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Abstract: The accurate depth imaging of piled products provides essential perception for the auto-
mated selection of individual objects that require itemized food processing, such as fish, crabs, or fruit.
Traditional depth imaging techniques, such as Time-of-Flight and stereoscopy, lack the necessary
depth resolution for imaging small items, such as food commodities. Although structured light
methods such as laser triangulation have high depth resolution, they depend on conveyor motion
for depth scanning. This manuscript introduces an active dual line-laser scanning system for depth
imaging static piled items, such as a pile of crabs on a table, eliminating the need for conveyor motion
to generate high-resolution 3D images. This advancement benefits robotic perception for loading
individual items from a pile for itemized food processing. Leveraging a unique geometrical config-
uration and laser redundancy, the dual-laser strategy overcomes occlusions while reconstructing a
large field of view (FOV) from a long working distance. We achieved a depth reconstruction MSE of
0.3 mm and an STD of 0.5 mm on a symmetrical pyramid stage. The proposed system demonstrates
that laser scanners can produce depth maps of complex items, such as piled Chesapeake Blue Crab
and White Button mushrooms. This technology enables 3D perception for automated processing
lines and offers broad applicability for quality inspection, sorting, and handling of piled products.

Keywords: 3D optical sensor; laser triangulation; active line scanner; depth imaging; surface pro-
filometry; surface topography

1. Introduction

With the advent of advanced imaging sensors and machine learning, machine vision
systems have become integral to automating tasks on industrial lines [1]. Robotic pick-
and-place operations have found wide application in food processing and manufacturing
industries [2] to alleviate labor shortages [3]. Vision-guided industrial processes are well-
suited for managing uniform, manufactured objects with predefined dimensions. However,
handling piles of non-uniform objects produced by nature, such as seafood, produce, and
other agricultural products, presents significant challenges that require intelligent sensing
and recognition. Agricultural products such as fruits and vegetables can be separated or
isolated using shaker/vibratory conveyors [4,5]. However, other products, such as crus-
taceans, often get entangled, complicating the separation process for itemized processing.
Therefore, sensing methods that involve 3D imaging and perception to capture the object
geometry and morphology are essential to achieve autonomous robotic tasks.

Depth imaging has emerged as a significant advancement in smart food processing [6].
Yet, current depth sensors have limitations and offer insufficient depth resolution for
accurately capturing small agricultural commodities where millimeter precision is required.
Furthermore, current optical depth imaging methods do not fully resolve the field of view
due to optical occlusions around pile apices.
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Three broad classes of 3D imaging principles exist: interferometry, Time-of-Flight
(TOF), and optical triangulation [6]. Interferometry techniques such as optical coherent
tomography have the highest depth resolution and accuracy in the order of micrometers,
making them successful in the medical field. However, they are scarce in industrial settings
because of their limited depth range, small field of view, and slow scan speed [7].

TOF-based sensors utilize the time and phase differences between emission and
reflected light to estimate the distance between the object and the sensor. They are more
suitable candidates for large FOVs and depth ranges, which is why LiDARs, one type
of TOF-based depth imaging modality, predominate the autonomous driving field [8].
However, TOF sensors, such as Intel Real Sense L515, have low depth reconstruction
accuracy, as shown in Figure 1, making them unsuitable for industrial lines where products
are small and require feature recognition in millimeter resolutions. To achieve a 1 mm
depth resolution, a TOF sensor requires timing a pulse that only lasts 6.6 picoseconds,
which cannot be attained in silicone at room temperature [9]. Recent advances in Direct-
TOF sensors and superconductivity enable techniques such as Single-Photon LiDARs to
achieve submillimeter resolution at a high frame rate. However, these sensors operate at
large working distances (on the order of hundreds of meters), limiting their use in indoor
industrial plants. Single-Photon LiDARs are also susceptible to fluctuating operating
temperatures and electrical noise [10], which is prevalent in industrial settings. Additionally,
these systems are costly and have a large footprint because they necessitate substantial
cooling equipment.
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Figure 1. Commercial RGBD cameras have poor depth resolution. (a) RGB image and (b) depth map
acquisition using Intel Real Sense L515. Notably, the low depth resolution cannot distinguish crabs in
a bucket at ~1 m image acquisition distance. The color camera and depth map have different fields of
view due to different sensor sizes.

Optical triangulation methods balance system complexity, accuracy, and depth range.
Optical triangulation uses geometrical optics to describe the relationship between the
cameras and/or structural light to measure depth. Passive optical triangulation methods,
such as stereo-vision and digital photogrammetry, reconstruct three dimensions using
multiple camera views. However, this process requires finding corresponding pixels from
separate camera frames. Passive acquisition methods are limited in industrial applications
because they struggle to reconstruct accurate depth maps if they cannot find the correspon-
dence [11]. Low disparity estimates can arise when one of the cameras is obstructed or
does not have the same line of sight as the other camera, failing to reconstruct depth maps.
Similarly, low disparity estimates can also arise if the target objects have repetitive regions
or surfaces with low texture [12].

To remedy the shortcomings of passive acquisition, active optical triangulations utilize
illumination sources to offer unique feature points, making it feasible to calculate depth
one point at a time. Essentially, active acquisition methods fix the correspondence issue
of passive counterparts by introducing artificial features. However, the resulting depth
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image quality relies on the illumination method. Illumination methods such as dot laser
scanners utilize a MEMS mirror to move a circular dot laser in the X-Y plane of the FOV.
In this method, the vertical scanning speed is usually the system’s bottleneck, leading
to longer acquisition times [13]. Two-dimensional structured light dramatically speeds
up scanning time, but the illumination patterns limit the lateral resolution of the depth
map. Multiple illumination pattern design strategies utilize color, shape, and frequencies
to generate varying image features [14,15]. In practice, the complexity of the pattern
(usually fringes or pseudo-random light-coded dots) and the ambiguity resulting from the
pattern designs are a pair of contradictions. Encoding complex 2D patterns minimizes the
reconstruction ambiguities and leads to higher accuracy, but decoding the complex patterns
becomes computationally expensive and more fallible. Environmental interferences such as
vibrations affect the decoding of patterns on an image-wide scale, making them unreliable
for industrial lines [16].

Line-scan-based optical triangulation methods can achieve relatively high depth map
accuracy while avoiding the potential crosstalk between image feature patterns that 2D
structured lighting suffers. Consequently, they received significant attention in industrial
applications [17]. The system typically comprises a fixed illumination laser and a sensing
camera setup. An optical encoder is mounted on the conveyor shaft, triggering camera
image acquisition. However, this synchronization strategy requires the conveyor to move to
achieve the scanning. The conveyor motion approach is limited when objects in a static pile,
such as a pile of crabs, need to be scanned and selected for itemized processing. If multiple-
depth images are required to complete the itemized picking task, the conveyor needs to
move back and forth several times to create the scans. The items are susceptible to changing
position during the conveyor movement and, thus, lose their image registration position.

Furthermore, depth line scan cameras suffer from occlusion, where high objects ob-
struct illumination or the optical path to the nearby regions (Figure 2). Robot [18] or
gantry-based [19] laser illumination could theoretically circumvent optical laser obstruction
and movement in product piles, but these methods are expensive and slow. The need for
extensive mechanical movement of large systems constrains the scanning speed. In contrast,
our approach demonstrated that manipulating the laser light path with a galvanometer
achieves much faster scanning speeds for static objects [20]. This is the first attempt in the
literature to address the obstruction issue using fast dual active line-laser scanning.
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Figure 2. Limitations of line-laser triangulation, whether through conveyor motion or active line
scanning, as it only illuminates and reconstructs a portion of a pile. The method fails to reach the far
side, restricted by the inherent constraints of the laser’s optical path.

This manuscript aims to develop an active laser scanning system to produce depth
images for agricultural processing lines. The imaging system has an overhead configuration
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to effectively capture large fields of views from a considerable working distance while
ensuring high reconstruction performance and depth range for the bulk imaging of piles.
The system is designed to accommodate diverse products with various textures, shapes,
and colors and function effectively in the mechanically and optically noisy conditions
typical of industrial environments.

2. Materials and Methods

The 3D imaging system employs a pair of line lasers (with different colors) and
galvanometers to manipulate light paths for scanning piled objects on industrial lines.
Featuring an overhead camera configuration, each laser galvanometric unit is strategically
placed upstream or downstream from the camera. This design offers multiple advantages
over single laser line scanners and line scan cameras. First, it enables scanning on static
industrial lines, which is crucial for maintaining the position and orientation of piled prod-
ucts. Second, the overhead camera setup is ideal for a bird’s-eye view, aiding robotic tasks
in expansive workspaces. Third, unlike passive 3D reconstructions using a stereoscopic
configuration, our system effectively scans textured and textureless products, expanding its
utility for diverse industrial lines. Lastly, the dual-laser redundancy in our setup overcomes
the limitations of traditional galvanometric methods, especially in illuminating obstructed
areas where objects’ apices peak in the middle of the field of view (FOV) and block the
light path. The laser redundancy also extends the height range in image regions where tall
objects might cause laser shifts to fall outside the FOV. The proposed system yields two
depth maps that enhance our depth reconstruction performance when merged.

2.1. Dual Line Laser Active Scanning Machine Vision System

As shown in Figure 3, the 3D scanning system is comprised of an overhead CMOS
camera (Basler AG, Ahrensburg, Germany, acA2000-340kc) with a focusable lens (Fujinon,
Tokyo, Japan, HF16A-2) and two galvanometric units up- and downstream (Figure 3). The
camera is connected to a frame grabber (Matrox Imaging, Dorval, QC, Canada, Rapixo CL
Pro) via two Camera Link connectors. The frame grabber and camera communicate via
the GenICam protocol, which operates on Low-Voltage Differential Signaling (LVDS)—an
electromagnetically proof standard for industrial lines with high electromagnetic noise
from motors and other equipment. The frame grabber and camera capture images at
1030 × 1086 pixels, corresponding to a FOV of approximately 350 × 371 mm. The lasers’
thickness is 1.4 mm (measured at the tabletop in the middle of the FOV). Therefore, the
FOV can be scanned in 250 frames. The camera is configured to ten taps (1X10-1Y) at
75 MHz clock speed. Both the camera’s Auto White Balance and Auto-Gain are turned
off to minimize inter-frame lighting variability and reduce acquisition time. The exposure
time is 2 milliseconds to reduce background noise and maintain the laser’s high-amplitude
signal. This configuration enables an acquisition rate of 360 frames/sec.

Each galvanometric unit consists of a focusable 20 mW line laser (CivilLaser 650 nm
and 532 nm) placed in front of a silver-coated mirror (Figure 3). The laser colors match the
optical bands where the CMOS sensor exhibits optimal quantum efficiency. The mirror is
attached to a single-axis galvanometer (Thorlabs, Newton, NJ, USA, GVS011) and reflects
the light downward through an opening in the galvanometric unit assembly. Both gal-
vanometer actuators are powered through a dedicated power supply (Thorlabs GPS011-US)
and controlled through an analog, high-precision motor driver. The position of the rotatory
mirror is determined by an analog input voltage signal with a resolution of 0.5 V per degree.
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Figure 3. Hardware flowchart: centralized computer triggers image acquisition through a frame
grabber and laser control via IO DAC. The overhead CMOS camera is positioned between two
galvanometric units. Each unit consists of red or green line lasers, a galvanometer (motor), a mirror,
and a heatsink. The red and green laser cones represent the laser optical reach.

The camera and galvanometric units are mounted on an overhead aluminum rail.
Several aspects of the system need to be aligned for optimal performance. First, a digital
leveler aligns the tabletop and overhead rails to ensure their planes are parallel to the
ground. Second, the laser position and orientation are manually adjusted inside the
galvanometric unit to enable the line illumination to run horizontally across the frame
at the same pixel height (ν pixels). The horizontal alignment is checked by comparing
the line laser’s position in the rightmost and leftmost pixels. Third, both line lasers are
focused on the middle of the image frame to obtain optimal focusing throughout the FOV.
It is important to note that laser thickness slightly varies due to laser defocusing at the
edges of FOV. The defocusing occurs due to the change of incidence angles and varying
travel distances. Finally, the input voltage controlling the mirror’s rotational position (τ) is
empirically adjusted to illuminate the first and last row of the image frame to determine the
lasers’ range. These input voltages correspond to the maximum and minimum projection
laser angles. All other intermediate laser projection positions and their respective motor
voltages are computed based on linear interpolation of the relevant range. This linear
interpolation essentially determines the scan step size of the motor.

A multifunctional I/O board (ACCESS I/O Inc., San Diego, CA, USA, PCIe-DA16-6)
commands an alternating sequence of hardware triggers to the frame grabber for image
capture and step scan motor movement. The scanning routine begins by capturing a
background color image where the lasers are absent in the FOV, followed by 250 laser-scan
images while the lasers sweep across the FOV. The acquisition procedure utilizes static
settings to minimize pixel-level variation between two subsequent frames. As shown
in Figure 4, the background image is subtracted from all laser images, resulting in the
laser signature only. This procedure reduces the effect of environmental lighting varia-
tions [13]. RGB and HSV color space thresholds are applied on laser images to split the
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laser-containing images into two stacks of binary masks (250 green and 250 red masks).
Segmented pixels are clustered and narrowed down to one pixel based on a column-wise
mean-shift algorithm [21].
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Figure 4. The post-processing procedure starts with laser-image subtraction from the background
image to isolate the laser signature from object features. The laser-only images undergo color thresh-
old to identify laser positions. The Y-shifts are determined by performing column-wise subtraction
between laser baseline position and object-based position. These Y-shifts are converted into depth
values through laser triangulation’s trigonometric calculations. Finally, both depth reconstructions
are combined to obtain a comprehensive depth map.

Column-wise subtraction between baseline and shifted positions facilitates geometric
calculations to reconstruct the depth map. Each set of masks reconstructs a depth map
independently. If both lasers reconstruct a particular pixel, the algorithm averages the
findings of the depth height. If neither laser reconstructs a pixel, missing regions are
filled by nearby heights. Matrox Imaging Library and C++ imaging SDKs are adopted in
post-processing and depth map reconstruction. The details and reconstruction procedure
are elaborated in the following sections.

2.2. Optical Triangulation and Object Height Estimation

The presented depth imaging design is based on optical triangulation. Figure 5
illustrates a side-view diagram of the geometrical theory behind optical triangulation.
When an object is placed in a laser line’s path, the overhead camera observes a shift from
the baseline measurement (Y = Ywb) to a new object-related measurement (Y = Ywo). Here,
Yw denotes the y-axis of the world coordinate frame, and the subscripts b and o correspond
to baseline and object-related measurements, respectively. Using a line laser, its illumination
traverses the X-axis (across the image frame) at a given Y-axis location. Assuming the
angle between the line laser and the ground at Zw = 0 is denoted as θ (where 0 ≤ θ ≤ π

and θ ̸= π
2 ), the relationship between the laser position shift and object height could be

computed using the following Equation:

Zwo =
(
ywb − ywo

)
× tan(θ) (1)

where Ywb and Ywo are computed from the camera pixel values represented by (ub, vb) and
(uo, vo), where u and v are the pixel locations in the rows and columns of the image frame.
The laser angle θ can also be inferred from the motor/mirror angle.
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2.3. Camera-to-World Calibration and Lens Distortion Correction

Two essential types of calibrations are conducted to obtain precise 3D reconstruction
from a conventional camera. Firstly, image-to-world frame calibration accounts for lens
distortions and scaling based on the camera pinhole model. Secondly, the laser-to-camera
calibration establishes the relationship between shifted laser positions and corresponding
known heights to form the basis of the trigonometric model. The laser-to-camera calibration
relies on calculation from the primary image-to-world coordinate calibration. The model
equations related to the camera-to-world calibration are described as follows.

Cameras’ optics project a 3D world onto a 2D image plane through extrinsic and
intrinsic transformations. The extrinsic parameters describe the six-dimension position
and orientation of the camera frame relative to the world coordinate reference point. The
intrinsic parameters of the lens maps position from the camera frame to pixel locations on
the camera sensor. Multiple chessboard images are experimentally utilized with an out-of-
shelf iterative linear regression algorithm [22] to obtain the camera’s intrinsic parameters.
The origin of the world coordinate system (Xw, Yw, Zw) is marked on the food-safe HDPE
table as a reference position to obtain the extrinsic matrix.

As mentioned in Section 2.1, laser-scanning images are processed to convert pixel
positions from the image frame to the camera frame and finally to world coordinates in
millimeters. This is the reverse order of transformations from the intrinsic and extrinsic
parameters. In the following procedure, the inverse of intrinsic and extrinsic parameters
is performed to transform the images from image frame to camera frame and then to
world frame.

To transform the image pixels to the camera frame, each pixel location (u, v) is multi-
plied by the inverse of the intrinsic matrix, as shown in the following Equation:Xnd

Ynd
1

 = M−1
I

u
v
1

 (2)

The resulting matrix is the same size as the image, where each pixel index (Xnd, Ynd)
contains normalized and distorted world-position values. To remove lens distortions, radial
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lens aberrations are corrected by dividing each pixel position with r = 1 + K1 × (Xnd + Ynd)2,
where K1 is the radial aberration coefficient obtained from intrinsic parameters [23]. Note
that experimental findings ignore tangential and high-degree radial distortion as they
account for <0.1-pixel reprojection error. The distortion removal equation is[

Xn
Yn

]
≈ 1

1 + k1
(
x2

nd + y2
nd

)[Xnd
Ynd

]
, (3)

where Xn and Yn are the undistorted normalized positions. A scaling factor is applied to
de-normalize the pixel positions to further transform pixels from the camera frame (Xn, Yn)
to world coordinates (Xw, Yw). At Xw = 0 and Yw = 0, the scaling factor zc ≈ r3,3 ∗ Zw + tz,
where Zw is known from the extrinsic parameter results. The relationship between the cam-
era frame, zc scaling factor, and the world coordinate are expressed in the following Equation:Xn

Yn
1

 =
1

Zc

Xc
Yc
Zc

 =
1

Zc

R

Xw
Yw
Zw

+ T

, (4)

where R is the 3 × 3 rotation matrix of the extrinsic parameter, and T is the 3 × 1 translation
matrix of the extrinsic parameters. Equation (4) is simplified to[

ZcXn − tx − Zwr1,3
ZcYn − ty − Zwr2,3

]
=

[
r1,1 r1,2
r2,1 r2,2

][
Xw
Yw

]
, (5)

where rm,n are the components of the extrinsic rotation matrix; m stands for the matrix
row, and n stands for the matrix column. Similarly, tx, ty, and tz are the components of
the extrinsic translation matrix. Therefore, Xw and Yw is symbolically expressed in the
following Equation: [

Xw
Yw

]
=

[
r1,1 r1,2
r2,1 r2,2

]−1[ZcXn − tx − Zwr1,3
ZcYn − ty − Zwr2,3

]
(6)

Given that the above calculations transform pixel coordinates (u, v) to world coordi-
nates (Xw, Yw) in millimeters, measurements of laser shifts, expressed in millimeters, are
integrated into a trigonometric model to reconstruct the Zwo heights. The following section
details the necessary trigonometric relations.

2.4. Laser-to-Camera Calibration Procedure

The laser calibration process is performed offline and consists of two types of scans.
The first type records baseline recordings Y = Ywb (for 250 images) by scanning the lasers
across the FOV with no object. The second type of scan utilizes the same injection angles
(τ) to capture images with shifted positions based on variable object heights (Zwo). A
manufactured calibration phantom with known heights is used to facilitate this. The stage
ranges from 5 to 50 mm with a step size of 5 mm, as depicted in Figure 6a. Subsequent
scans are conducted while adjusting the phantom stage’s position within the FOV. Images
from each scan with the laser scanning the calibration phantom data are kept for further
calibration calculations. Essentially, this method produces 250 images representing laser
shifts (Y = Ywo) associated with known Zw and their corresponding injection angle (τ)
that are used for later calculations. Figure 6b,c exemplify one of the baseline recordings
alongside the corresponding calibration phantom image for red and green lasers.

Baseline projection positions (Ywb), object-shifted projection positions (Ywo), and
their corresponding real-world heights (Zwo) are experimentally determined at specific
galvanometer/mirror positions (τ). However, accurately measuring projected angles, θ,
with the ground plane remains a challenge. Although Figure 7 and Appendix A detail
the linear relationship between ∆τ and ∆θ where ∆θ = 2∆τ, the absolute θ values are
unknown. The absolute θ values are contingent upon the galvanometer’s position in free
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space relative to the FOV. Each galvanometer requires independent calibration to discern
its absolute θ values. Thus, a procedure to backward calculate θ values is formulated. This
is accomplished by experimentally establishing the relationship between the projected shift
positions (Ywb − Ywo) for an object with a known height (Zwo) at a designated galvanometer
motor position (τ). The laser projection angle θ is calculated using the following Equation:

θ = cot−1
(

vb − vo

Zwo

)
, (7)

which is a variation and simplification of Equation (1) under the experimental setting,
ub = uo (only Y-shifts are considered).
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Figure 6. (a) Calibration phantom with 5 to 50 mm steps in 5 mm increments for depth calibration.
(b) Green baseline and shifted laser recordings at a specific galvanometer position (τ). (c) Comparable
red line laser images. Each set of laser images represents one of 250 images captured during the laser
calibration process.
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Figure 7. Diagram illustrating the geometric relationships between the galvanometer’s mirror
position and the resulting angles’ θs with the ground, where the ground is defined as Zw = 0. Here, N
represents the normal line from the mirror’s positions, τ denotes the angle position of the mirror, θi is
the incident angle, and θr is the reflected angle. By applying the law of reflection and considering
corresponding angles, the change in angle is given by ∆θ = 2∆τ.

Similar computational procedures are conducted for all disparity values (Y-shifts)
to estimate the mapping between laser projection positions and the corresponding laser
projection angles in the entire FOV. This mapping is described as {v1

b, v2
b, v3

b, . . ., vN
b } →
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{θ1, θ2, θ3, . . ., θN}, where N is the number of scan lines (N = 250 lines in our experiments).
The mapping results are later utilized for online depth reconstruction. For a given laser
projection position (ui

b, vi
b), based on the corresponding laser projection angle θi and laser

position shift (uo
b, vo

b), the object height (Zwo) at position (ui
o, vi

o) can be estimated using
the Equation:

Zwo =

r0,0 × Tz

R−1
xy

(vb − vo) +
−r1,0 × Tz

R−1
xy

(ub − uo)

cot(θ) + R−1
xz

R−1
xy

+

(
−r1,0 × r2,2

R−1
xy

)
uo +

(
r0,0 × r2,2

R−1
xy

)
vo

, (8)

where the constants R−1
xy and R−1

xz are derived from the extrinsic matrix rotational compo-
nents as follows:

R−1
xy = r0,0r1,1 − r0,1 r1,0, (9)

R−1
xz = r1,0r0,2 − r0,0 r1,2, (10)

where rm,n are the components of the extrinsic matrixes, m stands for the matrix row, and
n stands for the matrix column. Equation (8) integrates camera transformation results
(Ywb and Ywo) from Equation (6) and laser geometric transformations from Equation (1)
for accurate depth reconstruction. This model is applied to every detected line laser pixel
across the frame (column-wise) and is iteratively applied to each image in the scan sequence.
Comprehensive depth reconstruction is achieved by linearly interpolating missing gaps in
the depth information not captured in the scanned images.

2.5. Depth Resolution and Maximum Depth Estimates

For scanning laser triangulation, theoretical depth resolution is expressed as the ratio
of the acquired depth estimate to the laser shift in the Y-direction. Equation (11) is a
variation of Equation (8), presenting the calculation of the system’s theoretical resolution
by simplifying the X-axis components as follows:

Depth Resolution
∣∣∣∣ zwo

vb − vo

∣∣∣∣ ≈
∣∣∣∣∣∣∣∣

r0,0 × Tz

R−1
xy

cot θ+
(

−r1,0 × r2,2

R−1
xy

)
+

(
r0,0 × r2,2

R−1
xy

)
vo

∣∣∣∣∣∣∣∣ (11)

When expressed for a single line laser, the resolution is strongly influenced by the θ

angle in the denominator. A reduced θ inherently yields a finer depth resolution. However,
this concurrently restricts the maximal height measurement, given that a theoretical max-
imum height is defined by Zmax

w = ∆Ymax ∗ tan(θ). Therefore, a tradeoff exists between
the maximum height measurement and depth resolution. In the experimental setup, this
balance is acknowledged by strategically positioning the galvanometers relative to the FOV,
where most θ values are close to 45 degrees. Additionally, a more accurate, experimentally
derived resolution accounts for depth values from both lasers, averaging their readings
based on each laser’s θ value. Since the lasers scan from opposite directions, a high θ value
in one laser ensures the other possesses a lower θ value. This is an intrinsic advantage of
our system geometric setup, which contains scanning line lasers from opposite directions.

2.6. Performance Assessment and Agricultural Use Cases

Multiple manufactured calibration stages are scanned and reconstructed to assess the
developed depth imaging system and gauge the setup’s accuracy and depth resolution.
These stages are an unbiased benchmark considering their known and precisely measured
heights. The first stage features a sloping periphery that enables us to quantitively examine
the system performance in accurately and precisely reconstructing sloped surfaces. The
second stage comprises a 3D-printed pyramid with a 0.1 mm layer resolution. It is designed
to be symmetrical and has an apex, so it is positioned at the center of the FOV for a robust
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assessment. This arrangement enables assessing the system’s performance across varying
projection angles θ and different object heights along the Xw and Yw axes.

Finally, to demonstrate the capabilities and versatility of the depth imaging system,
two types of agricultural products are scanned: Chesapeake Blue crabs and White Button
mushrooms. Crabs’ medium size and complex morphology highlight the system’s ability
to capture depth maps of intricate and overlapping objects in a pile. On the other hand,
mushrooms, which are smaller and feature a uniform texture and color, present a different
challenge due to their tendency to cluster tightly in piles, making individual heights difficult
to distinguish.

To illustrate the advantages of the dual line-laser system and its geometric setup,
the process is initiated by capturing colored images. Subsequently, the scanning routine
acquires, processes, and reconstructs depth maps. To underscore the utility of the dual-laser
setup, a depth map from each laser is generated independently before merging the two to
reveal their synergistic impact. Nevertheless, the system operates concurrently using both
lasers in real-time in normal operations.

3. Results

Figure 8 displays the experimental setup for the dual line-laser active system, featuring
a versatile aluminum T-slotted frame for adaptable component placement. The camera is
mounted 1000 mm above the tabletop. The beige HDPE tabletop is ideal for reflecting both
colors without being diffusive. The experimental setup accommodates a range of static
piles of agricultural products without any conveyor movement. The setup is mobile and
can be aligned alongside robots or other processing machines.
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3.1. Laser Calibration Analysis

Figure 9 depicts experimental results for the laser calibration step. The plots illustrate
the relationship between laser projection angles (θ) and the corresponding laser-projected
positions (v). This relationship exhibits a high degree of linearity, with an R2 = 0.998,
which is consistent with our expectations given the linear voltage-controlling strategy
that was previously mentioned. The lasers begin scanning from the opposite sides of the



Sensors 2024, 24, 2385 12 of 19

FOV, leading to a positive galvanometer offset for the red laser and a negative one for the
green laser.
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Figure 9. Relationship between laser-projected angle and laser position for (a) green laser and (b) red
laser. Lasers have opposing angle offsets due to their geometrical configuration at opposite ends of
the field of view.

In the scanning experiments, the total input voltage change for the galvanometer
is 4.55 V. The galvanometer’s mechanical position scale is 0.5 V/degree, translating to a
∆τ = 9.1 degrees. Following the linear relationship outlined in Appendix A, the theoretical
calculation of ∆θ = 2∆τ should yield an 18.2-degree change in the laser projection angle.
This corroborates the experimental findings for both lasers; specifically, with a linear
correlation slope of 0.018 over a range of 1030 pixels, the experimental ranges obtained
are ∆θred = 18.54 degrees and ∆θgreen = 18.54 degrees. The discrepancies between the
experimental and theoretical results are within the expected 0.4-degree resolution of the ∆θ

(0.2 degrees galvanometer resolution multiplied by two as per ∆θ = 2∆τ). With the laser
mapping equation in Figure 9, objects’ heights are reconstructed using Equation (8).

3.2. Maximum Depth Estimates

The theoretical maximum height Zmax
w = ∆Ymax ∗ tan(θ) when θ = θ0. In the ex-

perimental setup, the FOV has a ∆Ymax = 350 mm at θred = 51.741 degrees and θgreen =
50.975 degrees obtained from Figure 5. Thus, Zmax

w (red) = 443.831 mm and Zmax
w (green) =

431.828 mm. The maximum height is only effective on the lateral sections (vertically)
of the FOV. In the middle of the FOV, the maximum height is lower because Zmax

w =
∆Y(max)

2 ∗ tan(θ) at θ = θ125. Effectively, in the middle of the FOV, Zmax
w (red) = 306.124 mm

and Zmax
w (green) = 315.851 mm. The maximum heights between the Zmax

w at θ = θ0 and
θ125 can be linearly interpolated.

3.3. Depth Imaging Outcomes of Known Heights

The calibration phantom in Figure 10 is reconstructed to validate the system’s efficacy
for sloped surfaces. The stage has a flat top with a 50 mm height and 45-degree sloped sides.
Figure 10 presents the corresponding cross-sectional height estimation of the phantom. The
two slopes of the phantom were successfully reconstructed with an R2 value of 0.9996. The
height estimation error of the flat stage is 0.57 mm, and the standard derivation is 0.15 mm.
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Figure 10. (a) Sloped stainless steel phantom to examine reconstruction of sloped objects; (b) height
estimation across 1086 pixels. The R2 value for the reconstructed slope is 0.9996.

For the 3D-printed pyramid-shaped stage, the acquired color image, depth recon-
struction for each laser, and their final merged result are shown in Figure 11. Depth maps
reconstructed independently by each laser show gaps in the pyramid due to obstruction.
These gaps are filled in the merged depth map, showing the synergistic effect of the two
lasers. Masks are used to analyze the reconstructed heights compared to ground truth, and
their summarized results are shown in Figure 11 and detailed in Table 1. The overall system
has a Mean Squared Error (MSE) of 0.3 mm and a standard deviation (STD) of 0.5 mm. The
number of pixels tested for these results is also indicated for each height level.

Sensors 2024, 24, x FOR PEER REVIEW 13 of 19 
 

 

sides. Figure 10 presents the corresponding cross-sectional height estimation of the phan-
tom. The two slopes of the phantom were successfully reconstructed with an R2 value of 
0.9996. The height estimation error of the flat stage is 0.57 mm, and the standard derivation is 
0.15 mm. 

 
Figure 10. (a) Sloped stainless steel phantom to examine reconstruction of sloped objects; (b) height 
estimation across 1086 pixels. The R2 value for the reconstructed slope is 0.9996. 

For the 3D-printed pyramid-shaped stage, the acquired color image, depth recon-
struction for each laser, and their final merged result are shown in Figure 11. Depth maps 
reconstructed independently by each laser show gaps in the pyramid due to obstruction. 
These gaps are filled in the merged depth map, showing the synergistic effect of the two 
lasers. Masks are used to analyze the reconstructed heights compared to ground truth, 
and their summarized results are shown in Figure 11 and detailed in Table 1. The overall 
system has a Mean Squared Error (MSE) of 0.3 mm and a standard deviation (STD) of 0.5 
mm. The number of pixels tested for these results is also indicated for each height level. 

 
Figure 11. Depth reconstruction outcomes: (a) a 3D-printed pyramid as the object of study; (b) the 
colored image captured by the overhead camera; (c) masks applied for depth data assessment; (d) 
the depth results with standard deviation for each level. Depth maps using the (e) red laser and (f) 
green laser, each reconstructed independently; (g) the final depth reconstruction of both lasers 
merged. 

  

(a) (b) 

(a) (b) (c) (d) 

(e) (f) (g) 

Figure 11. Depth reconstruction outcomes: (a) a 3D-printed pyramid as the object of study; (b) the
colored image captured by the overhead camera; (c) masks applied for depth data assessment; (d) the
depth results with standard deviation for each level. Depth maps using the (e) red laser and (f) green
laser, each reconstructed independently; (g) the final depth reconstruction of both lasers merged.



Sensors 2024, 24, 2385 14 of 19

Table 1. Three-dimensional-printed pyramid depth reconstruction results. The ground truth heights
are the heights at which the pyramid is 3D printed. Mean heights are the average of all values
obtained at the location of the ground truth masks. Mean Squared Error (MSE), standard deviation
(STD), and pixels tested showcase the system performance and the number of pixels for each ground
truth height of the pyramid.

Ground Truth
Heights (mm)

Mean Heights
(mm) STD (mm) MSE (mm) Pixels Tested

50 49.161 0.198 0.702 6639
40 39.216 0.259 0.6143 17,605
30 29.392 0.873 0.368 34,591
20 19.597 0.350 0.161 47,834
10 9.938 0.861 0.003 58,821

3.4. Piled Object–Depth Maps from Dual Active Laser Imaging

The results of the depth reconstruction of the Chesapeake Blue crab and White Button
mushroom are shown in Figure 12. The green laser paths are obstructed from illuminating
the upper margin of objects in the FOV. Likewise, the red laser paths are obstructed
from illuminating the bottom margin of objects in the FOV. However, when both lasers’
contributions are overlaid, the resulting full-depth map shows the lasers’ synergistic effects.
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In contrast to previous analyses of objects with known heights, it is challenging to 
determine ground truth data for a random pile of agricultural commodities. The benefits 
of including a second scanning laser are quantitatively scrutinized by reporting each la-
ser’s contribution to the depth map. In the crab case, the red laser independently contrib-
uted 80% of the depth map, missing the rest due to obstructions. The green laser inde-
pendently contributed 79%. Of these red and green depth map pixels, both lasers over-
lapped by 65%. Synergistically, over 95% of all pixels were filled with depth data in the 
full reconstruction. 
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Figure 12. (a) Three-dimensional-printed Chesapeake Blue crab-colored image, depth reconstruction
using red and green lasers independently, and the merged depth map of both lasers. Similarly,
(b) mushroom-colored image, depth reconstruction using red and green laser independently, and
the merged depth map of both lasers. The final depth map showcases the synergistic effects of both
lasers’ contributions.

In contrast to previous analyses of objects with known heights, it is challenging to
determine ground truth data for a random pile of agricultural commodities. The benefits of
including a second scanning laser are quantitatively scrutinized by reporting each laser’s
contribution to the depth map. In the crab case, the red laser independently contributed
80% of the depth map, missing the rest due to obstructions. The green laser independently
contributed 79%. Of these red and green depth map pixels, both lasers overlapped by 65%.
Synergistically, over 95% of all pixels were filled with depth data in the full reconstruction.

Similarly, in the case of the mushrooms, the red laser independently contributed 77%,
and the green laser contributed 72%. Of these pixels, both lasers overlapped in 56% of the
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pixels. In the full reconstruction, 93% of all pixels were filled with depth data, and the rest
were data not detected by either laser. These results ultimately highlight the importance of
the geometric configuration in filling the missing gaps in piled products.

3.5. Image Acquisition and Depth Reconstruction Duration

Timing analysis is crucial for the system’s applicability to industrial settings. On
average, capturing a colored background image followed by 250 scanning images requires
approximately 740 ms, translating to an effective frame rate of about 338 Frames Per Second
(FPS). The acquisition speed is constrained by GenICam protocol and PCI-e bandwidth
limitations. Subsequent image processing tasks—such as image rotation, background
subtraction, and laser color segmentation—consume an additional 770 ms. Laser position
detection requires 1130 ms, while the trigonometric calculations essential for the full-depth
reconstruction algorithms are completed in 320 ms. Processing times are obtained using
the Intel Core i9-12900KF processor (Intel Corporation, Santa Clara, CA, USA). The time
needed for image acquisition and depth reconstruction is approximately 1.8 s. The system
stays static for only the acquisition time (740 ms).

4. Discussion

The depth imaging system has numerous advantages and far-reaching implications
for industrial applications. As of the writing of this study, the system can be constructed
for less than USD 5000, making it cheap and accessible for implementers in industrial
plants. Unlike traditional line scan cameras that require conveyor motion, the active
scanning approach captures the depth map of static items. This feature is particularly
beneficial for imaging piled products, where conveyor movement would disrupt their
arrangement and registered locations. The system enables the acquisition of colored
images with an overlaid depth map through a single camera. This is in contrast with
approaches like TOF and 2D structured light, which often require separate color and
depth imaging cameras and an additional registration step needed to match color and
depth images. The dual active laser imaging minimizes the risk of misalignment between
depth and color data and avoids extra registration operations. Such a feature proves
particularly beneficial for industrial lines requiring RGB-D data for tasks like sorting
or visual servoing [1]. Finally, in terms of robustness, the system not only rivals high-
end, industrial-grade depth cameras but also adapts effectively to varying ambient light
conditions. Camera Link’s Low-Voltage Differential Signaling (LVDS) communication
protocols, which resist electromagnetic interference from nearby industrial actuators, are
incorporated to enhance reliability.

Important insights and capabilities of the system are uncovered through experimenta-
tion. As the results show, the laser redundancy enables the illumination of crevices and
areas obstructed by nearby apices. Laser redundancy captures height information at the
image’s top and bottom boundaries, areas often neglected due to laser shifts falling outside
the FOV. The only limitation arises when one laser is obstructed and the corresponding laser
shift from the second also falls outside the FOV. The proposed setup accounts for uneven
laser thickness across the FOV due to changing incident angles and laser defocusing at
various optical paths. A uniform depth map is reconstructed by averaging data from both
depth maps. In the 3D-printed pyramid evaluation, the tested pixels obtained consistently
had a lower estimation than ground truth values. Although the errors are in the order of
the submillimeter, it is possibly due to the lens defocusing as items become closer to the
camera, which is a possible limitation of the system.

A thinner line laser and a larger number of laser illuminations (N values) lead to
higher depth map lateral resolution, whereas smaller N values save image acquisition
time. Therefore, active scanning systems have an intrinsic tradeoff between image lateral
resolution and scanning time. The reconstruction performance is determined by the pro-
jected laser angle θs for depth map accuracy, as shown in Figure 11. A smaller θ leads to
better depth resolution because it has a larger Y shift; however, it would inadvertently limit
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the maximum height measurement. Given a laser angle projection θ and the projection
position Ywb, the theoretical maximum height is Ywb × tan(θ). Hence, a tradeoff exists
between maximum height measurement and depth resolution. In the proposed system,
the galvanometer units were strategically placed close to 45 degrees to balance the depth
accuracy and maximum height. The plane-constrained configuration measures object
heights from Z = 0, where the world Z-axis points upward (towards the camera). Therefore,
the maximum depth estimates reported for the proposed system are synonymous with the
minimum working distance reported by other depth imaging methods.

The experimental results show the efficacy of the dual active line-laser scanning strat-
egy and its advantages in reconstructing the depth imaging of piled products. It is essential
to place the results within the broader context of current research. A recent study by
Xiang and Wang [24] provided a comparative analysis of depth imaging techniques in food
and agriculture applications assessing depth imaging approaches, use cases, advantages,
disadvantages, and price ranges. Besides high-depth reconstruction performance, the
dual line laser approach presents a cost-effective implementation and a robust calibration
process. This advances the state-of-the-art for laser scanning relative to other modalities.
Previous studies, such as those by Schlarp et al. and Yang et al., reported higher resolution
systems than the current study but were limited by a working distance of approximately
100 mm and small FOVs [10,25–29]. Small working distance inevitably leads to a small
height range of the depth map, which is critical in imaging piles. While these studies
present significant advancements in modeling, calibration, and depth reconstruction using
a single galvanometric line laser, the proposed dual line-laser system distinguishes itself
by imaging a significantly larger FOV with a long working distance and a more extended
height range of the depth map while maintaining submillimeter MSE and STD. Other
research efforts [30,31] attempted to develop single galvanometric scanning for longer
working distances of 1 to 2 m, but they reported higher margins of error that are as high as
10 mm. These findings underscore the advantages of utilizing a dual line laser approach
and merging their respective depth maps to mitigate the impact of outliers from a single
depth map.

The proposed approach is designed for flexibility and customization, enabling devel-
opers to optimize hardware according to required scanning speeds and desired accuracy.
The system’s speed, crucial for higher throughput in industrial settings, hinges on three key
aspects: scanning speed, communication, and image processing. The scanning hardware
triggering routine minimizes frame-to-frame crosstalk while maintaining high scanning
rates. Additionally, line laser utilization yields faster scanning compared to dot scanners.
Future work should explore unidirectional polygonal mirrors to maneuver the light path
faster than single-axis galvanometers used in experiments. For image acquisition, high-
speed industrial-grade CMOS cameras reduce scan durations. These cameras offer dynamic
shutter speed control—higher exposure times for well-lit colored frames and lower ex-
posure for increased FPS while effectively reducing ambient light interference. Future
upgrades will incorporate advanced Camera Link communication speed up, utilizing fiber
optics for enhanced bandwidth/frame rate support. Lastly, porting the algorithm and cali-
bration data to an onboard FPGA enables immediate depth map generation, significantly
accelerating processing [32] compared to computer processors that incur overhead.

The limitations of the dual active line-laser scanning strategy in industrial applica-
tions are multifaceted and contain inherent tradeoffs. First, the larger the FOV, the lower
the depth map lateral resolution at the same line laser width and scanning parameters.
Second, external noise influencing laser positioning in the image frame degrades depth
reconstruction and the lateral resolution of depth maps. Among the known contributing
noise variables are laser thickness, hardware errors associated with the galvanometer, and
post-processing algorithms that are crucial in determining the centroid of the laser position.
Third, the system requires precise calibration and cannot obtain reliable measurements
if the camera settings are altered. Fourth, as is common with most laser depth scanners,
scanning products with reflective surfaces is usually challenging due to specular reflection.
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A blue laser can partially mitigate this problem; however, selecting a camera with optimal
sensitivity to the blue light spectrum is essential. The colors of the objects imaged also
play a significant role because the light reflected off objects’ surfaces determines the RGB
threshold values for laser detection and localization. Objects with darker surfaces absorb
visible light, but higher laser powers can be utilized to mitigate color absorption. Finally,
high laser power poses eye safety concerns. Protective eyewear must accommodate laser
frequency, optical density, and diameter in industrial workspaces.

5. Conclusions

An active dual line-laser scanning system was introduced. The system employed two
line lasers coupled with programmable galvanometers to scan the FOV. Once calibrated
to real-world heights, the system produced depth maps with exceptional performance,
achieving an MSE of 0.3 mm and an STD of 0.5 mm. The method has advantages over
consumer-grade depth cameras that rely on 2D structured light and Time-of-Flight (TOF)
methods, which show standard deviations ranging from 1 to 5 mm at a 1m distance. Lever-
aging a unique geometrical configuration and laser redundancy, the system resolves depth
in challenging environments where overhead cameras face obstructions posed by piles
and concavities. The scan results of Chesapeake Blue crabs and White Button mushrooms
showed the synergistic effects of the two lasers in illuminating occluded areas. Although
initially designed for agricultural applications, the system is versatile enough to be adapted
for a wide array of textured and textureless products such as medical equipment and
automobile parts. Future work will enhance this design with computer vision algorithms
such as 3D object segmentation and robotics to transform unordered piles of products into
isolated items for streamlined food processing.

6. Patents
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Appendix A

Based on the principle of geometrical optics, given the following definitions of the
change in mirror positions (∆τ) and injected laser angles (∆θ):

∆τ = τ1 − τ2 (A1)

∆θ = θ1 − θ2 (A2)

We can derive a relationship between ∆τ and ∆θ. By the law of reflectance, the angle of
the incident ray is equal to the angle of the reflectance ray (from the normal), as illustrated
in Figure 7 and expressed by these equations:

θi1 = θr1 & θi2 = θr2 (A3)

Assuming that the laser paths are perpendicular to the Zw = 0 plane, we can use the
corresponding angles:

θi1 + θr1 + θ1 = 180 (A4)

θi2 + θr2 + θ2 = 180 (A5)

As the mirror position changes by ∆τ, the new incident angle can be expressed
as follows:

θi2 = θi1 + ∆τ (A6)

We solve for θi1 and θi2 from Equations (A4) and (A5) and plug them in Equation (A6)
to obtain the following:

180−θ2
2 = 180−θ1

2 + ∆τ

180 − θ2 = 180 − θ1 + 2∆τ

θ1 − θ2 = 2∆τ

(A7)

Hence, there is a linear relationship between the change in angles. The mathematical
relationship is shown in Equation (A8):

∆θ = 2∆τ (A8)

In the experiments, if the rotational mirror (∆τ) is controlled linearly, the laser projec-
tion angle (∆θ) also changes linearly.
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