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Abstract: Classification-based myoelectric control has attracted significant interest in recent years,
leading to prosthetic hands with advanced functionality, such as multi-grip hands. Thus far, high
classification accuracies have been achieved by increasing the number of surface electromyography
(sEMG) electrodes or adding other sensing mechanisms. While many prescribed myoelectric hands
still adopt two-electrode sEMG systems, detailed studies on signal processing and classification
performance are still lacking. In this study, nine able-bodied participants were recruited to perform
six typical hand actions, from which sEMG signals from two electrodes were acquired using a Delsys
Trigno Research+ acquisition system. Signal processing and machine learning algorithms, specifically,
linear discriminant analysis (LDA), k-nearest neighbors (KNN), and support vector machines (SVM),
were used to study classification accuracies. Overall classification accuracy of 93 ± 2%, action-specific
accuracy of 97 ± 2%, and F1-score of 87 ± 7% were achieved, which are comparable with those
reported from multi-electrode systems. The highest accuracies were achieved using SVM algorithm
compared to LDA and KNN algorithms. A logarithmic relationship between classification accuracy
and number of features was revealed, which plateaued at five features. These comprehensive findings
may potentially contribute to signal processing and machine learning strategies for commonly
prescribed myoelectric hand systems with two sEMG electrodes to further improve functionality.

Keywords: sEMG; hand actions; machine learning; classification; upper limb; myoelectric prosthetics

1. Introduction

Myoelectric prosthetic hands, controlled by surface electromyography (sEMG) signals
generated from contractions of muscles (for example, flexor and extensor carpi radialis)
within a residual limb are commonly used to restore hand functions for those with upper
limb deficiencies, such as upper limb amputees. To date, many prescribed myoelectric
hands still adopt two-electrode sEMG designs [1–3]. Comprehensive training is often
provided to upper limb amputees in clinics to help amputees adapt to myoelectric prosthetic
hand use when conducting activities of daily living. Training often involves use of clinically
friendly tools such as the MyoBoy system (Ottobock, Duderstadt, Germany) [4], which
is also a two-electrode sEMG system. For a myoelectric prosthetic hand system with two
sEMG electrodes, the two electrodes are usually located on the lateral and medial side of
the residual limb. Corresponding sEMG signals generated during muscle contractions are
intrinsically processed to control prosthetic hand actions, such as open and close functions
for single-grip hands [5].

Although single-grip hands are widely prescribed, high rejection rates (of up to 44%) are
still common [6,7] owing to non-intuitive and unstable control caused by signal artifacts [8,9].
Multi-grip prosthetic hands have been recently made clinically available through the UK
National Health Service [10] with the aim to improve function and overall user adherence.
To facilitate this, advanced prosthetic hands comprising a greater number of sEMG elec-
trodes have emerged. For instance, MyoPlus (Ottobock, Duderstadt, Germany) [11] and
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the COAPT system (COAPT LLC., Chicago, IL, USA) [12] utilize up to 17 sEMG electrodes
to achieve 14 grip patterns. However, compared with commonly prescribed two-electrode
myoelectric hands, multi-electrode hands are generally heavier and could also present
increased risks associated with skin irritation [13]. Moreover, analysis of large-scale datasets
has been reported [14] to limit efficiency of data processing and real-time feedback for
prosthetic control. For the foreseeable future, global healthcare systems, particularly those
in low-resource environments, may still prefer conventional low-cost myoelectric prosthetic
hands, such as those based on two sEMG electrodes.

Machine learning has been identified [15] as a promising means to classify hand ac-
tions for more intuitive and accurate control of prosthetic hands. This typically entails
feature extraction from raw sEMG signals, such as maximum, minimum, and standard
deviation (SD) values obtained during muscle contraction. Extracted features are used
to train machine learning models as a means to establish correspondence between sEMG
signal features and hand actions, known as classification. Trained classification models
can subsequently be used to classify hand actions based on new sEMG datasets, whereby
classification accuracies can be calculated by dividing the number of correct predictions
by the total number of predictions. Li et al. [16] reported classification accuracy of ap-
proximately 93% using linear discriminant analysis (LDA), artificial neural network, and
fuzzy logic algorithms to categorize six hand actions with ten electrodes. This accuracy
decreased to approximately 92% and 89% when reducing electrode count to six and four,
respectively [16]. Using support vector machines (SVM) and k-nearest neighbors (KNN)
algorithms, Mukhopadhyay et al. [17] reported accuracies of approximately 96% when
categorizing eight hand actions using seven electrodes. An accuracy range of 79–82% was
also reported [18] using LDA for ten hand actions with four electrodes. For multi-electrode
systems, various feature types and different approaches to extract sEMG signal features
have also been reported. For example, sEMG feature evaluation has been conducted [19]
to improve pattern recognition robustness, which suggested that, among the fifty features
extracted in the study, only four features were major contributors to achieve 99% accuracy
when classifying four hand actions with four electrodes on a single subject. Moreover, a
two-dimensional matrix image-based approach was reported [20] for classification of sEMG
signals, which was compared using common machine learning algorithms, including KNN
and SVM.

Despite their high accuracies, the aforementioned models are based on multi-electrode
systems. For two-sEMG-electrode systems, machine learning algorithms and feature
extraction have been reported [21] with a view to achieving similar classification accuracies.
For example, robust hand gesture recognition based on two-electrode sEMG systems
and SVM algorithms has been reported, where overall classification accuracies of over
90% [22] and 97% [23] were achieved. However, a recent review [24] reporting the use
of sEMG signals to classify hand gestures highlighted the lack of focus on two-sEMG-
electrode systems in the field. Additionally, classification accuracy based on two-sEMG-
electrode systems was reported [25] to vary by up to 20%, depending on machine learning
algorithms utilized. Thus, it is important to compare different classification algorithms
and feature types to facilitate comprehensive machine learning evaluation. To the best of
our knowledge, there is currently a lack of such comparative studies on machine learning
algorithms based on signals produced by two-sEMG-electrode systems, which is the focus
and main contribution of this work.

2. Materials and Method

Figure 1 shows an overview of this study. In particular, during the initial sEMG
data acquisition stage, two sEMG electrodes from a Delsys Trigno Research+ acquisition
system were attached to the belly of the flexor and extensor carpi radialis muscles located
in the forearm of an able-bodied participant. Each participant was instructed to conduct
six designated hand actions while real-time sEMG signals were collected. Raw sEMG
data collated from the nine participants were subsequently processed, including data
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segmentation, rectification, filtering, and signal feature extraction. The extracted features
were then used with KNN, SVM, and LDA machine learning algorithms, respectively, to
train classification models. Hand action classification accuracies were evaluated by varying
the algorithm and number of features. Further details of each stage are included in the
following sections, as also indicated in Figure 1.
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Figure 1. Study overview.

2.1. sEMG Data Acquisition

Nine able-bodied participants without upper limb loss or injuries were recruited for
this study (6 female, 3 male; 24 ± 6 years). This study utilized a Delsys Trigno Research+
acquisition system which included a base station, two wireless differential sEMG electrodes
with a sampling frequency of 1111 Hz, and EMGWorks software (version 4.7.9, Delsys Inc.,
Natick, MA, USA), illustrated in Figure 2 [26]. Each participant was instructed to perform
wrist flexion and extension, enabling the researcher to feel for the approximate locations of
the flexor carpi radialis and extensor carpi radialis. Subsequently, two sEMG electrodes
were attached to the right forearm at the belly of the flexor carpi radialis (medial electrode)
and the extensor carpi radialis (lateral electrode) using double-sided adhesive, as shown in
Figure 3a. Electrode placement protocol was based on Surface ElectroMyoGraphy for the
Non-Invasive Assessment of Muscles (SENIAM) recommendations [27], which describes
optimal sEMG sensor application procedures. Electrode locations were selected in line with
previous studies [28–30].
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Following the electrode setup, each participant was instructed to sit and rest their
forearms on a desk at an angle of approximately 45◦ to create a 90◦ elbow angle (Figure 3b).
Subsequently, each participant was asked to conduct six hand actions, including hand
open (HO), hand close (HC), wrist extension (WE), wrist flexion (WF), wrist pronation
(WP), and wrist supernation (WS), as shown in Figure 3c. These hand actions represent
agonist and antagonist movements that trigger flexor and extensor muscle groups within
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the forearm, and thus are commonly exploited for sEMG signal processing in myoelectric
control research [31–33].
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A session was defined as one data recording consisting of 10 repetitions of the same
hand action, as shown in Figure 3d. Each session commenced with the participant resting
their hand for approximately eight seconds. A hand action was initiated and held for one
second, which was then repeated ten times. The process was cued by a visual prompt, with
a hand rest period lasting for four seconds in between. A time sequence of a typical session
is shown in Figure 3d. Each hand action session was repeated five times. In total, each
hand action was performed 50 times for each participant.

2.2. sEMG Data Processing

Figure 4 outlines the data processing protocol. Figure 5a shows typical sEMG signals
generated during WE actions, and Figure 5b shows the corresponding segmented signals.
Signal segments were defined based on the time sequence, as shown in Figure 3d. The
duration of each signal segment was two seconds, ensuring the signal associated with a
one-second hand action was fully encased. The start and end points of each segment were
positioned so that the location of peak signal activity across both electrodes occurred at the
center of that segment. Full-wave rectification [34] was then performed on the segmented
signals (Figure 5c), converting negative signal components into positive counterparts.
Subsequently, a third-order low-pass Butterworth Filter with a cut-off frequency of 5 Hz was
applied to the rectified signals (Figure 5d), producing envelope-like profiles. The filtered
signals were subsequently used for feature extraction. Pearson’s correlation coefficient
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was calculated using filtered sEMG signals from both electrodes to study the correlation
between the sEMG signals produced by the medial and lateral electrodes. Low correlation
was defined as a correlation coefficient of 0.5 or below [35].
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(c) full-wave rectified signals, and (d) filtered signals, including exemplar identification of features of
minimum and maximum voltages (Vmin and Vmax).

2.3. Feature Extraction

Six features were extracted from full-wave rectified and filtered sEMG signals for each
electrode. This resulted in a total of 12 features per data segment, including mean voltage
(Vmean), maximum voltage (Vmax), minimum voltage (Vmin), standard deviation of voltage
(VSD), skewness (skew) of voltage, and kurtosis (kurt) of voltage. These features have been
previously adopted for pattern recognition using sEMG signal classification [36]. Table 1
summarizes equations that were used to determine feature values of Vmax, Vmin, Vmean,
VSD, skewness, and kurtosis. These features were subsequently input into machine learning
models without calibration or standardization to simplify the process.
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Table 1. List of the features with corresponding equations and definitions.

Feature Equation Definition

Vmean
1
n

n
∑

i=1
Vi (1) The mean absolute voltage.

Vmax max(Vi) (2) The maximum absolute voltage value.

Vmin min(Vi) (3) The minimum absolute voltage value.

VSD

√
1

n−1

n
∑

i=1
|Vi − Vmean|2 (4) The standard deviation of the absolute voltage.

Skew ∑n
i (Vi−Vmean)

3(√
1
n ∑n

i=1(Vi−Vmean)
2
)3 (5) A measure of asymmetry.

Kurt
1
n ∑n

i=1(Vi−Vmean)
4

( 1
n ∑n

i+1(Vi−Vmean)
2)

2 (6) A measure of tailedness.

n: total number of sEMG signal samples; Vi: ith sEMG signal sample after rectification and filtering

2.4. Machine Learning

Features obtained from each participant were used to train KNN, LDA, and SVM
algorithms, respectively. The flowchart in Figure 6 outlines the underlying principles
for KNN (Figure 6a) [37], SVM (Figure 6b) [38], and LDA (Figure 6c) [39] algorithms.
Overall classification accuracy, along with action-specific accuracy, precision, sensitivity,
and F1-score [40] were used to define a model’s performance metrics. Model performance
metrics were subsequently evaluated with respect to the number of features used (up to 12)
for training. All mean performance metrics were calculated using all possible combinations
of the 12 features across the two electrodes.
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A 5-fold validation process [41] was used to quantify classification performance for
each machine learning model. Confusion matrices were subsequently generated using
feature values, enabling calculation of four parameters for each hand action. These are true
positive (TP), true negative (TN), false positive (FP), and false negative (FN).
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Action-specific performance metrics, displayed in Equations (7)–(10), were calculated.

Action Precision =
TP

TP + FP
(7)

Action Sensitivity =
TP

TP + FN
(8)

Action-Specific Accuracy =
TP + TN

TP + FP + TN + FN
(9)

Action F1-Score =
2 × Precision × Sensitivity

Precision + Sensitivity
(10)

Overall classification accuracy across all hand actions can be defined as the percentage
of total TP, shown in Equation (11).

Overall Classification Accuracy =
∑ TP

Total Data Samples
(11)

3. Results
3.1. Processed sEMG Signals

Figure 7 shows mean and ±1 SD of processed sEMG signals obtained from all partici-
pants, plotted on a range from 0 to 250 µV. Considering all hand actions, HO produced the
highest correlation coefficient of 0.99 (Figure 7a), while HC resulted in the lowest correlation
coefficient of 0.05 (Figure 7d). WE, WF, WS, and WP produced correlations of 0.25, −0.48,
−0.34, and −0.07, respectively.
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Table 2 summarizes the mean of feature values across all participants, which ranged
within 18.6–53.8 µV (Vmean), 62.5–204.5 µV (Vmax), 9.0–23.2 µV (Vmin), and 10.6–52.1 µV
(VSD). Skewness and kurtosis fell in the ranges of 1.5–2.4 and 5.1–10.2, respectively. There
is a distinct difference between Vmax values from the medial and lateral electrodes for WE
and WF. For instance, WE led to Vmax of 81.8 µV and 204.5 µV across the medial and lateral
electrodes, respectively, while WF led to Vmax of 171.0 µV and 102.3 µV across the medial
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and lateral electrodes. This may be due to the fact that electrodes were placed directly on the
corresponding activation muscles, namely extensor carpi radialis and flexor carpi radialis
during WE and WF. On the other hand, Vmax values obtained from medial and lateral
electrodes for HC were 155.5 µV and 153.2 µV, respectively, while Vmax values obtained
from medial and lateral electrodes during HO were 101.4 µV and 148.4 µV, respectively.
The difference in Vmax between the two electrodes during HC and HO was minimal. This
may be because HO and HC actions require activations from similar muscle groups and
thus the Vmax feature may not be best suited to distinguish these types of hand actions.
However, it was noted that the medial electrode resulted in VSD of 22.5 for HO and 34.9 for
HC, which could be used as dominant features in the classification algorithm. Nonetheless,
this study included all features to train machine learning models with a view to focus on
comparing the machine learning algorithms.

Table 2. Mean of feature values obtained from all participants.

Medial

Action Vmean (µV) Vmax (µV) Vmin (µV) VSD (µV) Skew Kurt

HO 28.5 101.4 10.6 22.5 1.8 6.2
HC 38.7 155.5 11.7 34.9 1.8 6.5
WF 33.8 171.0 9.7 36.8 2.1 7.0
WE 19.0 81.8 9.0 12.7 2.4 10.2
WS 18.6 62.5 10.5 10.6 2.1 8.3
WP 23.8 121.6 9.2 21.7 2.0 7.9

Lateral

Action Vmean (µV) Vmax (µV) Vmin (µV) VSD (µV) Skew Kurt

HO 45.8 148.4 16.1 33.1 1.5 5.2
HC 51.9 153.2 23.2 28.6 1.6 5.7
WF 33.6 102.3 14.6 18.2 1.9 7.7
WE 53.8 204.5 13.8 52.1 1.6 5.1
WS 33.4 83.0 17.1 15.0 1.5 5.6
WP 37.2 109.4 17.2 19.6 1.6 6.3

3.2. Action-Specific Performance Metrics

Figure 8 displays typical examples of confusion matrices generated from one partic-
ipant using SVM. It is worth noting that features used for classification were randomly
selected for the three-feature and six-feature models.
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Figure 8. Example of confusion matrices obtained with SVM algorithm based on signals obtained
from one participant using (a–c).

For the three-feature model, WE action was correctly classified six times (third row
and third column in Figure 8a) and incorrectly classified 44 times, resulting in a classifi-
cation accuracy of 12%. This increased to 42 times (Figure 8b) and 50 times (Figure 8c)
when the number of features increased to six and twelve, respectively. TP, TN, FP, and
FN were calculated using confusion matrices generated from the machine learning mod-
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els using all possible feature combinations. Subsequently, performance metrics (using
Equations (7)–(11)) were calculated using all possible feature combinations.

Figure 9 displays mean TP, TN, FP, and FN values as a function of the number of
features for the six different hand actions. WF action resulted in the highest number of
correct classifications of all hand actions (maximum TP of 47.8), whereas WP and WS show
the lowest number of correct classifications (maximum TP of 40.9 and 41.1, respectively).
HO and WF were shown to have the lowest false classification, namely FP (Figure 9c)
and FN (Figure 9d), dropping below 5 (10% of total data samples). TN (Figure 9b) has a
mean maximum value of 243.7, further demonstrating a high level of correct classification.
Performance metrics, as shown in Figure 10, were subsequently calculated using TN, TP,
FP, and FN values based on Equations (7)–(11).
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Figure 10 displays mean values of action-specific performance metrics as a function
of number of features. It is evident that all performance metrics increased with number
of features and eventually plateaued. We defined the onset of the plateau as the point at
which relative change between consecutive feature accuracies was within 5%. For precision
(Figure 10a) and sensitivity (Figure 10b), profiles began plateauing at approximately five
features, with mean corresponding accuracies of 79 ± 8% and 79 ± 8%, respectively, with
both reaching a maximum accuracy of 88 ± 6%. Action-specific accuracy (Figure 10c) began
to plateau at two features (corresponding to a mean of 88 ± 2%), reaching a maximum of
97 ± 2%. F1-score (Figure 10d) plateaued at five features, corresponding to a mean value of
79 ± 8%, and reached a maximum value of 87 ± 7%.



Sensors 2024, 24, 2383 10 of 15Sensors 2024, 24, x FOR PEER REVIEW 10 of 16 
 

 

 
Figure 10. Mean profiles of (a) precision, (b) sensitivity, (c) action-specific accuracy, and (d) F1-score 
across all participants. Vertical lines indicate plateau onset values for number of features and hori-
zontal lines indicate corresponding mean performance metrics. 

3.3. Overall Accuracy 
Figure 11 shows overall classification accuracy for each algorithm in relation to num-

ber of features using all possible feature combinations. Overall accuracy in the range of 
30–95% was achieved for the selected numbers of features, with a maximum overall clas-
sification accuracy of 93 ± 2%. Akin to Figure 10, a logarithmic relationship was also re-
vealed, which started to plateau at five features (83%). Overall classification accuracy 
achieved using SVM algorithm was slightly higher than those from KNN and LDA algo-
rithms. It should be noted that the minimum–maximum range is relatively low (13 ± 5%) 
for all data points, representing low variation across participants. 

Figure 12 compares overall classification accuracy across KNN, LDA, and SVM clas-
sification algorithms. It is evident that SVM resulted in higher accuracy (up to 93 ± 3%) 
than that of LDA (up to 92 ± 4%) and KNN (up to 90 ± 5%). This trend is consistent regard-
less of the number of features used for classification. 
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3.3. Overall Accuracy

Figure 11 shows overall classification accuracy for each algorithm in relation to number
of features using all possible feature combinations. Overall accuracy in the range of 30–95%
was achieved for the selected numbers of features, with a maximum overall classification
accuracy of 93 ± 2%. Akin to Figure 10, a logarithmic relationship was also revealed, which
started to plateau at five features (83%). Overall classification accuracy achieved using
SVM algorithm was slightly higher than those from KNN and LDA algorithms. It should
be noted that the minimum–maximum range is relatively low (13 ± 5%) for all data points,
representing low variation across participants.

Sensors 2024, 24, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 11. Overall classification accuracy as a function of number of features averaged across all 
participants, where the corresponding values in the literature are indicated by the shaded band and 
the dashed line indicates accuracy at which plateauing occurs. 

 
Figure 12. Comparison of overall classification accuracy across KNN, LDA, and SVM algorithms for 
3, 6, 9, and 12 features. 

4. Discussion 
This study utilized sEMG signals from two electrodes to classify typical hand actions. 

A high correlation coefficient from HO actions (0.99) is shown in Figure 7a. This may be 
a ributable to activation of dorsal interossei muscles, located between the fingers during 
HO action. However, corresponding sEMG signals from medial and lateral forearm mus-
cles likely represent subsequent movement associated with wrist stabilization, which re-
quires concurrent contractions, and thus can be considered complementary. In contrast, 
HC actions (Figure 7d) resulted in the lowest correlation coefficient (0.05). This may po-
tentially be due to contractions of the palmaris longus (medial area of the forearm) re-
quired during HC action, whereas the lateral muscles play a secondary and assistive role 
to ensure wrist stabilization for different actions. Low correlation coefficients (−0.5 to 0.5) 
were obtained for all other hand actions, which indicates limited crosstalk between medial 
and lateral sEMG signals. This was expected because the two electrodes were placed at 
opposite sides of the forearm on two distinct muscle groups. Crosstalk reduction among 
electrodes is desirable for signal processing since multi-collinearity caused by crosstalk 

Figure 11. Overall classification accuracy as a function of number of features averaged across all
participants, where the corresponding values in the literature are indicated by the shaded band and
the dashed line indicates accuracy at which plateauing occurs.



Sensors 2024, 24, 2383 11 of 15

Figure 12 compares overall classification accuracy across KNN, LDA, and SVM classi-
fication algorithms. It is evident that SVM resulted in higher accuracy (up to 93 ± 3%) than
that of LDA (up to 92 ± 4%) and KNN (up to 90 ± 5%). This trend is consistent regardless
of the number of features used for classification.
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4. Discussion

This study utilized sEMG signals from two electrodes to classify typical hand actions.
A high correlation coefficient from HO actions (0.99) is shown in Figure 7a. This may be
attributable to activation of dorsal interossei muscles, located between the fingers during
HO action. However, corresponding sEMG signals from medial and lateral forearm muscles
likely represent subsequent movement associated with wrist stabilization, which requires
concurrent contractions, and thus can be considered complementary. In contrast, HC
actions (Figure 7d) resulted in the lowest correlation coefficient (0.05). This may potentially
be due to contractions of the palmaris longus (medial area of the forearm) required during
HC action, whereas the lateral muscles play a secondary and assistive role to ensure wrist
stabilization for different actions. Low correlation coefficients (−0.5 to 0.5) were obtained
for all other hand actions, which indicates limited crosstalk between medial and lateral
sEMG signals. This was expected because the two electrodes were placed at opposite
sides of the forearm on two distinct muscle groups. Crosstalk reduction among electrodes
is desirable for signal processing since multi-collinearity caused by crosstalk may lead
to unstable numerical solutions and model bias [42], which are known factors affecting
classification accuracy. It is plausible to note that high-density sEMG multi-electrode
systems (i.e., >2 electrodes) may incur greater signal crosstalk than those of two-sEMG-
electrode systems. Thus, a tradeoff between advanced functions and accuracies may need
to be considered in future multi-electrode systems.

Precision (88 ± 6%, in Figure 10a) and sensitivity (88 ± 6%, Figure 10b) were lower
than previously reported values, i.e., 98% [43,44]. Considering the function-driven nature
of a prosthetic hand, precision is usually considered more important than sensitivity for
classification models [45]. Imprecise classification models may result in a greater number of
false positives, which may subsequently lead to unstable control of a prosthesis. Real-world
consequences include unprovoked prosthetic hand activations, resulting in items being
dropped or gripped harder than intended, both of which have been frequently reported
in this field [46] as one of the main contributing factors for high rejection rates [9]. On the
other hand, low sensitivity could be associated with higher rates of false negatives, for
instance, when a prosthesis user intends to perform a hand action, but the activation is not
realized. Such devices could require users to overexert themselves when producing muscle
activations, potentially leading to muscle fatigue or damage over time [47]. Consequently,
such prosthetic hands are often deemed less responsive, which has also been reported to
potentially be associated with device rejection [48].
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Figures 10 and 11 indicate logarithmic relationships between the number of features
used and corresponding performance metrics. Classification accuracy plateaued at five
features, indicating a small difference in classification performance (i.e., relative difference
of less than 5%) when further increasing the number of features beyond five. However, this
logarithmic relationship may be dependent on the type and number of features selected.
While we only used time-domain features in this study, features in the frequency or time-
frequency domain, for instance, may further increase classification accuracy. Additionally,
multimodal sensor fusion via addition of other sensing features, such as inertial measure-
ment units for motion detection [49] and/or force sensors for fingertip haptic feedback [50],
could also be employed to create a more data-rich environment in order to improve overall
accuracy. In those cases, it would be prudent to consider the potential constraints on data
transfer and processing for large-scale datasets. Nonetheless, these results suggest there
may be a limit to the number of features required to achieve high performance metrics
when using two-sEMG-electrode prosthetic systems.

Figure 10 shows high action-specific classification accuracies (>90%) and F1-scores
(>80%) were achieved for each hand action. High F1-scores obtained in this study sug-
gest that in such a two-sEMG-electrode setup, features and machine learning algorithms
adopted may be suitable for future prosthetic hand controls and actuation. Figure 11
shows high overall classification accuracies (93 ± 2%) can be achieved using sEMG signals
from only two electrodes, which falls in the range of those reported in previous studies
(79–99%) [16–20,22,23]. In addition, a relatively small variation in overall classification
accuracy (13 ± 5%) indicates accuracy is somewhat not dependent on participants’ capa-
bilities. We thus believe there could still be research potential in this field, particularly
with a view of unravelling and optimizing the performance of these two-electrode systems.
This could be performed in parallel with the development of multi-electrode myoelectric
prosthetic hands, thus presenting alternative options to meet users’ multi-faceted needs.

In this study, highest accuracy was achieved by SVM (up to 93 ± 3%) when classifying
six hand actions, as compared with LDA (up to 92 ± 4%) and KNN (up to 90 ± 5%), as
shown in Figure 12. This may be due to the fact that SVM algorithm training protocol is
based on maximizing the separation of classification boundaries for different hand actions.
Separation of classification boundaries is primarily sensitive to sEMG features generated by
distinctive hand actions, such as WF and WE. Feature values located at a greater distance
from the classification boundary would not notably affect classification performance. In
contrast, should a hand action, such as HO and HC, involve sEMG signals generated by
similar muscle groups, the separation of classification boundaries would reduce, which
may affect overall accuracy. For those types of hand actions, using an alternative algorithm
or hybrid algorithms may be favorable compared to SVM. It is worth noting that detailed
comparisons across different machine learning algorithms for hand action classification
have not been performed. Comprehensive machine learning evaluation may be advisable
to inform appropriate selection of classification algorithms best suited for desired hand
actions. This may further inform potential design of upper limb prostheses incorporating
machine learning.

Results produced in this study suggest SVM may be well-suited for classifying hand
actions with distinct muscle contractions, such as WE and WF actions. However, use of
hybrid machine learning models may potentially affect the separation of classification
boundaries for different hand actions with similar muscle activation patterns, which could
be explored in future work. In particular, SVM algorithm could be explored when used in
conjunction with sine cosine and cuckoo search algorithms [51], which may facilitate studies
involving a wider variety of hand actions. Although use of advanced algorithms may
notably increase computational demand, they may potentially enable improved control of
myoelectric prosthetic hands.

Future work could incorporate feature calibration to include scaling and normalization,
which may further improve classification accuracy. Additionally, this study focused on
the mean performance metrics at a set number of features. Further investigation could
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be conducted to better understand the impact of specific features, which may help to
achieve optimized classification models. While this study involved comparisons of three
commonly used machine learning algorithms, other algorithms such as logistic regression,
Naive Bayes, and decision tree, as well as hybrid algorithms could also be explored with a
view to further improve overall classification accuracies. State-of-the-art hybrid machine
learning algorithms could be adapted to decipher and classify real-time sEMG signals with
additional hand actions. Examples of these include two-phase cuckoo search-based deep
learning [51] or deep learning models combining auto-encoders and neural networks [43].

5. Conclusions

This study reports the acquisition, processing, and machine learning analysis of two-
sEMG-electrode signals obtained using a Delsys Trigno Research+ acquisition system.
sEMG signals for six common hand actions were attained from nine able-bodied partic-
ipants. Twelve sEMG features were extracted for machine learning studies to facilitate
comparison of KNN, SVM, and LDA algorithms. Hand action classification accuracies
were evaluated and compared across these algorithms. Classification accuracy was also
studied as a function of the number of extracted features. Results revealed that overall
classification accuracy of 93 ± 2% can be achieved based on two-electrode sEMG signals,
which is in line with values reported in the literature. Individual hand action classification
accuracy was found to reach 97 ± 2%, while action precision and sensitivity of up to
88 ± 6% were obtained. A logarithmic relationship between number of selected features
and classification accuracy was found, which also indicated five features could be sufficient
to achieve a reasonably high overall accuracy of 83%. Moreover, the effect of machine
learning algorithms on overall classification accuracy was demonstrated, with the highest
overall accuracy achieved using SVM (93 ± 3%), followed by LDA (92 ± 4%) and KNN
(90 ± 5%). Our analysis suggests that it may be advisable to evaluate suitable classification
algorithms based on different hand action selections. Future work could include further
studies involving other machine learning classification algorithms, such as hybrid machine
learning models, which may potentially reduce the separation of classification boundaries
for hand actions with similar muscle activation patterns. Inclusion of participants with
upper limb loss could also enable study of physiological differences in muscle actions.
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