,n+s, δ3,n+s, iin)
η1

− Γy1,n+1 − sin δ1,n+s

)
;

δ3,n+1 = δ3,n+s + h2 · y3,n+1;
δ2,n+1 = δ2,n+s + h2 · y2,n+1;
δ1,n+1 = δ1,n+s + h2 · y1,n+1,

(A7)

where the implicitness can be resolved analytically:

Φ∗h2
=



y3,n+1 =
y3,n+s + h2 ·

(
iJ J3(δ1,n+s, δ2,n+s, δ3,n+s, iin)− sin δ3,n+s

)
1 + h2Γ

;

y2,n+1 =

y2,n+s + h2 ·
(

iJ J2(δ1,n+s, δ2,n+s, δ3,n+s, iin)
η2

− sin δ2,n+s

)
1 + h2Γ

;

y1,n+1 =

y1,n+s + h2 ·
(

iJ J1(δ1,n+s, δ2,n+s, δ3,n+s, iin)
η1

− sin δ1,n+s

)
1 + h2Γ

;

δ3,n+1 = δ3,n+s + h2 · y3,n+1;
δ2,n+1 = δ2,n+s + h2 · y2,n+1;
δ1,n+1 = δ1,n+s + h2 · y1,n+1.

(A8)

Briefly, the advantages of the proposed integration scheme are as follows: it has the
second order of algebraic accuracy, provides higher stability in comparison with explicit
methods such as Runge–Kutta, but it is still similarly computationally efficient. For more
details, refer to [50].
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