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Abstract: With the emergence of wireless rechargeable sensor networks (WRSNs), the possibility of
wirelessly recharging nodes using mobile charging vehicles (MCVs) has become a reality. However,
existing approaches overlook the effective integration of node energy replenishment and mobile
data collection processes. In this paper, we propose a joint energy replenishment and data collection
scheme (D-JERDG) for WRSNs based on deep reinforcement learning. By capitalizing on the high
mobility of unmanned aerial vehicles (UAVs), D-JERDG enables continuous visits to the cluster
head nodes in each cluster, facilitating data collection and range-based charging. First, D-JERDG
utilizes the K-means algorithm to partition the network into multiple clusters, and a cluster head
selection algorithm is proposed based on an improved dynamic routing protocol, which elects cluster
head nodes based on the remaining energy and geographical location of the cluster member nodes.
Afterward, the simulated annealing (SA) algorithm determines the shortest flight path. Subsequently,
the DRL model multiobjective deep deterministic policy gradient (MODDPG) is employed to control
and optimize the UAV instantaneous heading and speed, effectively planning UAV hover points. By
redesigning the reward function, joint optimization of multiple objectives such as node death rate,
UAV throughput, and average flight energy consumption is achieved. Extensive simulation results
show that the proposed D-JERDG achieves joint optimization of multiple objectives and exhibits
significant advantages over the baseline in terms of throughput, time utilization, and charging cost,
among other indicators.

Keywords: wireless rechargeable sensor networks; unmanned aerial vehicles; deep reinforcement
learning; route protocol

1. Introduction

Benefiting from the advancements in wireless power transfer (WPT) technology [1,2],
wireless rechargeable sensor networks (WRSNs) equipped with wireless charging systems
have emerged as an effective solution for addressing node energy constraints [3,4]. Unlike
traditional approaches [5–7], WRSN fundamentally overcomes the predicament of nodes
relying solely on battery power. It provides a promising solution for the sustainable energy
replenishment of nodes [8–10]. WRSN normally includes one or more mobile charging
vehicles (MCVs) and a base station (BS) for the battery replacement of MCVs. MCV can
move autonomously and is equipped with a wireless charging device to replenish energy for
nodes by wireless charging. However, in remote and harsh environments, e.g., farmlands,
forests, or disaster areas, it becomes challenging for ground vehicles to enter designated
areas and perform close-range wireless charging [11–13]. Utilizing UAVs as aerial mobile
vehicles to provide remote services to ground devices is considered to bring significant
benefits to WRSN [14]. UAV possesses excellent maneuverability, coverage capabilities, and
relatively low operating costs. It can perform various tasks within the network coverage,
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such as routing, communication, data collection, and energy supply [15–18]. In UAV-
assisted wireless rechargeable sensor networks (UAV-WRSNs), UAVs can serve both as
energy transmitters and data transceivers. By continuously accessing and exchanging
data with nodes within their communication range, they can forward the data to the BS.
This eliminates the energy consumption caused by multihop transmissions between nodes.
Additionally, UAVs provide range-based charging to ensure simultaneous data collection
and energy replenishment.

Although UAV offers new possibilities for the future development of WRSN, more
research is needed to consider the unified process of node energy replenishment and data
collection in UAV-WRSN. There are still unresolved issues in UAV-WRSN. For example, in
a one-on-one node service scenario, UAV must hover multiple times, increasing hover time
and energy consumption, leading to subsequent node data overflow or energy depletion.
Moreover, target node selection is crucial to enable UAV to cover more nodes with each
hover. In practical environments, there is a significant difference in energy consumption
among nodes, and some nodes may run out of energy earlier due to heavy loads. There-
fore, balancing node energy consumption and solving the problem of energy imbalance
among nodes are equally important. Based on the above issues, this paper proposes D-
JERDG, which integrates node joint energy replenishment and data collection using deep
reinforcement learning.

The main contributions of this study can be summarized as follows:

• First, we consider deploying UAV in delay-tolerant WRSN and combining wireless
power transfer (WPT) with wireless information transfer (WIT) technologies. To
achieve the unified process of sensor node energy replenishment and mobile data
collection, we propose a deep-reinforcement-learning-based method called D-JERDG
for UAV-WRSN.

• We introduce a cluster head selection algorithm based on an improved dynamic
routing protocol to minimize the number of UAVs hovering and balance node energy
consumption. Based on the obtained cluster head visiting sequence, we employ
the simulated annealing algorithm [19] to approximate the optimal solution for the
traveling salesman problem (TSP), thereby reducing the UAV flight distance. We then
employ the DRL model MODDPG [20] and design a multiobjective optimized reward
function to control the UAV instantaneous speed and heading, aiming to minimize
the node death rate and the UAV’s average energy consumption.

• Simulation results are conducted to evaluate the feasibility and effectiveness of D-
JERDG. The results demonstrate that D-JERDG outperforms existing algorithms in
node death rate, time utilization, and charging cost.

The remaining parts of this paper are as follows: Section 2 introduces related work,
Section 3 describes the system model and problem formulation of UAV-WRSN, Section 4
presents the cluster head selection algorithm based on an improved dynamic routing
protocol and the MODDPG algorithm in D-JERDG, Section 5 validates the effectiveness
and feasibility of D-JERDG through comparative experiments, and Section 6 summarizes
the paper and discusses future research directions.

2. Related Work

In this section, we provide a brief overview of the existing work in three relevant
domains: cluster-based networks [21–28], traditional algorithm-based UAV trajectory
planning [29–37], and DRL-based UAV trajectory planning [38–43].

In traditional WRSN, the one-to-one node charging mode can often lead to inefficient
movement of MCV, resulting in wastage of energy. Moreover, the convergence nodes bear
the primary data transmission tasks, leading to faster energy depletion and premature
failure of nodes, thus affecting the overall network lifetime. To balance the energy consump-
tion of nodes, the charging method often involves dividing the nodes into several clusters
using a hierarchical clustering approach. Within each cluster, a few nodes closest to the base
station (BS) are selected as cluster heads, and communication links are established between
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the cluster heads and the BS, such as LEACH [21], K-means [22], Hausdorff [23], and
HEED [24]. These methods typically use a rotating cluster head approach to reduce energy
consumption and extend network lifetime. For example, in [25–28], the authors studied the
division of the network into multiple clusters using clustering algorithms. They employed
a mobile charger (MC) to periodically replenish the energy of anchor nodes in each cluster
according to the generated shortest visiting path. Wu et al. designed a joint solution that
integrates both aspects and proposed a heuristic-based MC scheduling scheme to maximize
the charging efficiency of the MC while minimizing its energy consumption [25]. Li et al.
proposed an energy-efficiency-oriented heterogeneous paradigm (EEHP), which is a rout-
ing protocol based on multihop data transmission. It reduces the energy consumption for
data transmission by employing multihop data transfer and shortens the charging distance
for the MC [26]. Han et al. used the K-means clustering algorithm to divide the network
into multiple clusters and proposed a semi-Markov model to update anchor nodes. They
deployed two MCs that periodically moved in opposite directions to visit anchor nodes,
charging the sensor nodes (SNs) within the charging range and collecting data from the
cluster heads [27]. Zhao et al. focused on achieving joint optimization of efficient charging
and data collection in randomly deployed WRSN. They periodically selected anchor points
and arranged MCV to visit these locations and charge the nodes sequentially [28].

For sustainable monitoring, WRSN can be applied in remote and resource-limited
areas, such as rural farmlands, forests, or disaster zones [29]. In such harsh environments,
UAVs can be used as auxiliary aerial base stations to efficiently collect data and replenish
node energy, which significantly benefits WRSN [30]. For example, in [31–34], researchers
studied scheduling and designing UAV trajectories to improve the system charging effi-
ciency. Xu et al. studied a new UAV-enabled wireless power transfer system to maximize
the total energy received by considering the optimization of the trajectory of UAV under
the maximum velocity constraint [31]. Liu et al. proposed UAV-WRSN and solved the
subproblems of UAV scheduling and trajectory optimization separately. They aimed to
minimize the number of UAV hover points, SN with repeated coverage, and UAV flight
distance [32]. Wu et al. investigated the trajectory optimization problem for UAV in UAV-
WRSN. They decomposed the problem of maximizing energy efficiency into an integer
programming problem and a nonconvex optimization problem, effectively reducing the
UAV flight distance and algorithm complexity and maximizing the energy utilization
efficiency of the UAV [33]. Zhao et al. proposed an improved ant colony algorithm to plan
UAV flight trajectories, achieving shorter flight paths and network lifetimes [34]. In [35–37],
researchers explored using UAVs as data collectors and mobile chargers, simultaneously
providing data collection and energy transfer to the nodes. Baek et al. considered node
energy consumption and replenishment to maximize the WRSN lifetime. They optimized
the UAV hover locations and durations to maximize the remaining energy of the nodes [35].
Lin et al. studied the collaboration between rechargeable sensors and UAVs to accomplish
regular coverage tasks. They introduced a new concept of coverage called periodic area
coverage, aiming to maximize the energy efficiency of the UAV [36]. Hu et al. formulated a
nonconvex optimization problem to minimize the average age of information (AoI). They
divided it into a time allocation problem and UAV trajectory optimization problem and
solved it optimally using dynamic programming and ant colony algorithms [37].

DRL has proven to be an effective solution for decision-making problems on sequential
data. It has been widely applied in various fields and has achieved notable results. In the
context of UAV-WRSN, several studies are worth mentioning: Bouhamed et al. employed
two reinforcement learning (RL) methods, namely, deep deterministic policy gradient
(DDPG) and Q-learning (QL), to train UAV for data collection tasks. DDPG was utilized to
optimize UAV flight trajectories in environments with obstacle constraints, while QL was
used to determine the order of visiting nodes [38]. Liu et al. proposed a UAV path planning
based on reinforcement learning, which enables the UAV to respond to the position change
of the cluster nodes, reduces the flight distance and the energy consumption, and increases
the time utilization ratio [39]. Li et al. proposed a flight resource allocation framework
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based on the DDPG algorithm. They optimized the UAV instantaneous heading, speed,
and selection of target nodes. They utilized a state representation layer based on long short-
term memory (LSTM) to predict network dynamics and minimize data packet loss [40].
Shan et al. presented a DRL-based trajectory planning scheme for multi-UAVs in WRSN.
They established a network model for multi-UAV path planning. They optimized the
network model using an improved hybrid energy-efficient distributed (HEED) clustering
algorithm to obtain the optimal charging path [41]. Liu et al. considered WRSN assisted by
UAVs and vehicles. In their study, UAVs served as mobile chargers to replenish energy for
nodes, while mobile vehicles acted as mobile base stations to replace UAV batteries. The
authors utilized a multiobjective deep Q-network (DQN) algorithm to minimize sensor
downtime and optimize UAV energy consumption [42]. Wang et al. proposed a dynamic
spatiotemporal charging scheduling scheme based on deep reinforcement learning, given
the discrete charging sequence planning and continuous charging duration adjustment
in mobile charging scheduling, to improve the charging performance while avoiding the
power death of nodes [43]. Table 1 shows how the related work differs from our scheme.

Table 1. Comparison of related works with D-JERDG.

References Optimization Objective Optimization Scheme Learning-Based Charging Mode

[20] Minimize UAV energy consumption
while maximizing UAV throughput DRL Yes One-to-multiple

[32] Minimize hovering points and flying
distance of UAV Particle swarm optimization No One-to-multiple

[33] Maximize energy efficiency Polynomial-time approximation No One-to-one

[34] Minimize trajectory path while
maximizing network lifetime Ant colony algorithm No One-to-one

[35] Maximize energy of nodes Geometry-based algorithm No One-to-one

[40] Minimize the overall data packet loss DRL Yes One-to-multiple

[41] Minimize charging path DRL Yes One-to-oneDynamic routing

[42] Minimize death time of nodes and
UAV energy consumption DRL Yes One-to-one

[43] Minimize node death rate DRL Yes One-to-one

D-JERDG
Minimize node death rate and flight
energy consumption while
maximizing UAV throughput

DRL
Dynamic routing Yes One-to-multiple

3. System Model and Problem Formulation

In this section, we present the system model and problem formulation of UAV-assisted
wireless rechargeable sensor networks (UAV-WRSNs). For the sake of clarity, Table 2 lists
the symbols used in this paper.

Table 2. Notation and definition.

Notations Definitions Notations Definitions

k total number of nodes Di(t) buffer length of node i
m number of CH nodes vu(t) speed of the UAV
h number of CM nodes θu(t) yaw angle of the UAV
Qmax buffer capacity of nodes α weight coefficient of CM nodes
Emax battery capacity of nodes Rc maximum charging distance
REi(t) remaining energy of node i Rd maximum data transmission distance
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3.1. System Model
3.1.1. Network Model

As shown in Figure 1, the network is deployed in a two-dimensional area and consists
of a UAV, a base station (BS), and randomly distributed sensor nodes. The UAV is assumed
to have computing and wireless transmission capabilities, be equipped with a sufficiently
charged battery, and be able to obtain its position through the Global Positioning System
(GPS). The BS has ample energy and communication capabilities, enabling direct wireless
communication with the UAV. The sensor nodes can monitor their remaining energy and
data fusion capabilities. Cluster member (CM) nodes send data packets to cluster head (CH)
nodes, which aggregate the data and store them in a data buffer. The UAV takes off from
the BS and follows a “fly-hover” pattern to visit each CH node in a predetermined order
continuously. The CH nodes consume energy to upload data packets to the UAV, while
the UAV provides charging to the nodes within its coverage range using radio frequency
transmission technology.

Figure 1. Network model of the UAV-WRSN.

3.1.2. Sensor Node Model

The network deploys k sensor nodes with fixed and known positions. Consider the
set of nodes in the network as Sx ≜ {s1, s2, s3, . . . , sk}. The CH nodes are denoted as chi ≜
{ch1, ch2, ch3, . . . , chm}, and the CM nodes are denoted as cmj ≜ {cm1, cm2, cm3, . . . , cmh}.
Assuming that node batteries can be charged within a very short time compared with the
data collection time by the UAV, we can neglect the charging time. Regarding the energy
consumption of nodes in sleep mode, since this portion of energy consumption is very small
and can be considered negligible, we have not included it as a significant influencing factor,
and therefore, it has not been incorporated into the node energy consumption. Nodes only
consume energy when receiving and transmitting data. The data buffer length of the CH
node chi at t is denoted as Dchi

(t) = [0, Qmax]. Based on the literature [43], assuming that,
at any time t, the energy consumption of the CM node cmj sending a unit data packet
(where the unit data packet size f is 1024 kb) to the CH node chi can be given as follows:

Ecm
j (t) = et

h

∑
j=1

f j,i (1)

where et indicates the energy consumption of transmitting unit data, the energy consumption
of the CH node chi can be divided into two parts: reception energy and transmission energy:
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Ech
i (t) =

h

∑
j=1

f j,i

m

∑
i=1

er + Et
chi
(t) (2)

where er indicates the energy consumption of receiving unit data, and the remaining energy
of the CM node cmj and the CH node chi at t can be respectively defined as follows:

REcm
j (t) = Ecm

j (t− 1)− Ecm
j (t) (3)

REch
i (t) = Ech

i (t− 1)− Ech
i (t) (4)

3.1.3. UAV Model

The UAV maintains a fixed flight altitude of H. It acquires the positions of all nodes
before taking off from the base station and maintains communication with the base station
throughout the operation. At t, the three-dimensional coordinates of the UAV can be
represented as [xu(t), yu(t), H]. The distance between the UAV and the node plays a
crucial role in determining the link quality and the ability of the node to upload data. In
our scenario, we assume that the UAV has limited communication and charging ranges,
denoted as Rd (maximum data transmission radius) and Rc (maximum charging radius),
respectively. ∆du,chtar

i
represents the distance between the UAV and the target CH node if

∆du,chtar
i
≤ Rd; the UAV enters the hovering state to collect data from the target CH node

and charge all nodes within the charging range. The instantaneous speed vu(t) and the
instantaneous heading angle θu(t) describe the flight control of the UAV. For safety reasons,
vu(t) must be within the minimum and maximum speed limits.

Vmin ≤ vu(t) ≤ Vmax (5)

This paper employs a rotor-wing UAV, and the energy consumption of the UAV can
be divided into propulsion energy consumption and communication energy consumption.
The propulsion energy consumption is further divided into flight energy consumption and
hovering energy consumption [20]. When the UAV has an instantaneous speed vu(t), the
propulsion energy consumption model of the UAV can be given as follows:

Epro
u (vu(t)) = P0(1 +

3vu(t)
2

U2
tip

) + Pf (

√
1 + vu(t)

4

4v0
4 −

vu(t)
2

2v0
2 )1/2

+ 1
2 d0ρairsrotor Arotorvu(t)3

(6)

where P0 and Pf are constants that represent the blade profile power and induced power in
hovering status, respectively; Utip indicates the tip speed of the rotor blade; v0 denotes the
mean rotor-induced speed; and d0, ρair, srotor, and Arotor, respectively, denote the fuselage
drag ratio, air density, rotor solidity, and rotor disc area. At t, UAV speed is vu(t), and the
flight energy consumption is expressed as E f ly

u = Epro
u (vu(t)). It is worth noting that the

UAV is in hovering status with flight speed vu(t) = 0 and hovering energy consumption
Ehover = Epro

u (vu(t) = 0). To facilitate the expression, we divide the time domain T into n
time steps, where each time step is denoted as t0, t1, t2, . . . tn; thus, the total flight energy
consumption of the UAV at each time step tn is given as follows:

Etotal
u (tn) =

∫ tn

0
Epro

u (vu(t))dt (7)

the UAV’s average flight energy consumption is given as follows:

Eave
u =

Etotal
u (T)

T
(8)
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3.1.4. Transmission Model

The wireless communication link between the UAV and the nodes mainly consists
of a line-of-sight (LoS) link and a non-line-of-sight (NLoS) link, similar to many existing
works [20,39,40]. Let the coordinate of the target CH node chtar

i be [xchtar
i

, ychtar
i

, 0]; the free

path loss of the LoS link between the UAV and chtar
i at t is modeled as follows:

hu,chtar
i
(t) = γ0∆du,chtar

i
(t)−2

=
γ0

H2 + (xu(t)− xchtar
i
)2 + (yu(t)− ychtar

i
)2

(9)

where the channel’s power gain at a reference distance of ∆du,chtar
i

= 1 m is denoted by γ0,

and ∆du,chtar
i
(t) denotes the Euclidean distance between the UAV and chtar

i at t, where the

path loss of the NLoS link is given as ηNLosγ0∆du,chtar
i
(t)−2, and ηNLos is the attenuation

coefficient of the NLoS links.
At t, the LoS link probability between the UAV and chtar

i is modeled as follows:

PLoS
u,chtar

i
(θchtar

i
(t)) =

1
1 + α exp(−β(θu,chtar

i
(t)− α))

(10)

where α and β are constant sigmoid parameters that depend on the signal propagation
environment and propagation distance. θchtar

i
(t) is the elevation angle of the UAV and chtar

i

in degree; it is given as θchtar
i
(t) = 180

π sin−1( H
∆du,chtar

i

). The NLoS link probability is given

as follows:
PNLoS

u,chtar
i
(θchtar

i
(t)) = 1− PLoS

chtar
i
(θchtar

i
(t)) (11)

let gu,chtar
i
(t) be the wireless channel gain between the UAV and chtar

i ; it is modeled
as follows:

gu,chtar
i
(t) = (PLoS

u,chtar
i
(θu,chtar

i
(t)) + ηNLosPNLoS

u,chtar
i
(θu,chtar

i
(t)))hu,chtar

i
(t) (12)

in this paper, we assume that the uplink and downlink channels are approximately equal.
As a result, the channel power gain between the UAV and chtar

i is given as follows:

hu,chtar
i
(t) ≈ gu,chtar

i
(t) = (PLoS

u,chtar
i
(θu,chtar

i
(t))

+ ηNLosPNLoS
u,chtar

i
(θu,chtar

i
(t)))hu,chtar

i
(t)

(13)

Assuming that the UAV establishes a communication link with chtar
i at t and chtar

i
maintains a constant transmit power Pt to upload data to the UAV, according to Shannon’s
formula [44], the data transmission rate between the UAV and chtar

i can be given as follows:

Rt
chtar

i
(t) = Blog2(1 +

Pt

∣∣∣gu,chtar
i
(t)

∣∣∣2
σ2 ) (14)

where B and σ2 represent the channel bandwidth and noise power, respectively, and
Pt denotes the transmit power of the node; hovering time (upload data time) is given
as follows:

thover =
Dchtar

i
(t)

Rt
chtar

i
(t)

(15)

the energy consumption for chtar
i to upload data at time t can be given as follows:

Et
chtar

i
(t) = Ptthover (16)
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3.2. Problem Formulation

In the proposed D-JERDG, we consider the UAV capabilities of energy replenishment
and data collection. The UAV departs from the BS and moves according to a planned flight
path. It is responsible for collecting data generated by all cluster heads in the network.
After completing a mission cycle, the UAV returns to the BS to recharge and transmit the
collected data back to the BS. The flight path consists of the hovering positions and the CH
node access sequence. First, to improve data collection efficiency, the UAV needs to serve
as many nodes as possible within the maximum flight time T and collect data. Second, the
charging strategy for the target CH node is crucial to minimize the node death rate and
flight costs. To ensure that high-energy-consuming nodes and remote area nodes receive
energy replenishment while reducing ineffective flight time, the UAV flight distance and
speed need to be controlled.

In summary, the overall objective of D-JERDG is to minimize the UAV flight energy
consumption and maximize its throughput while minimizing the node death rate. This
problem is a multiobjective optimization problem, and the objective functions can be
formulated as follows:

P1 : min(Nd, Eave
u , Ltotal

u ) (17)

The constraint condition can be formulated as follows:

0 ≤
N

∑
n=0

tn ≤ T (18)

∆du,chtar
i

< Rd (19)

∀∆du,cmj < Rc (20)

Ni
d =

{
0, REi(t)=0
1, REi(t)> 0

(21)

vmin ≤ vu(t) ≤ vmax (22)

0 < θu(t) ≤ 2π (23)

0 ≤ xu(t) ≤ L (24)

0 ≤ yu(t) ≤ L (25)

In objective functions, Ni
d(i = (1, 2, . . . , k)) is denoted as the number of dead nodes,

Ltotal
u represents the total flight distance, and Eave

u represents the UAV’s average flight
energy consumption. In the constraint condition, Formula (18) represents the UAV with
a maximum flight time of no more than T. Formula (19) represents the maximum data
transmission range of the node into the UAV to establish a communication link with
the UAV. Formula (20) indicates that nodes can harvest energy from the UAV within
the maximum charging range of the UAV. Formula (21) represents the energy state. If
REi(t) = 0, node i is considered a dead node. If REi(t) < 0, node i is in a normal state.
Formulas (22) and (23) represent the size limit of the UAV’s speed and heading angle.
Formulas (24) and (25) represent that the UAV’s flight range does not extend beyond the
two-dimensional area.

4. A Joint Energy Replenishment and Data Collection Algorithm Based on Deep
Reinforcement Learning

In this section, we presented the effective implementation of D-JERDG in UAV-WRSN.
First, we introduced a UAV-WRSN with a random topology structure. Then, we described
our proposed cluster head selection algorithm. Using the obtained set of CH nodes,
we applied the simulated annealing algorithm to solve the traveling salesman problem
(TSP). Afterward, we provided the state space, action space, and reward function of the
MODDPG algorithm.
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4.1. Cluster Head Selection Algorithm

Referring to [39], this network studied in this paper is a UAV-WRSN that uses a dy-
namic routing protocol. Figure 2 illustrates the generated clusters and data flow. Compared
with static routing protocols, dynamic routing protocols can evenly consume the energy of
nodes. However, in a traditional LEACH routing protocol [45], the CM nodes determine
whether to become CH nodes based on randomly generated thresholds. For each CM node
cmj, wth

j is given as follows:

wth
j =

{ p
1−p(r mod 1

p )
, if j ∈ cmj

0, otherwise
(26)

where p is the expected percentage of CH nodes, and r is the current number of rounds.
This method lacks consideration for the remaining energy and location of the nodes. We
have redesigned the CH node selection mechanism based on these two factors. Due to
insufficient energy information before the network operation, we utilize the K-means
algorithm to partition all the data into m clusters and identify m centroids within each
cluster. The overall optimization objective of the K-means algorithm is to minimize the
sum of distances between each point and its respective centroid within the clusters. Based
on the distances between nodes and centroids, we have determined m CH nodes. As a
result, when the UAV reaches a CH node, it can cover more nodes, thereby improving the
charging efficiency.

Figure 2. Illustration of clusters and data flow.

At each round, the cluster member nodes at each cluster elect CH nodes based on
their own energy status and location information to balance the energy consumption
of the nodes. Dynamic routing protocols are used within each cluster. We stipulate no
communication link between the sensor nodes and BS. CM nodes use CH nodes as the next
hop for communication, while CH nodes collect data sent by member nodes and transmit
them to the UAV. (If a CH node has nonzero data storage after the UAV completes a flight
cycle, it will continue to transmit data as a CM node in the next mission.) The weight of
CM nodes can be obtained using the following formula:

wcmj = κ
Emax − REcm

j (t)

REave(t)
+ (1− κ)

di,j

dave
(27)
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where REave(t) represents the average remaining energy of CM nodes, dave represents the
average distance between CM nodes and CH nodes, di,j represents the distance between
the CH node chi and the CM node cmj, and κ is a weighting coefficient. The weight value
wj represents the priority or importance of CM; among CM nodes, the one with the highest
wj will be selected as the CH node in the next mission round. The CH node will then
join the cluster as a CM node. Based on the obtained coordinates of the CH nodes, this
paper utilizes the SA algorithm to solve the TSP. The pseudocode for the SA algorithm is
presented in Algorithm 1. The specific algorithmic process is shown in Figure 3.

Figure 3. Illustration of the algorithm process.

4.2. UAV Control Algorithm Based on MODDPG

In contrast with reinforcement learning algorithms based on an action value, our
scenario involves a continuous action space for controlling the instantaneous speed and
heading angle of the UAV. This necessitates a distinct modeling and solution approach. To
tackle this continuous action space, we propose utilizing the MODDPG model for policy
learning. The algorithmic specifics of MODDPG are elaborated in Algorithm 2.

Algorithm 1 Solve TSP by using simulated annealing algorithm

Input: The coordinates of CH nodes li
Output: The sequence of CH nodes lnew

1: Initialize maximum iteration temperature K0 = 50, 000, the sequence of CH nodes li,
and annealing coefficient q = 0.98.

2: K ← K0.
3: while K > K0 do
4: Swap the order of any two nodes to generate a new visiting sequence lnew.
5: Calculating lnew, denoted as d f .
6: if d f > 0 then
7: if exp( d f

K0
) > rand(0, 1) then

8: l f ← lnew
9: end if

10: else
11: K = K× q
12: end if
13: end while
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Algorithm 2 MODDPG

Input: State space srl
Output: The action of UAV arl

1: Initialize Actor network parameters θµ, and Target Actor network parameters θµ′ ,
θµ′ ← θµ.

2: Initialize Critic network parameters θQ, and Target Critic network parameters θQ′ ,
θQ′ ← θQ.

3: Initialize experience Replay Buffer.
4: for episode = 0 to M do
5: Initialize srl .
6: for time step=t1, t2, . . . , tn do
7: repeat
8: With probability of ϵ choose an action arl = clip(µ(srl |Qµ) + ϵ, alow, ahigh).
9: Perform action arl and observe reward rrl and next state s′rl .

10: Store the transition (srl , arl , rrl , s′rl) from P.
11: if P ≥ Batch size then
12: Randomly sample Mini batch transitions (srl , arl , rrl , s′rl) from P.
13: Compute yrl (19).
14: Update Critic network by minimizing the critic loss (20).
15: Update Actor network by maximizing the actor loss (21).
16: Soft Update Target Network Parameters.
17: θQ′ ← τθQ + (1− τ)θQ′

θµ′ ← τθµ + (1− τ)θµ′

18: end if
19: until ∑N

n=0 tn ≥ T
20: end for
21: end for

• State Space: The state space set is defined as follows:

srl(t) =
{

dx
u,chtar

i
(t), dy

u,chtar
i
(t), xu(t), yu(t), N f (t), Nd(t), ∀i ∈ [1, m]

}
(28)

Specifically, with a state space size of 6, dx
u,chtar

i
and dy

u,chtar
i

represent the relative

distances in the horizontal and vertical coordinates between the UAV and the target
CH node i, and N f (t) records the cumulative number of times that the UAV has
continuously exceeded the restricted area by time t.

• Action Space: At each t, the action of the UAV is defined as follows:
θu(t) ∈ (0, 2π]: Instantaneous heading angle of the UAV along the horizontal direction
at t.
vu(t) ∈ [0, vmax]: Instantaneous speed of the UAV at t.
The action of the UAV is defined as arl = [vu(t), θu(t)]

• Reward Function: At any time step tn, the UAV receives a reward rrl . To ensure
the throughput of the UAV, the UAV receives an immediate reward r0 whenever
it successfully establishes communication with the target node chtar

i . The reward
function is defined as follows:

rrl =

{
r0(t)+r1(t), if ∆du,chtar

i
(t)≤Rd

r1(t),otherwise (29)

r0(t) = rserve + η1λcover(t) + η2Rtran
chtar

i
(t) (30)

r1(t) = −η2∆du,chtar
i
(t)− η3(Epro

u (t) + Nd(t)) (31)
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Specifically, the reward function is divided into two parts, r0 and r1, where rserve
represents the reward for the UAV establishing a connection with CH nodes; λcover
indicates the number of nodes covered by the UAV; and η1, η2, and η3 are reward
weight factors for the optimization objectives. r1 is based on the UAV actions at each
time step and includes factors such as the distance between the UAV and CH nodes,
the energy consumption of the UAV flight, and the number of dead nodes Nd(t).

The MODDPG network framework is shown in Figure 4; it consists of four networks,
with the main network and target network each comprising two networks: the actor
network, critic network, target actor network, and target critic network. The main network
and target network share the same network structure, where the actor network outputs
UAV actions, and the critic network evaluates these actions to update the actor network.
The MODDPG algorithm optimizes the UAV instantaneous speed and heading angles,
ultimately learning the optimal policy.

Figure 4. MODDPG network framework.

The calculation of the target value yrl is as follows:

yrl = rrl + γQ′(srl
′, µ′(srl

′; θµ′); θQ′) (32)

The critic network is trained using gradient descent to minimize the loss between the
predicted value Q(srl , arl ; θQ) and the target value yrl .

Loss =
1
M∑ (yrl −Q(srl , arl ; θQ))

2
(33)

Update the actor network using a gradient-based policy algorithm:

∇θµ J =
1
M ∑∇arl Q(srl , arl ; θQ)|s=srl ,a=µ(srl)

∇θµ µ(srl ; θµ)|srl (34)

where J represents the total discounted cumulative reward. The specific algorithm flow is
described as follows: Initialize the replay buffer, critic network, and actor network parame-
ters θQ and θµ, as well as the target critic network and target actor network parameters θQ′

and θµ′ (lines 1–3). Perform the exploration phase for the UAV in lines 4–10, and generate
an action arl = clip(µ(srl |Qµ) + ϵ) from the actor network. This process is repeated until
the maximum task time is reached, and the experiences are stored in the replay buffer.
Updating network parameters, when the experience replay buffer P is full, start training
the networks to update actor network and critic network parameters (lines 11–15). Update
the critic network parameters by minimizing the loss function (line 14), and update the
actor network parameters using the deterministic policy gradient (line 15). Finally, use the
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soft update technique to update the parameters of the target actor network, controlling the
update frequency to converge faster toward the optimal policy (lines 17–21).

5. Experimental Results

In this section, we conducted simulation results to validate the effectiveness of D-
JERDG. Specifically, we provided numerical results and analyzed the convergence of
D-JERDG by adjusting the number of CM nodes, CH nodes, and maximum charging
radius. We compared D-JERDG with MODDPG and the random method. We analyzed the
differences between the algorithms from five aspects: node death rate, data overflow rate,
UAV throughput, average flight energy consumption, and time utilization. By comparing
these metrics, we were able to evaluate and highlight the differences and advantages of
D-JERDG over the other algorithms in terms of efficiency and performance.

• D-JERDG: D-JERDG uses the K-means clustering algorithm to divide nodes into
multiple clusters, designing the CH node selection mechanism based on an improved
dynamic routing protocol. The SA algorithm determines the CH node access sequence,
and the UAV flight actions are controlled by inputting the UAV and network states
into the DRL model MODDPG.

• MODDPG (multiobjective deep deterministic policy gradient) [20]: This method
selects the node with the highest data volume as the target node. By observing the
relative positions of the UAV and the target node, as well as the node states, a DRL
model is established to control the UAV learning of all node positions. Through
accessing the nodes, data collection and range-based charging are achieved.

• Random: The method is based on the MODDPG [20] definition, with the difference
being that the random algorithm randomly selects a node as the target node and uses
the DRL model to optimize the UAV’s flight trajectory.

5.1. Simulation Settings

We consider the UAV taking off from the BS, the maximum flight time T to be set
at 10 min. The sensor nodes are randomly distributed within a 400× 400 m2 square two-
dimensional area. The UAV flies at an altitude of 10 m, with a maximum data transmission
radius Rd = 10 m and a maximum charging radius Rc = 30 m. The maximum flight speed
of the UAV is set to 20 m/s [20]. The coordinates of the nodes are randomly generated
and remain fixed. The nodes’ maximum data storage capacity is Qmax = 100 Mb [40]. The
total energy of the nodes is set to Emax = 800 J [40], and their initial energy is randomly
generated within the range of [0 J, 800 J] [40]. The transmission energy consumption
for CM nodes is et = 0.4 J [43], and the reception energy consumption for CH nodes is
er = 0.5 J [43]. Table 3 and Table 4, respectively, show the network parameters of MODDPG
and the main environmental parameters, as specified in reference [20]. The operating
system environment of the simulation experiment is TensorFlow 2.5.0, TensorLayer 2.2.5,
and Python 3.7 on a Linux server with four NVIDIA 3090 GPUs.

Table 3. Network parameters.

Parameters Values

Episodes (M) 400
Actor network structure 400× 300× 300
Critic network structure 400× 300
Actor network hidden layers 3
Critic network hidden layers 2
Batch size 64
Learning rate for actor (lra) 1× 10−3

Learning rate for critic (lrc) 1× 10−3

Discount factor (γ) 0.9
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Table 3. Cont.

Parameters Values

Replay buffer (P) 8000
Target network soft update rate (τ) 1× 10−3

Reward weights (η1, η2, η3) 50, 100, 5

Table 4. Main simulation parameters.

Parameters Values

Node transmit power (Pt) 1× 10−3 W
Buffer capacity of nodes (Qmax) 100 Mb
Battery capacity of nodes (Emax) 800 J
The initial energy of nodes rand(0 J, 800 J)
The initial buffer length of nodes rand(0 Mb, 5 Mb)
Weighting coefficient (κ) 0.7
Channel bandwidth(B) 1 MHz
Channel power gain (γ0) −30 dB
Noise power (σ2) −90 dBm
NLoS path loss coefficient (ηNLos) 0.2
Los probability coefficient (α, β) 10, 0.6
Blade profile power (P0) 79.8563 W
Induced power (Pf ) 88.6279 W
Tip speed of rotor blade (Utip) 120 m/s
Mean rotor induced velocity (v0) 4.03 m/s
Fuselage drag ratio (d0) 0.6
Air density (ρair) 1.225 km/m3

Rotor solidity (Srotor) 0.05
Rotor disc area (Arotor) 0.503 m2

5.2. Evaluation Metrics

We introduce five key performance metrics to analyze and compare the optimization
effects of D-JERDG on UAV-WRSN in terms of system charging efficiency, data collection
efficiency, and UAV flight energy consumption.

• Node death rate: The node death rate is determined by the proportion of dead nodes,
where node i is considered dead when REi(t) = 0. A lower node death rate indicates
a higher system charging efficiency. This metric determines which charging strategy
can maintain the maximum number of surviving nodes in the experiment.

• Node data overflow rate: The node data overflow rate is determined by the propor-
tion of nodes with data storage exceeding the maximum capacity, represented as
Di(t) = 100. This metric measures the effectiveness of UAV data collection and the
clustering algorithm.

• UAV throughput: The UAV throughput is the ratio of the number of nodes accessed
by the UAV to the total number of nodes within the maximum flight time. It measures
the overall efficiency of the UAV-WRSN system.

• Average flight energy consumption: The average flight energy consumption is de-
fined as the ratio of the total energy consumption during UAV flight to the maxi-
mum flight time. It is a key indicator for evaluating the energy consumption of the
UAV-WRSN system.

• Time utilization rate: The time utilization rate represents the ratio of the hover time to
the flight time of the UAV during a flight mission. A lower time utilization indicates
a higher proportion of time occupied by UAV flights, serving as a metric for evalu-
ating the data collection efficiency of the UAV. The time utilization rate Rtu is given
as follows:

Rtu =
thover
t f ly

(T = thover + t f ly) (35)



Sensors 2024, 24, 2386 15 of 23

5.3. Convergence and Stability

After D-JERDG is implemented, we first test the convergence and stability of the
proposed model. The episode was set as 400, and the model of the number of different
clusters, the number of nodes in each cluster, and the maximum charging radius of the UAV
were trained. “C20N200R30” means that there are 20 CH nodes and 180 CM nodes, the
maximum charging radius of UAV is Rc = 30 m, and the other sections in this chapter follow
the same pattern. Then the functional relationship between episode and reward is shown in
Figure 5. As can be seen from Figure 5, the reward of most models increased rapidly before
150 episodes. After 200 episodes, the value of rewards becomes stable and oscillates around
a certain value until the training ends. The results indicate that the trained D-JERDG
algorithm successfully converges and can make high-reward decisions in a dynamically
changing network state. Figure 5a shows the reward curves under different numbers of
CH nodes and CM nodes, ranging from “C20N200R30” to “C40N400R30” experimental
scenarios. Figure 5b displays the reward curves for different numbers of CH nodes, with
the experimental scenarios ranging from “C15N200R30” to “C30N200R30”. Figure 5c
illustrates the reward curves under different UAV charging radii, with the experimental
scenarios ranging from “C20N200R15” to “C20N200R30”.

Additionally, Figure 6 displays the loss curve and temporal difference error (TD error)
curve of network training for the three algorithms, with the experimental scenario being
“C20N200R30”. In Figure 6a, the curve trends of the three algorithms are mostly consistent
before 150 episodes. After that, due to the increased UAV throughput in D-JERDG, some
fluctuations occur. However, overall, the loss curves of the three algorithms converge
before 400 episodes. In Figure 6b, we show the TD error curve of network training for the
three algorithms. Overall, all three algorithms can converge before 400 iterations. However,
before 100 episodes, D-JERDG has a slower convergence rate compared with the other
two algorithms. Because we expect D-JERDG to learn the positions of more nodes in
the early training episodes, we have implemented a strategy where the set of CH nodes
initialized using the K-means algorithm is not fixed. The purpose of this approach is to
ensure that D-JERDG can learn the positions of as many nodes as possible. By flexibly
adjusting the CH node set, D-JERDG can better adapt to the varying node distributions
in different environments, enhancing its performance and training effectiveness. After
100 episodes, as the rewards for D-JERDG start to increase and gradually converge, it also
exhibits convergence in the TD error curve.

5.4. Performance Comparison

Specifically, without loss of generality, we conducted experiments with different
numbers of nodes and varying UAV flight speeds. The number of nodes was set from
“C10N100R30” to “C40N400R30”, with a maximum data transmission radius of Rd = 10 m,
a maximum charging radius of Rc = 30 m, and a maximum flight speed ranging from
15 m/s to 20 m/s. With an increasing number of nodes, both the energy consumption and
data volume of CH nodes increase within the same period. A larger flight speed allows the
UAV to reach nodes faster, but it also increases energy consumption. On the other hand, a
smaller speed can save energy but may sacrifice some throughput and result in a certain
number of dead nodes, thereby affecting UAV throughput, the number of dead nodes, and
time utilization. Additionally, as the number of nodes increases, in our proposed approach,
the UAV flight time and distance are influenced by the increasing number of CH nodes,
which also affects flight energy consumption. Based on these hypotheses, we conducted
comparative experiments.



Sensors 2024, 24, 2386 16 of 23

Figure 5. Learning curve with the episode = 400.
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Figure 6. Learning curve with the episode = 400.

5.4.1. Node Death Rate

In this section, we compared the performances of different algorithms in terms of node
death rate. Specifically, in the MODDPG experiment, we designated the node with the least
remaining energy as the target node. The experimental results are shown in Figure 7.

Figure 7. Experimental results of node death rate.

Figure 7a demonstrated a clear disparity in node death rates between D-JERDG and
Random. Initially, MODDPG exhibited lower node death rates than D-JERDG for up to
200 nodes. This can be attributed to the advantage of the greedy-based node charging
strategy in scenarios with a small number of nodes and low density. However, after
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reaching 200 nodes, D-JERDG demonstrated a lower node death rate than MODDPG, with
a declining trend beyond 300 nodes. When the number of nodes is 250, compared with the
MODDPG and random, D-JERDG can decrease the node death rate by about 17% and 44%,
respectively. This improvement can be attributed to the clustering algorithm employed
in D-JERDG, where several nodes closest to the CH node are selected as CM nodes. This
approach ensures that the UAV covers more nodes during each hover, enhancing charging
efficiency. The effectiveness of the proposed CH node selection mechanism was also
validated, as it increased the likelihood of selecting CM nodes farther from the current CH
node as new CH nodes. This enabled energy replenishment and reduced the node death
rate of remote area nodes, making D-JERDG more suitable for large-scale networks aiming
to maintain network connectivity. From Figure 7b, we examined the variations in node
death rates across different algorithms while considering different UAV flight speeds, with
200 nodes in the experiment. Overall, increasing the UAV flight speed resulted in reduced
fluctuations in the node death rate, and D-JERDG consistently outperformed MODDPG
and random by maintaining lower node death rates. When the speed of the UAV was
15 to 20, compared with MODDPG and random, the average decline rate of D-JEGDG in
terms of node death rate was about 10% and 45.5%, respectively. Furthermore, as the flight
speed increased, the node death rate exhibited a significant decrease. This highlights the
advantageous performance of D-JERDG in terms of node death rate when compared with
the other algorithms.

5.4.2. Node Data Overflow Rate

In this section, we analyze the differences in node data overflow rates among different
algorithms. In the MODDPG experiment, we designate the node with the highest data vol-
ume as the target node, and the experimental results are shown in Figure 8. In Figure 8a,b,
with an increasing number of nodes, compared with MODDPG and random, the average
decline rate of D-JEGDG in terms of node overflow rate is about 46.4% and 48.2%, respec-
tively. With an increasing speed of the UAV, it is about 35.1% and 46%, respectively. This is
because the dynamic routing protocol periodically selects CM nodes as CH nodes, allowing
CH nodes to gather data from CM nodes and reduce node data overflow. However, for
MODDPG and random, the one-to-one data collection approach leads to lower efficiency
and inevitable node data overflow.

Figure 8. Experimental results of node data overflow rate.

5.4.3. UAV Throughput

In this section, we compare the performances of different algorithms in terms of UAV
throughput by changing the number of CH nodes and CM nodes in the network. The
experimental results are shown in Figure 9. In Figure 9a, we observe that as the number
of nodes increases, all algorithms experience a decrease in UAV throughput. However, D-
JERDG consistently achieves the highest throughput among the algorithms. Compared with
MODDPG and random, the average growth rate of D-JEGDG in terms of UAV throughput
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is about 79.3% and 43%, respectively. In D-JERDG, the use of a K-means-based clustering
algorithm for CH node selection introduces randomness, allowing the UAV to quickly learn
the positions of all nodes by obtaining different node coordinates in each training round.
This enables D-JERDG to achieve a higher node access count within the same flight time.
At 250 nodes, D-JERDG reaches a node access count of 50, indicating that it completes two
rounds of CH node traversal. Beyond 300 nodes, D-JERDG throughput reaches a plateau
and remains competitive with MODDPG. This can be attributed to the increased number
of CH nodes requiring the UAV to spend more time hovering for data collection, leading
to longer flight times and a decrease in node access count. In Figure 9b, we analyze the
impact of different UAV flight speeds on throughput with a fixed number of 200 nodes.
Overall, compared with MODDPG and random, D-JERDG outperforms MODDPG and
random algorithms, and the throughput significantly increases as the flight speed rises. The
average growth rate of D-JEGDG in terms of UAV throughput is about 55.3% and 42.4%,
respectively.

Figure 9. Experimental results of UAV throughput.

5.4.4. Average Flight Energy Consumption

In this section, we analyze the differences in average UAV flight energy consumption
among three algorithms. The experimental results are depicted in Figure 10. In Figure 10a,
we observe that the UAV energy consumption in D-JERDG initially increases and then
decreases as the number of nodes increases. Before reaching 200 nodes, the larger distances
between CH nodes prompt the UAV to adapt its flight speed to minimize the flight time and
efficiently collect data, resulting in an increasing energy consumption curve. However, after
200 nodes, as the number and density of CH nodes increase, the distances between them be-
come shorter. Compared with MODDPG and random, the average decline rate of D-JEGDG
in terms of average flight energy consumption is about 4.2% and 4%, respectively. When the
number of nodes is 350, D-JERDG can decrease the average flight energy consumption by
about 10% and 9.8%, respectively. As a result, the UAV adjusts its flight speed by reducing
it, which leads to longer flight times but decreases the overall UAV energy consumption.
Compared with MODDPG and random, in Figure 10b, we examine the impact of different
flight speeds on average energy consumption under the three algorithms. Overall, there
is no significant difference among the algorithms (D-JERDG, MODDPG, and random) in
terms of average energy consumption. However, as the flight speed increases, the average
energy consumption increases as well. Notably, D-JERDG consistently maintains a lower
average UAV flight energy consumption compared with MODDPG and random algorithms
under different flight speed conditions.
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Figure 10. Experimental results of average flight energy consumption.

5.4.5. Time Utilization Rate

In this section, we compare the differences in time utilization rates between the D-
JERDG and MODDPG algorithms. The experimental results are presented in Figure 11. In
Figure 11a, we observe that the time utilization of D-JERDG initially increases and then
decreases as the number of CH nodes varies. This trend aligns with the analysis discussed
earlier. In general, D-JERDG exhibits a similar pattern to MODDPG, and after 300 nodes,
their time utilization becomes comparable. When the number of nodes is 150 to 350, the
average growth rate of D-JEGDG in terms of time utilization rates is about 23%. The
reason behind this behavior lies in the D-JERDG method, which utilizes the SA algorithm
to adjust the sequence of CH node visits, thereby reducing the UAV flight distance and
time. Before reaching 300 nodes, with a smaller network size, the total flight time includes
longer hover times. At 200 nodes, the time utilization reaches its peak, which aligns with
the trend observed in the average UAV energy consumption curve. However, beyond
300 nodes, as the number of CH nodes increases, the flight time also increases. With the total
flight time remaining constant, the time utilization decreases accordingly. In Figure 11b,
we examine the impact of UAV flight speed on time utilization under both algorithms.
Notably, D-JERDG consistently achieves higher time utilization compared with MODDPG,
maintaining the highest level throughout the different flight speeds. As the speed of
UAV increases, the average growth rate of D-JEGDG in terms of time utilization rates is
about 36%.

Figure 11. Experimental results of time utilization rate.

6. Conclusions

This study proposes a DRL-based method called D-JERDG for joint data collection
and energy replenishment in UAV-WRSN. The main problems D-JERDG addresses are indi-
vidual nodes’ low data collection efficiency and the imbalance in node energy consumption.
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D-JERDG optimizes the network to tackle these issues by considering node inefficiency,
UAV flight energy consumption, and UAV throughput. The clustering algorithm based
on K-means and an improved dynamic routing protocol is used to cluster the nodes in
the network. CH nodes are selected based on the remaining energy and geographical
locations of the nodes within the clusters, effectively adapting to the dynamic nature of
node energy consumption. Furthermore, a simulated annealing algorithm is employed to
determine the visiting sequence, and the DRL model MODDPG is introduced to control
the UAV for node servicing. Through extensive simulation results, the evaluation metrics
of node inefficiency, UAV throughput, and average flight energy consumption are used
to assess the performance of D-JERDG. The results demonstrate that D-JERDG achieves
joint optimization of multiple objectives. It outperforms the existing MODDPG approach
by significantly reducing node inefficiency, saving flight costs, and improving data collec-
tion efficiency. Moreover, multiple research studies suggest that multiagent systems have
significant advantages in accomplishing complex tasks. Therefore, Multi-UAV-WRSN is
expected to be a primary research focus in the future.
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